
Submitted to:
SYNT 2014

c© R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer
This work is licensed under the
Creative Commons Attribution License.

How to Handle Assumptions in Synthesis∗

Roderick Bloem1 Rüdiger Ehlers2,3 Swen Jacobs1 Robert Könighofer1

1Graz University of Technology 2University of Bremen 3DFKI GmbH
Graz, Austria Bremen, Germany Bremen, Germany

The increased interest in reactive synthesis over the last decade has led to many improved solutions
but also to many new questions. In this paper, we discuss the question of how to deal with assump-
tions on environment behavior. We present four goals that we think should be met and review several
different possibilities that have been proposed. We argue that each of them falls short in at least one
aspect.

1 Introduction

In reactive synthesis, we aim to automatically build a system that fulfills guarantees Gua under the
assumption that the environment fulfills some properties Ass. Most popular synthesis approaches take
the rudimentary view that the system and its environment are adversaries, and that the synthesis problem
is solved by generating a system that realizes the formula

Ass→ Gua.

We argue that this view is imperfect, describe principles that we believe are important to obtain desir-
able systems, review the work of others who have come to similar conclusions, and describe drawbacks
of the proposed approaches. The purpose of the paper is to raise questions rather than to present answers,
and to highlight (our) lack of understanding of the problem, rather than our understanding of a solution.
Doing this, we hope to spark discussions and further research on this topic.

To see that the setting described above is imperfect, consider a hypothetical example from real life.
Suppose that a coach promises the owners of his/her team to win a match under the reasonable assump-
tion that none of the coach’s players gets injured during the match. In order to fulfill this contract, the
coach may either work hard at winning the game, or may injure one of the players during the last few
minutes of the match. While the latter approach may not be unheard of1, it is generally frowned upon.
The same problem occurs in synthesis: a system may fulfill the specification Ass→ Gua by forcing the
environment to violate the assumptions, which is quite undesirable [27].

We will assume that systems are implemented in a setting that consists of multiple components.
Some of these may be implemented by a synthesis tool and are thus correct by construction. Some may
be implemented by a human and we should have good faith in correctness, but not certainty. Some com-
ponents involve physical interaction with the environment, and we should be skeptical of the assumptions
that we have made about these components [32]. The same applies for components whose functionality
is carried out by a human operator. Finally, note that even in a perfectly implemented system, errors
occur due to environmental influences such as soft errors [29].
∗This work was supported in part by the Austrian Science Fund (FWF) through the national research network RiSE (S11406-

N23) and the project QUAINT (I774-N23), as well as by the European Commission through project STANCE (317753).
1Fiorentina’s coach (in 2012) and Nuova Cosenza’s coach (in 2013) mostly likely each had a different motivation for

attacking their own players.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 How to Handle Assumptions in Synthesis

To be sure, the requirement that the system fulfills the guarantees in all cases that the assumptions
are fulfilled is very natural and captures the notion of correctness. Yet, it is a very incomplete notion of
what is desirable in a system. We present the following (non-exhaustive) list of functional goals that we
believe a desirable system should aim for:

Be Correct! Fulfill the guarantees if the environment fulfills the assumptions.

Don’t be Lazy! Fulfill the guarantees as well as possible for as many situations as possible, even when
the assumptions are not fulfilled.

Never Give Up! If you cannot satisfy the guarantees for every environment behavior, try to satisfy them
when you can.

Cooperate! If possible, allow or help the environment to fulfill the assumptions.

Note the difference between Don’t be Lazy and Never Give Up: in the first case, we can enforce the
guarantees. In the latter we cannot enforce it, but we may be able to succeed if the environment does
not exhibit worst-case behavior. Besides these four functional goals, we want the assumptions to be an
abstraction of the environment’s specifications so as not to make the synthesis procedure unduly complex.

Traditional LTL synthesis only meets the goal to Be Correct. In Section 2, we will show this in more
detail, along with the limitations of the approach. After that, we survey and illustrate some existing ap-
proaches for the other goals. For Don’t be Lazy (Sect. 3) we focus on robust and error-resilient synthesis,
and on synthesis with quantitative objectives since these approaches attempt to satisfy guarantees as well
as possible. For Never Give Up (Sect. 4) we will look at research that goes beyond a purely adversarial
view of games by suggesting reasonable strategies for losing states. For Cooperate (Sect. 5) we will
leave the adversarial view even further: We will consider non zero-sum approaches which allow for ex-
plicit collaboration by constructing joint strategies for the players. For each approach we will show how
it addresses at least one goal and how it is imperfect for another. Finally, in Section 6, we will conclude
our investigation with a table summarizing the strengths and weaknesses of the discussed approaches.

2 Be Correct!

2.1 Standard Synthesis

In standard synthesis, the environment is treated as an adversary, i.e., synthesized systems must be cor-
rect for any possible behavior of the environment. The behaviors of the environment under which the
guarantees Gua must hold are then modeled as antecedents to the implication

Ass → Gua.

The corresponding payoff matrix2 is shown in Figure 1: the only one case that is considered undesirable
is when Ass is fulfilled, but Gua is not; there is no difference in payoff or desirability between the three
remaining cases.

First, the implication does not enforce Don’t Be Lazy: It does not distinguish a trace that satisfies
Gua from one that violates Ass. Thus, it does not restrict the behavior of the system in any way on traces
where the environment violates Ass. (An example can be found in Section 3.)

Second, the formalization does not imply the satisfaction of Never Give Up. Standard synthesis
only optimizes the worst-case behavior, i.e., if Ass → Gua cannot be fulfilled for some behavior of

2In all matrices, the absolute values of the payoffs are immaterial and only illustrate relative preferences.

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 3

Gua violated

Gua satisfied

Ass violated Ass satisfied

1 0

1 1

Figure 1: The standard desirability matrix for satisfying the specification.

the environment, then the output of the synthesis algorithm will simply be “unrealizable”, instead of a
system that fulfills Gua whenever possible. This goal is all the more important in a situation in which the
assumptions are violated. In that case, the guarantees may not be realizable, but even then they should
be fulfilled whenever possible. (An example can be found in Section 4.)

Third, the approach does not fulfill Cooperate: the system may force the environment to violate Ass.

Example 1. Consider the specification

(GFr∧G(r→ X(¬rW g))) → G(r→ Xg).

This specification should result in a system that grants every request in the next time step, for every
environment that gives infinitely many requests, but no request is repeated before there is a grant. In this
setting, requests are signaled by setting r to true, whereas grants are signaled by setting g to true. By
simply giving no grants at all (violating the guarantees), the system can force the environment to violate
the assumptions, thus fulfilling the specification. ?

The behavior shown in the example may be intended if the environment is considered to be purely
adversarial, but in many applications of system design, this is not the case. Good examples for this fact
are large systems that are constructed modularly, where the overall system is abstracted by environment
assumptions for a particular component that we want to synthesize. Then our goal is not for the compo-
nent to force the environment (i.e., the rest of the system) to violate the assumptions, but to work together
with the environment to some extent, allowing both Ass and Gua to be satisfied whenever possible.

Thus, the standard approach fulfills Be Correct, but not Don’t Be Lazy, Never Give Up, and Coop-
erate. This is summarized in Table 5.2 (on page 15) together with the strengths and weaknesses of the
approaches discussed in the next sections.

3 Don’t Be Lazy!

Traditionally, correctness is considered to be a Boolean property: a system either realizes a specification
or not. For specifications of the form Ass→ Gua, this attitude results in the desirability matrix shown in
Figure 1. This section focuses on improving the system behavior if assumptions are violated, i.e., on the
left column of the matrix.

Example 2. As motivation, consider a flight control system which must work correctly under the as-
sumption that the number of simultaneously arriving planes is less than 100. For more planes, the
specification may be unrealizable, e.g., because it may be impossible to guarantee all timing constraints.
Suppose further that the system has been synthesized, is in operation, and the 101st plane arrives. A
work-to-rule synthesis algorithm could have considered this situation as won, and may have randomly

4 How to Handle Assumptions in Synthesis

Gua violated

Gua satisfied

Ass violated Ass satisfied

1 0

2 2

Figure 2: The desirability matrix used in error-resilient synthesis.

chosen to stop serving any plane in this situation. A more desirable system would serve planes as well
as possible, even though the assumption is violated: For instance, ignoring the 101st plane or responding
a bit slower are certainly better options. Even more, for configurations of the 101 planes that can be han-
dled with the available resources, it would be preferable if no reduction in the quality of service occurs
at all. ?

With the matrix in Figure 1, once the assumptions are violated, there is no additional benefit for the
system to satisfy the guarantees any more. The implication is satisfied for any future system behavior,
so it can then behave arbitrarily. The synthesis algorithm can exploit this freedom even in situations in
which it would still be possible to satisfy the guarantees. This is clearly undesirable. Intuitively, the
synthesized system should always aim for satisfying the guarantees, even if assumptions are violated,
instead of getting lazy and doing only the least to satisfy the implication.

With the payoff matrix in Figure 2, this changes. By giving traces of the system in which the sys-
tem satisfies the guarantees a higher payoff regardless of whether the assumptions are satisfied, there is
always an incentive for the system to satisfy the guarantees. An approach to deal with multiple ranked
specifications is presented in [1].

In practice, assumptions and guarantees can be violated only slightly, or very badly. With this non-
Boolean understanding of property violations, the desirability matrix of Figure 2 gets blurred, with grad-
ual transitions between the quadrants, as represented in Figure 3. It makes sense to consider the degree
in which guarantees are satisfied also in synthesis: even if it is not possible to satisfy all guarantees due
to assumption violations, an ideal system would still try to satisfy guarantees “as well as possible”.

In the remainder of this section, we briefly review previous approaches to synthesize systems that
are eager to satisfy their guarantees. We start by reviewing the strict implication semantics employed in
the Generalized Reactivity(1) Synthesis approach in Section 3.1, which yields a form of such eagerness
as a by-product. In Section 3.2, we then discuss approaches that extend the set of environment behaviors
under which the system can satisfy its guarantees, and in this way make the system less lazy without
sacrificing the satisfaction of the guarantees. Synthesis approaches that allow slight deviations from the
guarantees in case of assumption violations are discussed in Section 3.3. Finally, we discuss quantitative
synthesis in Section 3.4, which offers a flexible framework to encode quality criteria of synthesized
systems, including some notions of eagerness of the system to satisfy its guarantees.

3.1 Assumptions in Generalized Reactivity Games

Specifications in the generalized reactivity fragment of rank 1 (GR(1)) have been proposed as an al-
ternative to full LTL, as their synthesis problems are efficiently decidable and are still sufficiently ex-
pressive for many important properties [8]. What is particularly interesting in our present comparison
is that in GR(1) synthesis games that solve the synthesis problem for this fragment, the implication

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 5

Gua violated

Gua satisfied

Ass violated Ass satisfied

1 0

2 2

Figure 3: The (blurred) desirability matrix used in robust synthesis.

Ass → Gua is interpreted slightly different than in the standard semantics (see Bloem et al. [8] and
Klein and Pnueli [27]). In particular, safety guarantees and assumptions are treated differently: even if
the environment does not satisfy Ass completely, the system must satisfy its safety guarantees at least
as long as the environment satisfies the safety assumptions. This rules out some non-intuitive behavior
by the system, where it violates Gua because it knows that it can force the environment to violate Ass at
some point in the future. In particular, the unintended behavior in Example 1 is ruled out.

While this changes the rules of the synthesis game such that the system player loses the game if
such a safety guarantee is violated before the environment violates some safety assumption (instead of
the system winning whenever the environment violates Ass anywhere in the infinite trace), it does not
change the purely adversarial view on the game.

Example 3. If the safety guarantee G(r→Xg) in Example 1 is changed into a liveness guarantee G(r→
Fg), i.e., the specification is modified to

(GFr∧G(r→ X(¬rW g))) → G(r→ Fg),

the system can still enforce an assumption violation by violating the guarantee, even in the modified
semantics of the implication, by not giving any grants. The reason is that the system does not violate the
guarantee before the assumption is violated. ?

Furthermore, this extension does not change the purely worst-case analysis that will simply return
“unrealizable” if the specification cannot be fulfilled in all cases, and otherwise return a solution that does
not distinguish between cases where ¬Ass∧¬Gua holds versus cases where Gua is actually satisfied.
(Recall that strengths and weaknesses are summarized in Table 5.2.)

Related mechanisms are presented in [18]. This work presents an approach to synthesize event-
based behavior models from GR(1) specifications. It uses the following definitions in order to avoid
systems that satisfy the specification by violating assumptions. A best effort system system satisfies the
following condition: if the system forces Ass not to hold after a finite trace σ , then no other system
that achieves Gua could have allowed Ass after σ . An even stronger definition is that of an assumption
preserving system: the system should never prevent the environment from fulfilling its assumptions.
Every assumption preserving system is also a best effort system. Finally, the authors propose assumption
compatibility as a methodological guideline. It is a sufficient condition under which any synthesized
system is assumption preserving: The environment must be capable of achieving Ass regardless of system
behavior. This can be checked by deciding realizability with swapped roles. However, this condition is
rather strong.

6 How to Handle Assumptions in Synthesis

3.2 Synthesizing Error-Resilient Systems

The most desirable form of the system to react to environment assumption violations is to continue to
satisfy its guarantees. As in a system engineering process, assumptions are typically only added on an
as-needed basis, this will only be possible in rare circumstances, and the synthesized system can then
simply be made robust against assumption violations by removing them before performing synthesis.

Yet, this does not mean that every single assumption violation requires the system to violate its
guarantees. A couple of approaches aim at exploiting this fact.

Topcu et al. [32] describe an approach to weaken the safety part of the assumptions as much as pos-
sible in context of GR(1) synthesis. The weakening is performed in a very fine-grained way, much finer
than how a human specifier would do so, and as fine-grained as possible in GR(1) synthesis without the
introduction of additional output signals to encode more complex properties. The resulting synthesized
controller is then completely error-resilient against environment behavior that is forbidden by the original
assumptions, but allowed by the refined assumptions.

Ehlers and Topcu [20] approach the problem from a different angle. They describe how to synthesize
a k-resilient implementation. The notion of k-resilience has been defined earlier by Huang et al. [26].
Adapted to the case of GR(1) specifications, it requires the system to satisfy the guarantees if not more
than k safety assumption violations occur in between assumption-violation-free periods of the system
execution, provided that these periods are long enough to allow the system to recover. The approach also
allows a more fine-grained analysis of for which assumptions some of their violations can be tolerated and
for which no violation can be tolerated – whenever there is a trade-off between the choices of assumptions
for which violations should be tolerated, all Pareto-optimal such choices are presented to the specifier.

Orthogonal to k-resilient synthesis is the idea to extend a synthesized implementation by recovery
transitions [34]. Such transitions can be added for cases in which the assumptions are violated, but for
which the system can react in a way that does not jeopardize the system’s ability to completely satisfy
its guarantees along its run if the environment starts to satisfy its assumptions again. In contrast to k-
resilient synthesis, recovery behavior is added on a best-effort basis and the synthesized system does not
strategically choose its nominal-case behavior such that as many safety assumption violations as possible
are tolerated.

All three approaches only make the system robust to a certain extend as they extend the set of envi-
ronment behaviors under which a system can be synthesized. They do not help to satisfy the guarantees
as well as possible for environment behaviors that do not fall into this set.

3.3 Synthesis of Robust Systems

The basic idea of robust synthesis is to satisfy guarantees as well as possible, even if assumptions are
violated. Slight violations of the guarantees are allowed when the assumptions are violated, and we can
further distinguish between different severity levels of assumption- and guarantee violations.

Robust synthesis is motivated by the observation that synthesized systems sometimes simply stop
responding in any useful way after an assumption has been violated. Consider the following example.

Example 4. A system must grant two requests, but not simultaneously: Gua = G((r0 → g0)∧ (r1 →
g1)∧ (¬g0∨¬g1)). The environment must not raise both requests simultaneously: Ass= G(¬r0∨¬r1).
The plain implication Ass→ Gua allows the system to ignore any future request if the environment ever
happens to raise both requests. Optimizations for other properties like circuit size of the synthesized
solution may exploit this freedom. However, a system that ignores one of the simultaneous requests and
then continues normally instead of getting lazy would be more preferable. ?

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 7

Of course, in case of violated assumptions, it may not always be possible to satisfy all guarantees,
as Example 4 shows. Otherwise, some assumptions would be superfluous. Also, it makes sense to take
the severity of the assumption violation into account. Intuitively, a small assumption violation should
also lead to only small guarantee violations. Therefore, the crux in robust synthesis is to define measures
of how well guarantees are satisfied and how severe assumptions are violated. Then, an optimal ratio
with respect to these metrics can be enforced. Existing approaches [5] typically optimize the worst case
of this ratio. For safety properties, a natural conformance measure for both assumptions and guarantees
is to count the number of time steps in which properties are violated. For liveness properties, this does
not work because a liveness property violation cannot be detected at any point in time: If some event is
supposed to happen eventually, and has not happened yet, we may just not have waited long enough. If
Ass and Gua are composed of several properties, one can also count the number of violated properties to
define the severity of a violation [5].

Despite the fact that liveness assumption violations cannot be observed at runtime, robust synthesis
approaches for specifications with liveness assumptions and guarantees exist that let the system tolerate
(safety) assumption violations. Intuitively, the idea is to ask the system to tolerate safety assumption
violations if in only finitely many steps of the system’s execution, such violations occur. The system is
then only allowed to violate safety guarantees finitely often. Liveness assumptions are assumed to hold
at all times. Since the system cannot know when an assumption violation has been the last one, it has
to behave in a robust way [19]. As a variant to the approach, the system can additionally be required to
satisfy the liveness guarantees even if safety assumptions are violated infinitely often [7].

In summary, robustness is definitely a useful extension to correctness. One shortcoming of existing
solutions is that they only optimize the robustness measure for the worst case, i.e., assume a perfectly
antagonistic environment. As a consequence, the resulting system may still be unnecessarily lazy for
more cooperative environment behaviors. The fact that the system cannot satisfy the guarantees any
better in the worst case should not be an excuse for not trying. In this sense, not assuming a fully
adversarial environment in the robustness optimization may yield even better results. This aspect will be
elaborated in Section 4.

3.4 Quantitative Synthesis

Among all systems that realize a given specification, some may be more desirable than others. The idea
of synthesis with quantitative objectives is to construct a system that not only satisfies the (qualitative)
specification, but also maximizes a (quantitative) desirability metric. In this sense, some approaches
to robust synthesis, as discussed in the previous section, can be seen as special cases of quantitative
synthesis. But quantitative synthesis can also be a handy tool to optimize solutions with respect to other
desirability metrics.
Example 5. Continuing Example 4, we may prefer systems that give as few unnecessary grants as
possible. This can be achieved by assigning costs to unnecessary grants (i.e., situations with gi ∧¬ri),
and let the synthesis algorithm minimize these costs. ?

Of course, one could also specify each and every situation where no grant should be given. While this
is quite possible for this small example, it can be tedious, error-prone, and destroy the abstract quality
of the specification for more complicated cases: Ideally, a specification only expresses what the system
should do, but not how. If the exact behavior needs to be specified for each and every situation, it is
better to implement the system right away.

The work of [6] presents a machinery based on games with a lexicographic mean-payoff objective
and a simultaneously considered parity objective to solve such problems. The parity objective encodes

8 How to Handle Assumptions in Synthesis

the qualitative specification, while the mean-payoff objective encodes the quantitative desirability metric.
The approach assumes fully adversarial environments and optimizes for this worst case.

Defining a desirability metric for a system is never an easy task. Cerný and Henzinger [11] propose
to define it in two steps. The first step is to assign costs (or payoffs) to single traces. This can be done
by combining the costs of single events in the trace, e.g., by taking the sum, average, maximum, etc.
Second, the costs for individual traces are combined into total costs. Again, there are various options like
taking the worst case, the average case, or a weighted average assuming some probability distribution.
Although this approach is quite generic, it is questionable if the desirability of a system can be expressed
by one single number in the venture of satisfying guarantees as good as possible in as many situations
as possible. Dominance relations inducing a partial order between systems, as used in the next section,
may be a more natural notion as they provide a natural quantification over environment behaviors.

If cost notions for both the environment and system actions can be given, there is a canonical way to
define which system traces are desirable: the ones that are the cheapest. Tabuada et al. [31] adapt notions
from control theory to define a preferability relation on system behaviors. In addition to minimizing the
ratio between environment behavior cost and system behavior cost, they also require that the effect of
sporadic disturbances vanishes over time.

Finally, there are approaches that combine quantitative approaches with a probabilistic model of the
environment, to find the best solution under a given probability distribution for actions of the environ-
ment [21]. A combination of probabilistic and worst-case reasoning is considered by Bruyère et al. [10].

In summary, quantitative synthesis does not directly address the problem of dealing with assumptions
in synthesis, but can rather be seen as a tool for obtaining better solutions with respect to different metrics.
The fact that the environment is considered as perfectly adversarial in most methods may not be ideal in
all settings.

4 Never Give Up!

Traditional games-based synthesis is only concerned with the worst case. As already raised in the previ-
ous sections, this mind-set is not always justified.

Example 6. The flight control system from Example 2 may actually be able to handle way more than
100 planes in time if they do not all signal an emergency at the same time. This worst case is possible,
but very unlikely to happen in practice. ?

If a guarantee cannot be enforced in the worst case, traditional synthesis methods will consider this
guarantee as “impossible” to achieve. Thus, the constructed system would behave arbitrary if it ever
gets into such a “hopeless” situation, i.e., it would not even try to reach the goal. However, when the
system is in operation, its concrete environment may not be perfectly adversarial, i.e., the worst case may
not occur. Hence, it makes sense for the system to behave faithfully even in (worst-case-)lost situations
instead of resigning. In other words, the synthesized system should retain or even maximize the chances
of reaching the goal (e.g., satisfying all guarantees even if assumptions are violated), even if this is not
possible in the worst case.

Note the difference to robust and quantitative synthesis, as discussed in the previous section: Robust
and quantitative synthesis aim at satisfying guarantees as well as possible for the worst case environment
behavior. In contrast, this section is concerned with satisfying the specification (preferably without cut-
backs) for many environment behaviors that do not represent the worst case as they violate Ass. In
the following, we will discuss existing synthesis approaches that tackle this problem by dealing with
“hopeless” situations in a constructive way.

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 9

4.1 Environment Assumptions

When we consider the basic idea of “restricting” the environment behavior by adding assumptions to an
LTL specification of the form Ass → Gua, then synthesis from such a specification results in a system
that is guaranteed to satisfy Gua for all behaviors of the environment that satisfy Ass. On the other hand,
the system does not give any guarantees for traces on which Ass is violated.

Chatterjee, Henzinger and Jobstmann [14] show how, for a given unrealizable system specification
Gua, one can compute an environment assumption Ass, such that Ass → Gua is realizable (for ω-
regular specifications). The computed assumptions consist of a safety and a liveness part, and should be
as weak as possible. While minimal (but not unique) safety assumptions3 can be computed efficiently,
the problem is NP-hard for minimal liveness assumptions4. If it is sufficient to compute a locally minimal
set of liveness assumptions, i.e., a set of liveness assumptions from which no element may be removed
without changing the resulting specification to be realizable, NP-hardness can be avoided.

4.2 Best-Effort Strategies for Losing States

Faella [23, 22] investigates best-effort strategies for states from which the winning condition cannot be
enforced. Intuitively, a good strategy should behave rationally in the sense that it does not “give up”.
Hence, this work assumes the desirability matrix of Figure 1, and is concerned with staying away from
the top-right corner, even if this is not possible in the worst case.

Example 7. As an example, consider the specification GF(o∧X i), where i is an input and o is an output.
There is no way the system can enforce satisfying the property. However, setting o to true as often as
possible is more promising than setting o always to false. ?

Faella [23] discusses and compares several goal independent criteria for such rational strategies.
The work concludes that admissible strategies, defined via a dominance relation, may be a good choice.
Intuitively, strategy σ dominates strategy σ ′ if σ is always at least as good as σ ′, and better for at least
one case. More specifically, σ dominates σ ′ if (1) for all environment strategies and starting states, if σ ′

satisfies the specification then σ does so too, and (2) there exists some environment strategy and starting
state from which σ satisfies the specification but σ ′ does not. This induces a partial order between
strategies. An admissible strategy is one that is not dominated by any other strategy.

For positional5 and prefix-independent6 goals, Faella [23] presents an efficient way to compute ad-
missible strategies: the conventional winning strategy σ is computed and played from all winning states.
For the remaining states, a cooperatively winning strategy σ ′ is computed, assuming that σ is played
in the winning states. This is a very relevant result because, e.g., parity goals are positional and prefix-
independent, and LTL specifications can be transformed into parity games. For goals that do not fall into
this category, the computation of admissible strategies is left for future work. Unfortunately, this work
has not been actively followed up on.

Damm and Finkbeiner also consider admissible strategies, called dominant strategies in [17], and
show that for a non-distributed system, a dominant strategy can be found (or its non-existence proved) in
2EXPTIME. That is, dominant strategies are not harder to find than the usual winning strategies. Since

3Minimal here means that a minimal number of environment edges are removed from the game graph.
4Here, minimal means to put fairness conditions on a minimum number of environment edges in the game graph.
5A goal is positional if the strategy does not require memory on top of knowing the current position in synthesis games that

are built from the given specification.
6A goal is prefix-independent if adding or removing a finite prefix to/from the execution does not render a satisfied property

violated.

10 How to Handle Assumptions in Synthesis

a dominant strategy must be winning if a winning strategy exists, this means we can find best-effort
strategies in the same time complexity as usual winning strategies, without sacrificing the basic goal of
correctness.

The focus of [17] is however on the synthesis of dominant strategies for systems with multiple
processes, which is shown to be effectively decidable (with a much lower complexity than with other
approaches) for specifications that are known to have dominant strategies. Moreover, the constructed
strategies are modular, and synthesis can even be made compositional for safety properties. Thus, in
this case we not only obtain strategies that do their best even if the specification cannot always be ful-
filled, but we can find such a strategy even in cases where the classical distributed synthesis problem is
undecidable.

Even though it is in some sense orthogonal to our question of how to properly treat assumptions, we
view the behavior of the system on lost states as an important ingredient to building desirable systems.
In a system composed of components that are not necessarily adversarial, this approach may help reach a
common goal. While robust synthesis attempts to satisfy guarantees as well as possible under the worst-
case environment, the best-effort strategies attempt to increase the chances of satisfying all guarantees
under a friendly environment assumption. Both views have their merits.

4.3 Fallback to Human

Another interesting way of dealing with “hopeless” situations in synthesis has recently been presented
by Li et al. [28]. Safety critical control systems like autopilots in a plane or driving assistance in a car are
usually not fully autonomous but involve human operators. If the environment behaves such that guaran-
tees cannot be enforced, the controller can therefore simply ask the human operator for intervention. This
allows for semi-autonomous controllers, even for unrealizable specifications. There are two additional
requirements: the human operator should be notified ahead of time, and no unnecessary intervention
should be required.

The approach computes a non-deterministic counterstrategy. In operation, the controller constantly
monitors the behavior of the environment and tracks if it conforms to this counterstrategy. This prevents
alarms when the environment is not fully adversarial, so that the guarantees can be enforced even though
the specification is unrealizable in the worst case. Notifying the human operator ahead of a potential
specification violation is achieved by requiring a minimum distance (number of steps) to any failure-
prone state.

The faithfulness of this approach is similar in spirit to the best-effort strategies discussed in the
previous section: the specification cannot be satisfied in the worst case, but this should not be an excuse
for resigning. The worst case may not occur (often) in operation, and the synthesized system should take
advantage of this. While requiring human intervention may only be an option in specific settings, the
idea of checking the actual environment behavior against a counterstrategy in order to assess whether the
environment is behaving in an adversarial manner is definitely interesting.

4.4 Markov Decision Processes

Another way of refraining from worst case assumptions in synthesis is by using Markov Decision Pro-
cesses (MDPs) [4, 2]. The environment is not considered to behave adversarially but randomly with a
certain probability distribution. This situation is also referred to as 1.5 player game (the probabilistic
environment only counts as half a player). Strategies for such games attempt to maximize the probabil-
ity to satisfy the goal. There also exist solutions to maximize quantitative objectives against a random

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 11

Gua violated

Gua satisfied

Ass violated Ass satisfied

0 0.25

0.75 1

Figure 4: Cooperative desirability matrix.

player [15].
MDPs as the sole synthesis algorithm may not be satisfactory since optimality against a random

player does not necessarily imply that the strategy is winning against an adversarial player [23]. Never-
theless, MDPs can be valuable to optimize the behavior in lost states, or to specialize a winning strategy
that allows for multiple options in several situations.

5 Cooperate!

Realistic applications of synthesis methods will in general not synthesize a complete system from scratch,
but will separate the system into components that can be implemented (either by hand or by synthesis)
modularly. To make such an approach tractable while still giving global correctness guarantees, synthe-
sis of every component must take into account the expected behavior of the rest of the system, again
expressed as some kind of environment assumption.

Thus far, we have discussed synthesis approaches that are designed to prefer cases where Gua is
satisfied over cases where Ass is violated (Sect. 3), and that try to optimize the result even if the goal
cannot be reached in all cases (Sect. 4). In some sense, the latter can be seen as an implicit collaboration
with the environment, i.e., hoping that it is not its main goal to hurt us.

In this section, we consider synthesis algorithms for systems that explicitly cooperate. In this case,
the environment can really be considered as a second system player, and the payoff matrix is notably
different, see Figure 4. In particular, we do not want “our” system component to force assumption
violations in other system components, as this would lead to incorrect behavior of the overall system.
Instead, we want synthesis to be based on a “good neighbor assumption”, i.e., the environment will only
violate the assumptions if necessary, and we should not force it to do so, but try to make the overall
system work even if the assumptions are not always satisfied.

The basic idea is that environment and system can cooperate to some extent, in order to satisfy
both Ass and Gua. If we allow full cooperation, then the synthesis problem becomes the problem of
synthesizing an implementation for both the environment and the system, and requiring them to jointly
satisfy Ass∧Gua. This problem has been considered for different models of communication [16, 30, 24].
Such solutions are however unsatisfactory for two reasons:

(i) The approaches synthesize one particular implementation of the environment. This will only be a
correct implementation in the overall system if Ass contains all of the required properties of the
rest of the system, not allowing us to abstract from parts of the environment.

(ii) The synthesized implementation of the system is guaranteed to satisfy Gua only for exactly this
environment. Thus, the approach does also not allow additional refinement or modification of the
environment behavior.

12 How to Handle Assumptions in Synthesis

Together, these two properties imply that we cannot use such an approach to modularize synthesis, as we
need to synthesize both components in full detail at the same time.

In the following, we consider assume-guarantee synthesis (Sect. 5.1) and synthesis under rational-
ity assumptions (Sect. 5.2), two approaches that are between a completely adversarial and a completely
cooperative environment behavior. Both are based on the notion of non-zero-sum games, i.e., games in
which players do not have mutually exclusive objectives, but can reach (part of) their respective objec-
tives by cooperation.

5.1 Assume-Guarantee Synthesis

Intuitively, the assume-guarantee synthesis approach by Chatterjee and Henzinger [13] wants to synthe-
size implementations for two parallel processes P1,P2 (which could be the system and the environment)
such that solutions are robust with respect to changes in the other process, as long as it does not violate its
own specification. More formally, we want to find implementations of P1,P2 that satisfy φ1∧φ2 together,
and furthermore the solutions should be such that each process Pi satisfies φ j → φi for any implemen-
tation of the other process Pj. That is, given a pair of solutions for P1,P2, we can replace one of them
with a different implementation. As long as it satisfies its own specification φ j (together with the fixed
implementation for the other process), we know that the overall specification φ1∧φ2 will still hold.

This means that players have to cooperate to find a common solution, but cooperation is also limited,
in that the players cannot decide on one particular strategy to satisfy the joint specification. Thus, assume-
guarantee synthesis is an option between purely adversarial and purely cooperational synthesis: if we
obtain process implementations P1 and P2 that satisfy Pi |= φ j → φi for adversarial synthesis, then the
parallel composition P1 ‖ P2 of these two implementations will also satisfy the conjunction φ1∧φ2. Since
each of them satisfy their spec in an arbitrary environment, they in particular satisfy the assume-guarantee
specification. Moreover, every solution for assume-guarantee synthesis obviously is also a solution for
cooperative synthesis.

Example 8. Consider two processes P1,P2, each with one output oi that can be read by the other process,
and specifications

φ1 =

{
GFo1

∧ G(o1→ X¬o1)

}
, φ2 = G((Xo2)↔ o1) .

There are several implementations for P1 that satisfy φ1 (and do not depend on the implementation of
P2), and several implementations for P2 that satisfy φ2, most of them depending on the implementation of
P1. For example, P1 might raise o1 in the initial state, and then every third tick. For this implementation,
a suitable implementation for P2 can raise o2 in the first tick after the initial state, and then every third
tick from there.

While this implementation for P2 is correct for the particular implementation of P1, it is not correct
for all implementations of P1 that satisfy φ1. For example, P1 could raise o1 every second tick, and the
given P2 would not satisfy φ2 anymore. However, there is an implementation that satisfies φ2 for all
implementations of P1 that satisfy φ1: P2 can simply read o1 and go to a state where it raises o2 iff o1 it
currently active. Only such a solution for P2 solves the assume-guarantee synthesis problem (any solution
for P1 that satisfies φ1 is fine, since it does not depend on P2).

Furthermore, consider the extended specification

φ1 =

{
GFo1

∧ G(o1→ X¬o1)

}
, φ2 =

{
G((Xo2)↔ o1)

∧ G(¬o2→ Xo2)

}
.

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 13

Now, while there are implementations for both processes with (P1 ‖P2) |= φ1∧φ2, there is no solution
of the assume-guarantee synthesis problem: a solution for P2 must raise o2 at least every second tick now,
and will only work with such implementations of P1, but not with those that raise o1 less frequently (even
if they still satisfy φ1). ?

5.2 Synthesis under Rationality Assumptions

A number of different approaches to the synthesis of multi-component systems relies on the notion of
rationality. Informally, this means that every component has a goal that it wants to achieve, or a payoff it
wants to maximize, and it will always use a strategy that maximizes its own payoff. Both the rationality
of players and the goals of all components are assumed to be common knowledge. In particular, a player
will only use a strategy that hurts other components if this will not lead to a smaller payoff for itself. As
can be expected, this leads to implementations that do not behave purely adversarial, but cooperate to
some degree in order to satisfy their own specification.

We survey three different approaches based on rationality: rational synthesis by Fisman, Kupferman
and Lustig [25], methods based on iterated admissibility by Berwanger [3] and by Bernguier, Raskin and
Sassolas [9], and an extension of the notion of secure equilibria to the multi-player case, called doomsday
equilibria [12].

Rational Synthesis. The rational synthesis approach centers synthesis around a special system process,
and produces not only an implementation for the system, but also strategies for all components in the
environment, such that the specification of the system is satisfied, and the strategies of the components
are optimal in some sense. To guarantee correctness, the approach assumes that these strategies can be
communicated to the other components, and that the components will not use a different strategy than
the one proposed, as long as it is optimal.

The definition of what is considered to be an optimal strategy leaves some freedom to the approach.
The authors explore Nash equilibria (cp. Ummels [33]), dominant strategies (cp. Faella [23], Damm and
Finkbeiner [17]), and subgame-prefect Nash equilibria (also [33]). Intuitively,

• if the set of proposed strategies is a Nash equilibrium profile, then no process can achieve a better
result if it changes its strategy (while all others keep their strategies);

• if the set of strategies is a dominant strategy profile, then no process can achieve a better result if
any number of processes (including itself) change their strategy;

• if the set of strategies is a subgame-perfect equilibrium profile, then no process can achieve a better
result for any arbitrary history of the game7 by changing its strategy (while all others keep their
strategies).

Compared to assume-guarantee synthesis, this approach does not guarantee that the synthesized im-
plementation will also work when other processes change their behavior, even if the different behavior
still satisfies the specification. Instead, it is based on the assumption that other processes have no incen-
tive to change their behavior, which is somewhat unsatisfactory for a modular synthesis approach.

Example 9. Consider again the example from above,

φ1 =

{
GFo1

∧ G(o1→ X¬o1)

}
, φ2 =

{
G((Xo2)↔ o1)

∧ G(¬o2→ Xo2)

}
.

7even those that do not correspond to the given strategy profile

14 How to Handle Assumptions in Synthesis

A solution that satisfies (P1 ‖ P2) |= φ1∧φ2 is also a rational synthesis solution, for any of the notions
of optimality above. However, for a Nash equilibrium, a pair of implementations for P1,P2 is also a
solution if (P1 ‖ P2) |= φ1 and (P1 ‖ P2) |= ¬φ2, as long as there does not exist an implementation P′2 for
which (P1 ‖ P′2) |= φ2. ?

Rational synthesis with Nash equilibrium has strictly weaker conditions on implementations than
assume-guarantee synthesis. That is, any solution of assume-guarantee synthesis will also be a solution
for this case of rational synthesis, but this is not always the case in the other direction. Also, dominant
or subgame-perfect equilibria strategy profiles will always be Nash equilibrium profiles, but the set of
solutions seems to be incomparable with assume-guarantee synthesis.

A combination of assume-guarantee reasoning with rational synthesis seems possible: instead of
requiring that the system implementation works exactly in the given equilibrium, it should work for any
behavior of the other processes that does not reduce their payoff, or respectively any behavior where they
still satisfy their own specification.

Iterated Admissibility. The basic idea of iterated admissibility approaches [3, 9] is similar to rational
synthesis: every component has its own goal in a (non-zero-sum) game, and is assumed to be rational in
that it avoids strategies that are dominated by other strategies (taking into account all possible strategies
of the other players). This avoidance of dominated strategies removes some of the possible behaviors for
all players. Both the rationality assumption and the full state of the game being played are assumed to be
common knowledge, so every player knows which strategies the other players will eliminate. Under the
new sets of possible behaviors, there may be new strategies that are dominated by others, so the process
of removing dominated strategies can be iterated and repeated up to a fixpoint.

The basic notions of this class of infinite multi-player games have been defined by Berwanger [3].
Brenguier, Raskin and Sassolas [9] have recently investigated the complexity of iterated admissibility
for different classes of objectives, and showed that in general it is similar to the complexity of Nash
equilibria.

Compared to rational synthesis, where the system process can compute strategies for all other com-
ponents and they will accept them if they are optimal, in this case there is no distinguished process.
Instead, all processes compute a set of optimal (or admissible) strategies, with full information allowing
all components to come to the same conclusions.

Doomsday Equilibria. The notion of doomsday equilibria by Chatterjee et al. [12] uses the rationality
assumption like the two approaches mentioned before, but takes the punishment for deviating from a
winning strategy to the extreme: a doomsday equilibrium is a strategy such that all players satisfy their
objective, and if any coalition of players deviates from their strategy and violates the objective of at least
one of the other players, then the game is doomed, i.e., the losing player(s) have a strategy such that none
of the other players can satisfy their objective.

A distinguishing feature of doomsday equilibria is that their existence is decidable even in partial
information settings, in contrast to the other existing notions of equilibria. In the case of two players,
doomsday equilibria coincide with the well-known notion of secure equilibria.

6 Conclusions

In this paper, we discussed the role of environment assumptions in synthesis of reactive systems, and how
existing approaches handle such assumptions. Besides correctness, we proposed three more properties

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 15

Table 1: Comparison of existing approaches.

Se
ct

io
n

B
e

C
or

re
ct

!

D
on

’t
be

L
az

y!

N
ev

er
G

iv
e

U
p!

C
oo

pe
ra

te
!

Ass→ Gua 2.1 4

Strict Realizability 3.1 4 (3)

Error-Resilience / Recovery Transitions 3.2 4 (3)

Robustness 3.3 4 4

Quantitative Synthesis 3.4 (3) 4

Synthesizing Environment Assumptions 4.1 4 4

Best Effort Strategies 4.2 4 4

Fallback to Human Control 4.3 (3) 4

Markov Decision Processes 4.4 4

Assume-Guarantee Synthesis 5.1 4 4

Synthesis under Rationality Assumptions 5.2 (3) (3) 4

that a good system should realize: systems should satisfy guarantees as well as possible even if environ-
ment assumptions are violated (Don’t be Lazy!), they should aim for satisfying the guarantees even if
this is not possible in the worst case (Never Give Up!), and systems should rather help the environment
satisfy the assumptions instead of trying to enforce their violation (Cooperate!). These properties are es-
pecially important in modular synthesis, where assumptions are used to abstract other parts of the system
rather than expressing “don’t care”-situations. As summarized in Table 1, we conclude that none of the
existing approaches satisfies all these requirements. Although important steps towards synthesis of high
quality systems have been made, we believe that even better results can be achieved by combining and
extending ideas from the different branches. The perfect solution may not exist, since it may strongly
depend on the application. Even if it does exist, it may be prohibitively expensive to achieve. In any case,
more research is needed to explore both the most important objectives and the best possible solutions.

References

[1] Rajeev Alur, Aditya Kanade & Gera Weiss (2008): Ranking Automata and Games for Prioritized Require-
ments. In: Computer Aided Verification (CAV’08), LNCS 5123, Springer, pp. 240–253, doi:10.1007/978-3-
540-70545-1 23.

[2] Christel Baier, Marcus Größer, Martin Leucker, Benedikt Bollig & Frank Ciesinski (2004): Controller Syn-
thesis for Probabilistic Systems. In: Exploring New Frontiers of Theoretical Informatics / Theoretical Com-
puter Science (IFIP/TCS’04), Kluwer, pp. 493–506, doi:10.1007/1-4020-8141-3 38.

http://dx.doi.org/10.1007/978-3-540-70545-1_23
http://dx.doi.org/10.1007/978-3-540-70545-1_23
http://dx.doi.org/10.1007/1-4020-8141-3_38

16 How to Handle Assumptions in Synthesis

[3] Dietmar Berwanger (2007): Admissibility in Infinite Games. In: Symposium on Theoretical Aspects of
Computer Science (STACS’07), LNCS 4393, Springer, pp. 188–199, doi:10.1007/978-3-540-70918-3 17.

[4] Andrea Bianco & Luca de Alfaro (1995): Model Checking of Probabalistic and Nondeterministic Systems.
In: Foundations of Software Technology and Theoretical Computer Science (FSTTCS’95), LNCS 1026,
Springer, pp. 499–513, doi:10.1007/3-540-60692-0 70.

[5] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, Georg Hofferek, Barbara
Jobstmann, Bettina Könighofer & Robert Könighofer (2014): Synthesizing robust systems. Acta Inf. 51(3-4),
pp. 193–220, doi:10.1007/s00236-013-0191-5.

[6] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2009): Better Quality
in Synthesis through Quantitative Objectives. In: Computer Aided Verification (CAV’09), LNCS 5643,
Springer, pp. 140–156, doi:10.1007/978-3-642-02658-4 14.

[7] Roderick Bloem, Hans-Jürgen Gamauf, Georg Hofferek, Bettina Könighofer & Robert Könighofer (2012):
Synthesizing Robust Systems with RATSY. In: Workshop on Synthesis (SYNT’12), EPTCS 84, pp. 47–53,
doi:10.4204/EPTCS.84.4.

[8] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2012): Synthesis of Reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), pp. 911–938, doi:10.1016/j.jcss.2011.08.007.

[9] Romain Brenguier, Jean-François Raskin & Mathieu Sassolas (2014): The Complexity of Admissibility in
Omega-Regular Games. In: Computer Science Logic / Logic in Computer Science (CSL-LICS’14), IEEE.
To appear.

[10] Véronique Bruyère, Emmanuel Filiot, Mickael Randour & Jean-François Raskin (2014): Meet Your Expecta-
tions With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games. In: Symposium on Theoretical
Aspects of Computer Science (STACS’14), LIPIcs 25, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
pp. 199–213, doi:10.4230/LIPIcs.STACS.2014.199.

[11] Pavol Cerný & Thomas A. Henzinger (2011): From boolean to quantitative synthesis. In: International
Conference on Embedded Software (EMSOFT’11), ACM, pp. 149–154, doi:10.1145/2038642.2038666.

[12] Krishnendu Chatterjee, Laurent Doyen, Emmanuel Filiot & Jean-François Raskin (2014): Doomsday Equi-
libria for Omega-Regular Games. In: Verification, Model Checking, and Abstract Interpretation (VM-
CAI’14), LNCS 8318, Springer, pp. 78–97, doi:10.1007/978-3-642-54013-4 5.

[13] Krishnendu Chatterjee & Thomas A. Henzinger (2007): Assume-Guarantee Synthesis. In: Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’07), LNCS 4424, Springer, pp. 261–275,
doi:10.1007/978-3-540-71209-1 21.

[14] Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2008): Environment Assumptions for
Synthesis. In: Concurrency Theory (CONCUR’08), LNCS 5201, Springer, pp. 147–161, doi:10.1007/978-3-
540-85361-9 14.

[15] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann & Rohit Singh (2010): Measuring and
Synthesizing Systems in Probabilistic Environments. In: Computer Aided Verification (CAV’10), LNCS
6174, pp. 380–395, doi:10.1007/978-3-642-14295-6 34.

[16] Edmund M. Clarke & E. Allen Emerson (1981): Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In: Logic of Programs, LNCS 131, Springer, pp. 52–71,
doi:10.1007/BFb0025774.

[17] Werner Damm & Bernd Finkbeiner (2014): Automatic Compositional Synthesis of Distributed Systems. In:
Formal Methods (FM’14), LNCS 8442, Springer, pp. 179–193, doi:10.1007/978-3-319-06410-9 13.

[18] N. D’Ippolito, V. A. Braberman, N. Piterman & S. Uchitel (2013): Synthesizing nonanomalous event-based
controllers for liveness goals. ACM Trans. Softw. Eng. Methodol. 22(1), p. 9, doi:10.1145/2430536.2430543.

[19] Rüdiger Ehlers (2011): Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis. In:
NASA Formal Methods, LNCS 6617, Springer, pp. 101–115, doi:10.1007/978-3-642-20398-5 9.

http://dx.doi.org/10.1007/978-3-540-70918-3_17
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1007/s00236-013-0191-5
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.4204/EPTCS.84.4
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://dx.doi.org/10.1145/2038642.2038666
http://dx.doi.org/10.1007/978-3-642-54013-4_5
http://dx.doi.org/10.1007/978-3-540-71209-1_21
http://dx.doi.org/10.1007/978-3-540-85361-9_14
http://dx.doi.org/10.1007/978-3-540-85361-9_14
http://dx.doi.org/10.1007/978-3-642-14295-6_34
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-319-06410-9_13
http://dx.doi.org/10.1145/2430536.2430543
http://dx.doi.org/10.1007/978-3-642-20398-5_9

R. Bloem, R. Ehlers, S. Jacobs & R. Könighofer 17

[20] Rüdiger Ehlers & Ufuk Topcu (2014): Resilience to intermittent assumption violations in reac-
tive synthesis. In: Hybrid Systems: Computation and Control (HSCC’14), ACM, pp. 203–212,
doi:10.1145/2562059.2562128.

[21] Christian von Essen & Barbara Jobstmann (2012): Synthesizing Efficient Controllers. In: Verification, Model
Checking, and Abstract Interpretation (VMCAI’12), LNCS 7148, Springer, pp. 428–444, doi:10.1007/978-
3-642-27940-9 28.

[22] Marco Faella (2007): Games You Cannot Win. In: Workshop on Games and Automata for Synthesis and
Validation, Lausanne, Switzerland.

[23] Marco Faella (2009): Admissible Strategies in Infinite Games over Graphs. In: Mathematical Foundations of
Computer Science (MFCS’09), LNCS 5734, Springer, pp. 307–318, doi:10.1007/978-3-642-03816-7 27.

[24] Bernd Finkbeiner & Sven Schewe (2005): Uniform Distributed Synthesis. In: Logic in Computer Science
(LICS’05), IEEE Computer Society, pp. 321–330, doi:10.1109/LICS.2005.53.

[25] Dana Fisman, Orna Kupferman & Yoad Lustig (2010): Rational Synthesis. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’10), LNCS 6015, Springer, pp. 190–204, doi:10.1007/978-
3-642-12002-2 16.

[26] Chung-Hao Huang, Doron Peled, Sven Schewe & Farn Wang (2012): Rapid Recovery for Systems with
Scarce Faults. In: Games, Automata, Logics and Formal Verification (GandALF’12), EPTCS 96, pp. 15–28,
doi:10.4204/EPTCS.96.2.

[27] Uri Klein & Amir Pnueli (2010): Revisiting Synthesis of GR(1) Specifications. In: Haifa Verification Confer-
ence (HVC’10), LNCS 6504, Springer, pp. 161–181, doi:10.1007/978-3-642-19583-9 16.

[28] Wenchao Li, Dorsa Sadigh, S. Shankar Sastry & Sanjit A. Seshia (2014): Synthesis for Human-in-the-Loop
Control Systems. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14),
LNCS 8413, Springer, pp. 470–484, doi:10.1007/978-3-642-54862-8 40.

[29] T.C. May & Murray H. Woods (1979): Alpha-particle-induced soft errors in dynamic memories. Electron
Devices, IEEE Transactions on 26(1), pp. 2–9, doi:10.1109/T-ED.1979.19370.

[30] Amir Pnueli & Roni Rosner (1990): Distributed Reactive Systems Are Hard to Synthesize. In: Foundations
of Computer Science (FOCS’90), IEEE Computer Society, pp. 746–757, doi:10.1109/FSCS.1990.89597.

[31] Paulo Tabuada, Ayca Balkan, Sina Y. Caliskan, Yasser Shoukry & Rupak Majumdar (2012): Input-output
robustness for discrete systems. In: International Conference on Embedded Software (EMSOFT’12), ACM,
pp. 217–226, doi:10.1145/2380356.2380396.

[32] Ufuk Topcu, Necmiye Ozay, Jun Liu & Richard M. Murray (2012): On synthesizing robust discrete con-
trollers under modeling uncertainty. In: Hybrid Systems: Computation and Control (HSCC’12), ACM, pp.
85–94, doi:10.1145/2185632.2185648.

[33] Michael Ummels (2006): Rational Behaviour and Strategy Construction in Infinite Multiplayer Games.
In: Foundations of Software Technology and Theoretical Computer Science (FSTTCS’06), LNCS 4337,
Springer, pp. 212–223, doi:10.1007/11944836 21.

[34] Kai Weng Wong, Rüdiger Ehlers & Hadas Kress-Gazit (2014): Correct High-level Robot Behavior in En-
vironments with Unexpected Events. In: Robotics: Science and Systems Conference (RSS’14), IEEE. To
appear.

http://dx.doi.org/10.1145/2562059.2562128
http://dx.doi.org/10.1007/978-3-642-27940-9_28
http://dx.doi.org/10.1007/978-3-642-27940-9_28
http://dx.doi.org/10.1007/978-3-642-03816-7_27
http://dx.doi.org/10.1109/LICS.2005.53
http://dx.doi.org/10.1007/978-3-642-12002-2_16
http://dx.doi.org/10.1007/978-3-642-12002-2_16
http://dx.doi.org/10.4204/EPTCS.96.2
http://dx.doi.org/10.1007/978-3-642-19583-9_16
http://dx.doi.org/10.1007/978-3-642-54862-8_40
http://dx.doi.org/10.1109/T-ED.1979.19370
http://dx.doi.org/10.1109/FSCS.1990.89597
http://dx.doi.org/10.1145/2380356.2380396
http://dx.doi.org/10.1145/2185632.2185648
http://dx.doi.org/10.1007/11944836_21

	Introduction
	Be Correct!
	Standard Synthesis

	Don't Be Lazy!
	Assumptions in Generalized Reactivity Games
	Synthesizing Error-Resilient Systems
	Synthesis of Robust Systems
	Quantitative Synthesis

	Never Give Up!
	Environment Assumptions
	Best-Effort Strategies for Losing States
	Fallback to Human
	Markov Decision Processes

	Cooperate!
	Assume-Guarantee Synthesis
	Synthesis under Rationality Assumptions

	Conclusions

