Oral presentation, OGD Surfaces, Interfaces and Thin Films

Deposition of Metal Clusters Formed Inside Superfluid Helium Nanodroplets

A. Volk¹, M. Koch¹, E. Fisslthaler², W. Grogger², and W. E. Ernst¹

¹Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria

We have recently successfully synthesized silver (Ag_n) and chromium (Cr_n) nanoclusters inside superfluid helium nanodroplets (He_n) and deposited these metal clusters on an amorphous carbon (a-C) surface. Transmission electron microscope (TEM) images shall be presented as well as microbalance measurements.

During the past decade, He_n turned out to offer a unique experimental environment, combining both a least perturbing superfluid quantum matrix at 0.4 K and a well defined local confinement, given by the droplet radius of a few nanometres. Therefore these nanocryostats are well suited for the synthesis of metal nanoclusters.

The first surface deposition of nanoclusters (Ag_n) assembled inside He_n has only recently been demonstrated [1]. We were now able to deposit Cr_n using the same method. The comparison of Ag_n and Cr_n measurements indicates a strong oxidation of Cr_n , while this is not the case for Ag_n . In the next step we want to form bimetallic core shell structures in He_n by sequential particle pickup. Due to the formation process in the favourable superfluid environment, we expect a radial symmetric structure of these bimetallic nanostructures, where a shell of silver atoms encloses and therefore passivates the chromium core.

Besides the TEM images and microbalance investigations, we seek to present more detailed chemical information obtained from X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectrometry (EELS) measurements.

²Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria