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Abstract. Brain-computer interface (BCI) systems can be used to control limb neuroprostheses in order 

to restore limb functionality of paralyzed persons. Traditionally, only invasive BMI (brain machine 

interfaces)  are thought to provide an adequate signal-to-noise ratio and bandwidth to control an upper 

limb neuroprosthesis accurately in a continuous manner with sufficient degrees-of-freedom. This paper 

supports work which already showed that it is possible to decode the velocity of executed arm/hand 

movements from electroencephalographic signals but using a different movement paradigm and 

suppressing eye movements. It was possible to decode movement velocities with a high correlation with 

actual executed movements. This could pave the way to a new type of prostheses control using a direct 

link betweeen natural hand movement imagination and prostheses movement. 
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1. Introduction 

It is desired to have control of an upper limb neuroprosthesis so that it could be moved precisely in 

three dimensions and with low cognitive load with a brain-computer interface (BCI) using 

electroencephalographic (EEG) signals. [McFarland et al., 2010] showed an approach using 

topographically and spectrally focused features. However this method needs months of user training 

because users need to learn to modulate these features. [Bradberry et al., 2010] proposes a direct and 

continuous three-dimensional (3D) decoding of movements. Recently, [Bradberry et al., 2011] pursues 

this work to an online control of a cursor in two dimensions with natural motor imagination (MI) which 

needs negligible user training. However, the risk of influencing EEG signals with eye movements (EM) 

is very high. In [Bradberry et al., 2010] subjects had been instructed to fixate gaze on an LED while 

executing a center-out reaching task, but the fixation of gaze is difficult when approaching different 

targets with the arm because visual feedback is necessary. In [Bradberry et al., 2011] EM were not 

inhibited at all. We carried out an experiment similar to [Bradberry et al., 2010], but used continuous, 

accidental and self-chosen movements instead of a center-out reaching task. Furthermore, because of no 

need for visual feedback, it was easier for subjects to suppress eye movements. 

2. Material and Methods 

Five healthy, right-handed subjects were comfortably seated in an armchair and were instructed to 

perform natural, round (not jaggy) and in speed varying movements with the right arm in front of the 

upper body in all three dimensions. During movements, subjects were asked to fixate gaze on a cross on 

a computer screen in front of them. We recorded ten trials each lasting 65 s and used only the last 60 s 

of each trial for further analysis to exclude any movement onset effects. The start of a trial was 

indicated by a short beep tone. After each trial, a subject specific break followed to avoid fatigue of the 

arm. 

For EEG signal recording 49 electrodes covering frontal and sensorimotor areas were used. 

Reference was placed on the left ear, ground on the right ear. In addition, three electrodes recorded the 

electrooculogram (EOG). Signals were acquired with g.USBamp amplifiers (g.tec, Graz, Austria) with a 

sampling frequency of 512 Hz after band-pass filtering between 0.01 Hz and 200 Hz with an eighth-

order Chebyshev filter and applying a notch filter at 50 Hz. After recording, we removed linear trends 

from trials. Because of computational convenience, we filtered all signals with a 100 Hz zero-phase, 

fourth-order, low-pass Butterworth filter and down sampled data to 256 Hz. To measure the x/y/z 
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coordinates of the hand we used the Kinect system (Microsoft, Redmond, USA) together with the 

OpenNI/NITE software freely available from http://www.openni.org. For analysis, we rotated the 

coordinate system so that the x-axis was going from right to left, the y-axis from down to up and the z-

axis from front to back relative to the subject. 

Next, we applied a fifth-order, low-pass Butterworth filter at 1 Hz, and computed the temporal 

difference of all EEG/EOG data. To decode movement x/y/z velocities, we used three linear models 

consisting of all EEG/EOG channels, respectively, and ten time lags in 10 ms intervals [Bradberry et 

al., 2010]. We found the parameters of the linear models with multiple linear regressions. To assess the 

quality of the movement velocity decoder we applied a 30-fold cross validation to all ten minutes of 

movement and computed the Pearson correlation coefficient between the measured velocities and the 

decoded velocities from the EEG and EOG, respectively, for each cross validation fold. 

3. Results 

Table 1 and 2 show mean values and standard deviations of the Pearson correlation coefficient 

across all cross validation folds of each subject and the grand average over all subjects when decoding 

velocities from the EEG and EOG, respectively. The average x/y/z Pearson correlation coefficients 

were 0.70/0.77/0.62 and 0.35/0.33/0.23 when decoding from EEG and EOG, respectively. 

 
Table 1. Mean values and standard deviations of Pearsons correlation coefficient across validation folds of each 

subject when decoding from EEG. 

EEG 
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 subject 

mean 

subject 

std mean std mean std mean std mean std mean std 

x 0.53 0.09 0.71 0.08 0.79 0.07 0.74 0.11 0.73 0.10 0.70 0.09 

y 0.84 0.06 0.78 0.09 0.71 0.09 0.78 0.09 0.71 0.13 0.77 0.05 

z 0.71 0.08 0.54 0.16 0.67 0.06 0.50 0.16 0.67 0.12 0.62 0.08 

 

Table 2. Mean values and standard deviations of Pearsons correlation coefficient across validation folds of each 

subject when decoding from EOG. 

EOG 
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 subject 

mean 

subject 

std mean std mean std mean std mean std mean std 

x 0.27 0.17 0.46 0.17 0.15 0.18 0.44 0.20 0.42 0.19 0.35 0.12 

y 0.42 0.12 0.28 0.18 0.13 0.14 0.48 0.18 0.33 0.18 0.33 0.12 

z 0.25 0.17 0.17 0.16 0.20 0.14 0.18 0.16 0.33 0.14 0.23 0.06 

4. Discussion 

Our results confirm that it is possible to decode hand movement velocities from EEG. In 

[Bradberry et al., 2010] correlation coefficients of 0.19/0.38/0.32 for x/y/z-axes were reached. These 

results were surpassed in our work (cf. Table 1). Reasons could be that we used a different movement 

modality (accidental vs. target directed) and a broader frequency band for decoding (0.01 – 1 Hz vs. 

0.5 – 1 Hz). The risk that our promising results are due to eye activity can be neglected, because 

subjects fixated their gaze and decoding from EOG yields lower correlations than decoding from EEG 

(cf. Table 1 and 2). 

Further work will show the applicability of this decoder for online controlling neuroprostheses 

using natural MI. 
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