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Abstract. Embedded systems require efficient yet flexible implementa-
tions of cryptographic primitives with a minimal impact on the overall
cost of a device. In this paper we present the design of a functional unit
(FU) for accelerating the execution of cryptographic software on 32-bit
processors. The FU is basically a multiply-accumulate (MAC) unit able
to perform multiplications and MAC operations on integers and binary
polynomials. Polynomial arithmetic is a performance-critical building
block of numerous cryptosystems using binary extension fields, including
public-key primitives based on elliptic curves (e.g. ECDSA), symmetric
ciphers (e.g. AES or Twofish), and hash functions (e.g. Whirlpool). We
integrated the FU into the Leon2 SPARC V8 core and prototyped the
extended processor in an FPGA. All operations provided by the FU are
accessible to the programmer through custom instructions. Our results
show that the FU allows to accelerate the execution of 128-bit AES by
up to 78% compared to a conventional software implementation using
only native SPARC V8 instructions. Moreover, the custom instructions
reduce the code size by up to 87.4%. The FU increases the silicon area
of the Leon2 core by just 8,352 gates and has almost no impact on its
cycle time.

1 Introduction

The usual way to accelerate cryptographic operations in embedded devices like
smart cards is to offload the computationally heavy parts of an algorithm from
the main processor to a dedicated hardware accelerator such as a cryptographic
co-processor. However, cryptographic hardware has all the restrictions inherent
in any pure hardware implementation, most notably limited flexibility and poor
scalability in relation to software. The term scalability refers to the ability to
process operands of arbitrary size. Typical RSA hardware implementations, for
example, only support operands up to a certain size, e.g. 1024 bits, and can not
be used when the need for processing longer operands arises. The term flexibility
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means the possibility to replace a cryptographic algorithm (e.g. DES) by another
one from the same class (e.g. AES) without the need to redesign a system. While
cryptographic software can be relatively easily upgraded and/or “patched,” an
algorithm cast in silicon is fixed and can not be changed without replacing the
whole chip. However, the importance of algorithm agility becomes evident in light
of the recently discovered vulnerabilities in the SHA-1 hash algorithm. SHA-1 is
widely used in security protocols like SSL or IPSec and constitutes an integral
part of the security concepts specified by the Trusted Computing Group (TCG)
[20). A full break of SHA-1 would be a disaster for TCG-compliant systems since
almost all trusted platform modules (TPMs) implement SHA-1 in hardware and
lack hash algorithm agility.

In recent years, a new approach for implementing cryptography in embed-
ded systems has emerged that combines the performance and energy-efficiency
of hardware with the scalability and algorithm agility of software [I0]. This ap-
proach is based on the idea of extending an embedded processor by dedicated
custom instructions and/or architectural features to allow for efficient execution
of cryptographic algorithms. Instruction set extensions are well established in
the domain of multimedia and digital signal processing. Today, almost every ma-
jor processor architecture features multimedia extensions; well-known examples
are Intel’s MMX and SSE technology, AMD’s 3DNow, and the AltiVec exten-
sions to the PowerPC architecture. All these extensions boost the performance
of multimedia workloads at the expense of a slight increase in silicon area.

The idea of extending a processor’s instruction set with the goal to accelerate
performance-critical operations is applicable to cryptography as well. Software
implementations of cryptographic algorithms often spend the majority of their
execution time in a few performance-critical code sections. Typical examples
of such code sections are the inner loops of long integer arithmetic operations
needed in public-key cryptography [8]. Other examples are certain transforma-
tions used in block ciphers (e.g. SubBytes or MixColumns in AES), which can be
expensive in terms of computation time when memory constraints or the threat
of cache attacks prevent an implementation via lookup tables. Speeding up these
code sections through custom instructions can, therefore, result in a significant
performance gain. Besides execution time also the code size is reduced since a
custom instruction typically replaces several “native” instructions.

The custom instructions can be executed in an application-specific functional
unit (FU) or a conventional FU—such as the arithmetic/logic unit (ALU) or the
multiplier—augmented with application-specific functionality. A typical exam-
ple for the latter category is an integer multiplier able to execute not only the
standard multiply instructions, but also custom instructions for long integer
arithmetic [7]. Functional units are tightly coupled to the processor core and
directly controlled by the instruction stream. The operands processed in FUs
are read from the general-purpose registers and the result is written back to the
register file. Hardware acceleration through custom instructions is cost-effective
because tightly coupled FUs can utilize all resources already available in a pro-
cessor, e.g. the registers and control logic. On the other hand, loosely-coupled
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hardware accelerators like co-processors have separate registers, datapaths, and
state machines for their control. In addition, the interface between processor
and co-processor costs silicon area and may also introduce a severe performance
bottleneck due to communication and synchronization overhead [9].

In summary, instruction set extensions are a good compromise between the
performance and efficiency of cryptographic hardware and the scalability and
algorithm agility of software. Application-specific FUs require less silicon area
than co-processors, but allow to achieve significantly better performance than
“conventional” software implementations [10]. Recent research has demonstrated
that instruction set extensions can even outperform a crypto co-processor while
demanding only a fraction of the silicon area [I§].

1.1 Contributions of this Work

In this paper we introduce the design and implementation of a functional unit
(FU) to accelerate the execution of both public-key and secret-key cryptography
on embedded processors. The FU is basically a multiply/accumulate (MAC) unit
consisting of a (32 x 16)-bit multiplier and a 72-bit accumulator. It is capable
to process signed and unsigned integers as well as binary polynomials, i.e. the
FU contains a so-called unified multiplieﬂ [15]. Besides integer and polynomial
multiplication and multiply /accumulate operations, the FU can also perform
the reduction of binary polynomials modulo an irreducible polynomial of degree
m = 8, such as needed for AES en/decryption [3/5]. The rich functionality pro-
vided by the FU facilitates efficient software implementation of a broad range
of cryptosystems, including the “traditional” public-key schemes involving long
integer arithmetic (e.g. RSA, Diffie-Hellman), elliptic curve cryptography (ECC)
[8] over both prime fields and binary extension fields, as well as the Advanced
Encryption Standard (AES) [13].

A number of unified multiplier architectures for public-key cryptography, in
particular ECC, have been published in the past [I56]. However, the FU pre-
sented in this paper extends previous work in two important aspects. First, our
FU supports not only ECC but also the AES, in particular the MixColumns
and InvMixColumns operations. Second, we integrated the FU into the SPARC
V8-compliant Leon2 softcore 4] and prototyped the extended processor in an
FPGA, which allowed us, on the one hand, to evaluate the hardware cost and
critical path delay of the extended processor and, on the other hand, to analyze
the impact of the FU on performance and code size of AES software. All exe-
cution times reported in this paper were measured on “working silicon” in form
of an FPGA prototype.

The main component of our FU is a (32 x 16)-bit unified multiplier for sig-
ned/unsigned integers and binary polynomials. We used the unified multiplier
architecture for ECC described in [6] as starting point for our implementation.
The main contribution of this paper is the integration of support for the AES

! The term unified means that the multiplier uses the same datapath for both integers
and binary polynomials.
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MixColumns and InvMixColumns operations, which require besides polynomial
multiplication also the reduction modulo an irreducible polynomial of degree
m = 8. Hence, we focus in the remainder of this paper on the implementation
of the polynomial modular reduction and refer to [6] for details concerning the
original multiplier for ECC. To the best of our knowledge, the FU introduced
in this paper is the first approach for integrating AES support into a unified
multiplier for integers and binary polynomials.

Although the focus of this paper is directed towards the AES, we point out
that the presented concepts can also be applied to other block ciphers requiring
polynomial arithmetic, e.g. Twofish, or to hash functions like Whirlpool, which
has a similar structure as AES.

2 Arithmetic in Binary Extension Fields

The finite field IF; of order ¢ = p™ with p prime can be represented in a number
of ways, whereby all these representations are isomorphic. The elements of fields
of order 2™ are commonly represented as polynomials of degree up to m —1 with
coefficients in the set {0,1}. These fields are called binary extension fields and
a concrete instance of Fom is generated by choosing an irreducible polynomial
of degree m over Fy as reduction polynomial. The arithmetic operations in Fom
are defined as polynomial operations with a reduction modulo the irreducible
polynomial. Binary extension fields have the advantage that addition has no
carry propagation. This feature allows efficient implementation of arithmetic
in these fields in hardware. Addition can be done with a bitwise exclusive OR
(XOR) and multiplication with the simple shift-and-XOR method followed by
reduction modulo the irreducible polynomial.

Binary extension fields play an important role in cryptography as they con-
stitute a basic building block of both public-key and secret-key algorithms. For
example, the NIST recommends to use binary fields as underlying algebraic
structure for the implementation of elliptic curve cryptography (ECC) [8]. The
degree m of the fields used in ECC is rather large, typically in the range be-
tween 160 and 500. The multiplication of elements of such large fields is very
costly on 32-bit processors, even if a custom instruction for multiplying binary
polynomials is available. On the other hand, the reduction of the product of two
field elements modulo an irreducible polynomial f(z) is fairly fast (in relation to
multiplication) and can be accomplished with a few shift and XOR, operations
if f(x) has few non-zero coefficients, e.g. if f(x) is a trinomial [§].

Contrary to ECC schemes, the binary fields used in secret-key systems like
block ciphers are typically very small. For example, AES and Twofish rely on the
field Fas. A multiplication of two binary polynomials of degree < 7 can be easily
performed in one clock cycle with the help of a custom instruction like gf2mul
[I7]. However, the reduction of the product modulo an irreducible polynomial
f(x) of degree 8 is relatively slow when done in software, i.e. requires much
longer than one cycle. Therefore, it is desirable to provide hardware support for
the reduction operation modulo irreducible polynomials of small degree.
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3 Implementation Options for AES

The Advanced Encryption Standard (AES) is a block cipher with a fixed block
size of 128 bits and a variable key size of 128, 192, or 256 bits [3]. In November
2001, the NIST officially introduced the AES as successor of the Data Encryption
Standard (DES). An encryption with AES consists of an initial key addition, a
sequence of round transformations, and a (slightly different) final round trans-
formation. The round transformation for encryption is composed of the following
four steps: AddRoundKey, SubBytes, ShiftRows, and MixColumns. Decryption
is performed in a similar fashion as encryption, but uses the inverse operations
(i.e. InvSubBytes, InvShiftRows, and InvMixColumns).

The binary extension field GF(2%) plays a central role in the AES algorithm
[3]. Multiplication in GF(28) is part of the MixColumns operation and inversion
in GF(2%) is carried out in the SubBytes operation. The MixColumns/InvMix-
Columns operation is, in general, one of the most time-consuming parts of the
AES [0]. Software implementations on 32-bit platforms try to speed up this
operation either by using an alternate data representation [I] or by employing
large lookup tables [3]. However, the use of large tables is disadvantageous for
embedded systems since they occupy scarce memory resources, increase cache
pollution, and may open up potential vulnerabilities to cache-based side channel
attacks [14].

The MixColumns transformation of AES can be defined as multiplication in
an extension field of degree 4 over Fos [3]. Elements of this field are polynomials
of degree < 3 with coefficients in Fos. The coefficient field Fos is generated by
the irreducible polynomial f(x) = 2® + 2* + 23 + x + 1 (0x11B in hexadecimal
notation). For the extension field Fas[t]/(g(¢)) the irreducible polynomial g(t) is
{1}t*+{1} with {1} € Fys. The multiplier operand for MixColumns and InvMix-
Columns is fixed and its coefficients in Fas have a degree of < 3. A multiplication
in this extension field over Fos can be performed in three steps:

1. Multiplication of binary polynomials.
2. Reduction of product-polynomials modulo f(x).
3. Reduction of a polynomial over Fas modulo g(t).

3.1 Instruction Set Extensions

Previous work on instruction set extensions for AES was aimed at both increas-
ing performance as well as minimizing memory requirements. Nadehara et al. [12]
designed custom instructions that calculate the result of the (Inv)MixColumns
operation in a dedicated functional unit (FU). Bertoni et al. [2] proposed cus-
tom instructions to speed up AES software following the approach of [I]. Lim
and Benaissa [I1] implemented a subword-parallel ALU for binary polynomials
that supports AES and ECC over GF(2™). The work of Tillich et al. focused on
reducing memory requirements [19] as well as optimizing performance [I8] with
the help of custom instructions and dedicated functional units for AES. In addi-
tion, they also investigated the potential for speeding up AES using instruction
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set extensions for ECC [I7]. Their results show that three custom instructions
originally designed for ECC (gf2mul, gf2mac, and shacr) allow to accelerate
AES by up to 25%.

4 Design of a Unified Multiplier with AES Support

Our base architecture is the unified multiply-accumulate (MAC) unit presented
in [6]. It is capable of performing unsigned and signed integer multiplication as
well as multiplication of binary polynomials. Our original implementation of the
MAC unit has been optimized for the SPARC V8 Leon2 processor and consists
of two stages. The first stage contains a unified (32 x 16)-bit multiplier that
requires two cycles to produce the result of a (32 x 32)-bit multiplication. The
second stage features a 72-bit unified carry-propagation adder, which adds the
product to the accumulator.

Of the three steps described in Section [3] binary polynomial multiplication
is already provided by the original multiplier from [6]. The special structure
of the reduction polynomial g(t) for step 3 allows a very simple reduction: The
higher word (i.e. 32 bits) of the multiplication result after step 2 (with reduced
coefficients) is added to the lower word. This operation can be implemented in
the second stage (i.e. the accumulator) of the unified MAC unit without much
overhead. The only remaining operation to perform is the reduction modulo
f(x) (step 2). In the following we introduce the basic ideas for integrating this
operation into the unified multiplier presented in [6].

4.1 Basic Unified Multiplier Architecture

The white blocks in Figure [I| show the structure of our baseline multiplier. All
grey blocks are added for AES MixColumns support and will be described in
detail in Section The multiplier proposed in [6] employs unified radix-4 partial
product generators (PPGs) for unsigned and signed integers as well as binary
polynomials. In integer mode, the partial products are generated according to
the modified Booth recoding technique, i.e. three bits of the multiplier B are
examined at a time. On the other hand, the output of each PPG in polynomial
mode depends on exactly two bits of B. A total of [n/2]|+1 partial products are
generated for an n-bit multiplier B if performing an unsigned multiplication, but
only |n/2] partial products in the case of signed multiplication or when binary
polynomials are multiplied.

The unified MAC unit described in [6] uses dual-field adders (DFAs) arranged
in an array structure to sum up the partial products. However, we decided to
implement the multiplier in form of a Wallace tree to minimize the critical path
delay. Another difference between our unified MAC unit for the SPARC V8
Leon2 core and the design from [6] is that our unit adds the multiplication
result to the accumulator in a separate stage. Therefore, our unified (32 x 16)-bit
multiplier has to sum up only the 9 partial products generated by the modified
Booth recoder. This is done in a Wallace-tree structure with four summation
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Fig. 1. Proposed unified (32 x 16)-bit multiplier with AES support

stages using dual-field adders. The first three stages use unified carry-save adders
(CSAs) with either (3:2) or (4:2) compressors. The result of each adder is in a
redundant form, split up into a carry-vector and a sum-vector. This redundant
representation allows for addition without carry-propagation and minimizes the
contribution of these summation stages to the overall circuit delay. The fourth
and last stage consists of a unified carry-propagate adder (CPA), which produces
the final result in non-redundant representation.

4.2 Concepts for Support of AES MixColumns Multiplication

Two observations are important to be able to integrate AES MixColumns sup-
port into the basic unified multiplier:

1. For AES MixColuns/InvMixColumns the coefficients of the constant multi-
plier B have a degree of < 3. At least half of the PPGs will, therefore, have
both input multiplier bits at 0 and will produce a partial product of 0 in
polynomial mode.
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2. As binary polynomials have no carry propagation in addition, the carry-
vectors of the carry-save summation stages will always be 0 in polynomial
mode.

When two polynomials over Fos are multiplied with the unified multiplier in
polynomial mode, the result will be incorrect. The coefficients of the polynomial
over [Fos will exceed the maximum degree of 7, i.e. they will be in non-reduced
form. The coefficient bits of degree > 7 are added to the bits of the next-higher
coefficient in the partial product generators and in the subsequent summation
stage. But in order to perform a reduction of the coefficients to non-redundant
form (degree < 7), it is necessary to have access to the excessive bits of each
coefficient. In the following we will denote these excessive bits as reduction bits.
The reduction bits indicate whether the irreducible polynomial f(z) must be
added to the respective coefficient with a specific offset in order to reduce the
degree of the coefficient.

The reduction bits can be isolated in separate partial products. A modifica-
tion of the PPGs can be prevented by making use of the “idle” PPGs to process
the highest three bits of every coefficient of the multiplicand A. This is achieved
with the following modifications:

— The “normal” (i.e. not “idle”) PPGs are supplied with multiplicand A where
only the lowest 5 bits of each coefficients are present (A AND 0x1F1F1F1F).

— Multiplicand A for the “idle” PPGs contains only the highest 3 bits of every
coefficient (A AND 0xEOEOEOEO) and is shifted to the right by 4 bits.

— The multiplier B has the lower nibble (4 bits) of each byte replicated in the
respective higher nibble (e.g. 0x0C0D — 0xCCDD).

These modifications entail a different generation of partial products but still
result in the same multiplication result after the summation tree. This is because
processing of the multiplicand A is spread across all PPGs (which is done by
the masking of A). The “idle” PPGs are activated through replication of the
nibbles of the multiplier B. Moreover, the “idle” PPGs produce partial products
with a higher weight than intended, which is compensated by the right-shift
of the input multiplicand A for these PPGs. Figure ] and 3] illustrate the partial
product generation for a multiplication of a polynomial over Fos of degree 1
(16-bit multiplicand A) with a polynomial of degree 0 (8-bit multiplier B). Note
that partial product 1 in Figure [2] is split into the partial products 1 and 3 in
Figure [3| The same occurs for partial product 2, which is split into the partial
products 2 and 4. The PPG-scheme in Figure [3] yields partial products which
directly contain the reduction bits.

To determine whether the reduction polynomial needs to be added to a coeffi-
cient of the multiplication result with a specific offset, it is necessary to combine
(add) reduction bits with the same weight from different partial products. In
order to minimize delay, these few additional XOR gates are placed in parallel
to the summation tree stages. The resulting reduction bits determine the value
of the so-called reduction vectors, which are injected via the carry-vectors of the
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Fig. 3. Multiplication of polynomials over Fos with the modified PPG-scheme for AES
support

summation tree and which reduce the coefficients to non-redundant form. More
specifically, if a reduction bit is set, then a portion of a carry-vector (with the
correct offset) is forced to the value of the reduction polynomial f(z) (0x11B),
otherwise it is left 0. Reduction vectors for different coeflicients can be injected in
the same carry-vector, as long as they do not overlap and the carry-vector is long
enough. Thus, by making use of the “idle” PPGs and the carry-vectors of the
summation tree, the multiplier can be extended to support AES MixColumns
multiplication.

5 Implementation Details

The general concepts for integrating AES MixColumns support into the unified
multiplier of [6] are described in Section Figure|l|shows our modified multi-
plier with all additional components. PPG Input Masking and Nibble Replication
make sure that the partial products are generated in a redundant fashion where
the reduction bits are subsequently accessible. Reduction Bit Addition adds up
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reduction bits of coefficients of partial products with the same weight. Reduction
Vector Insertion conditionally injects reduction polynomials for the coefficients
with different offsets, depending on the reduction bits. The result P will be a
polynomial over Fos of degree 4 with fully reduced coefficients. In the following
we briefly describe the implementation of the additional components.

PPG Input Masking. The AES MixColumns mode is controlled with the
signal ff-miz. This signal selects the input multiplier A for the PPGs either as
unmodified or masked (and shifted) as described in Section

Multiplier Nibble Replication. In our implementation the multiplier B is
set by the processor in dependance on the required operation (AES MixColumns
or InvMixColumns). Nibble replication is therefore performed outside of our
multiplier. If it is to be done within the multiplier, it just requires an additional
multiplexor for the multiplier B controlled by ff-miz.

Reduction Bit Addition. Reduction bits of the same weight are XORed in
parallel to the summation tree stages. For the (32 x 16)-bit case, the resulting
reduction bits have contributions from one, two, or four partial products.

Reduction Vector Insertion. For each reduction polynomial, the ff-mix and
the corresponding reduction bit are combined with a logical AND. The result
is used to conditionally inject the reduction polynomial over a logical OR with
the required bit-lines of a carry-vector. Reduction bits which have contributions
from more partial products are used in later stages of the summation tree than
reduction bits which depend on less partial products.

6 Experimental Results

We integrated our functional unit into the SPARC V8-compatible Leon2 core
[4] and prototyped the extended processor in an FPGAﬂ For performing AES
MixColumns and InvMixColumns, four custom instructions were defined: Two
of these instructions (mcmuls, imcmuls) can be used for the MixColumns and
InvMixColumns transformation only, while the other two (mcmacs, imcmacs)
include an addition of the transformation result to the accumulator. The latter
two instructions write their result only to the accumulator registers and not to
the general-purpose register file. They require two clock cycles to produce the
resultﬂ If the subsequent instruction does not need the multiplication result or

2 The HDL source code of the extended processor, denoted Leon2-CIS, is available for
download from the ISEC project page at http://www.iaik.tugraz.at/isec.

3 Although the multiply-accumulate unit takes three cycles for the calculation, subse-
quent instructions can access the result after two cycles without a pipeline stall due
to the implementation characteristics of the accumulator registers.
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access to the multiply-accumulate unit, then it can be processed in parallel to
the multiply instruction, resulting in one cycle per instruction. In addition, our
new custom instructions assemble the 32-bit multiplicand for AES multiplication
from the two source register operands of the instruction (the 16 higher bits of the
first register and the 16 lower bits of the second register), in order to facilitate
the AES ShiftRows/InvShiftRows transformation.

6.1 Silicon Area and Critical Path

The impact of our modifications on the critical path of the multiplier is very
small. One additional multiplexor delay is required to select the input for the
PPGs. The reduction bits are added in parallel to the summation tree, which
should not extend the critical path. For injection of the reduction vectors, there
is one additional OR-delay for the 2nd, 3rd and 4th summation tree stage, i.e.
in the worst case three OR-delays altogether.

We synthesized the original unified multiplier from [6] (unimul32x16) and
our proposed unified multiplier with AES support (unimul mix32x16) using a
0.13 pm standard-cell library in order to estimate the overhead in silicon area
and the impact on the critical path delay. These results were compared with
the conventional (32 x 16)-bit integer multiplier that is part of the Leon2 soft-
core (intmul32x16). We also made comparisons including the enclosing unified
multiply accumulate units (unimac32x16, unimac_mix32x16) and the five-stage
processor pipeline, denoted as integer unit (IU). The results are summarized in
Table 1l

Table 1. Area and delay of the functional units and the extended Leon2 core

Minimal Delay Typical Delay
FU/Component Area (GE) | Delay (ns)‘ Area (GE) | Delay (ns)
intmul32x16 7,308 2.05 5,402 2.50
unimul32x16 9,660 2.15 7,413 2.50
unimul_mix32x16 9,988 2.21 8,418 2.50
unimac32x16 14,728 2.53 12,037 3.00
unimac-mix32x16 16,145 2.56 12,914 3.00
Leon2 IU (intmul32x16) 27,250 2.59 17,867 4.97
Leon2 IU (unimac32x16) 38,705 2.77 24,927 5.00
Leon2 IU (unimac_mix32x16) | 39,306 2.85 26,219 4.99

All results in Table [1] are given for the minimal and for a typical critical
path delay. The former give an estimate of the maximum frequency with which
the processor can be clocked, while the latter allow to assess the increase in
silicon area due to our proposed modifications. Taking a Leon2 processor with
a unified MAC unit for ECC (unimac32x16) as reference, our modifications for
AES support increase the critical path by about 5% and the silicon area by less
than 1.3 kGates. The overall size of the FU with support for ECC and AES
is approximately 12.9 kGates when synthesized for a delay of 3 ns. However, it
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must be considered that the “original” (32 X 16)-bit integer multiplier of the
Leon2 core has an area of about 5.4 kGates. Therefore, the extensions for ECC
and AES increase the size of the multiplier by just 7.5 kGates and the overall
size of the Leon2 core by approximately 8.35 kGates.

6.2 AES Performance

In order to estimate the achievable speedup with our proposed FU, we proto-
typed the extended Leon2 on an FPGA board. We evaluated AES encryption
and decryption functions with 128-bit keys (AES-128) both for precomputed key
schedule and on-the-fly key expansion. The number of cycles was determined
with an integrated cycle counter using the timing code of the well-known AES
software implementation of Brian Gladman [5]. Note that the AES decryption
function with on-the-fly key expansion is supplied with the last round-key. The
code size for each implementation is also listed, which encompasses all required
functions as well as any necessary constants (e.g. S-box lookup table).

Table 2. AES-128 encryption and decryption: Performance and code size

Implementation Key exp.| Performance Code size
Cycles Cycles ‘ Speedup | Bytes ‘ Rel. change

Encryption, Precomputed Key Schedule

No extensions (pure SW) 739 1,637 1.00 2,168 0.0%

mcmuls (C) 498 1,011 1.62 1,240 —42.8%

sbox4s & mcmuls (ASM) 316 260 6.30 460 —78.8%
Decryption, Precomputed Key Schedule

No extensions (pure SW) 739 1,955 1.00 2,520 0.0%

mcmuls (C) 316 1,299 1.51 1,572 —37.6%

sbox4s & mcmuls (ASM) 465 259 7.55 520 —79.4%
Encryption, On-the-fly Key Expansion

No extensions (pure SW) 2,239 1.00 1,636 0.0%

mcmuls (C) 1,258 1.78 1,228 —21.3%

sbox4s & mcmuls (ASM) 296 7.56 308 —81.2%
Decryption, On-the-fly Key Expansion

No extensions (pure SW) 2,434 1.00 2,504 0.0%

mcmuls (C) 1,596 1.53 1,616 —35.5%

sbox4s & mcmuls (ASM) 305 7.98 316 —87.4%

Table [2| specifies the number of clock cycles per encryption/decryption and
the code size for implementations using precomputed key schedule as well as
on-the-fly key expansion. Our baseline implementation is a C function which
uses only native SPARC V8 instructions. The mcmuls implementation refers to
a function written in C where MixColumns or InvMixColumns is realized using
our proposed functional unit. The sbox4s & mcmuls implementation is written
in assembly and uses our multiplier as well as an additional custom instruction
for performing the S-box substitution. This instruction for the S-box requires
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less than 2 kGates. It is described and performance-evaluated in [I§] along with
other custom instructions dedicated to AES.

The C implementations can be sped up with the proposed custom instructions
by a factor of up to 1.78. However, our extensions are designed to deliver maximal
performance in combination with the custom instruction for S-box substitution
described in [I8]. By combining these extensions, a 128-bit AES encryption can
be done in less than 300 clock cycles, which corresponds to a speed-up factor
of between 6.3 (pre-computed key schedule) and 7.98 (on-the-fly key expansion)
compared to the baseline implementation. Moreover, the custom instructions for
AES reduce the code size by up to 87.4%.

The AES performance can be further improved by reducing the latency of the
multiply-accumulate unit. With a (32 x 32)-bit multiplier and integration of the
accumulation into the summation tree (as proposed in [6]), an instruction for
MixColumns/InvMixColumns could be executed in a single cycle and could also
include the subsequent AddRoundKey transformation. With such an instruction
a complete AES round could be executed in only 12 clock cycles, and a complete
AES-128 encryption or decryption in about 160 cycles (including all loads and
stores of the data and key).

6.3 Comparison with Designs Using an AES Coprocessor

Hodjat et al. [9] and Schaumont et al. [16] attached an AES coprocessor to the
Leon2 core and analyzed the effects on performance and hardware cost. The
implementation reported by Hodjat et al. used a dedicated coprocessor interface
to connect the AES hardware with the Leon2 core. Schaumont et al. transferred
data to/from the coprocessor via memory-mapped I/0O. Both systems were pro-
totyped on a Xilinx Virtex-II FPGA on which the “pure” Leon2 core consumes
approximately 4,856 LUTSs, leaving some 5,400 LUTs for the implementation
of the AES coprocessor. Table [3] summarizes the execution time of a 128-bit
encryption and the additional hardware cost due to the AES coprocessor. For
comparison, the corresponding performance and area figures of the extensions
proposed in this paper are also specified.

Table 3. Performance and cost of AES coprocessor vs. instruction set extensions

Reference Implementation Performance HW cost
Hodjat [9] Coprocessor (COP interface) 704 cycles 4,900 LUTs
Schaumont [I6] | Coprocessor (mem. mapped) 1,494 cycles 3,474 LUTs
This work ISE for MixColumns 1,011/1,299 cycles | 3,194 LUTs
This work ISE for MixColumns 4+ S-box 260 cycles 3,695 LUTs

Hodjat et al’s AES coprocessor uses about 4,900 LUTs (i.e. requires more
resources than the Leon2 core) and is able to encrypt a 128-bit block of data in 11
clock cycles. However, loading the data and key into the coprocessor, performing
the AES encryption itself, and returning the result back to the software routine
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takes 704 cycles altogether [9, page 492]. Schaumont et al’s coprocessor with
the memory-mapped interface requires less hardware and is slower than the
implementation of Hodjat et al. The performance of our AES extensions lies
between the two coprocessor systems. As mentioned in Section the custom
instruction for S-box substitution from [I8] would allow to reduce the execution
time of 128-bit AES encryption to 260 cycles, which is significantly faster than
the coprocessor systems. The additional hardware cost of the FU is comparable
to that of the two co-processors. However, contrary to AES coprocessors, the
FU presented in this paper supports not only the AES, but also ECC over both
prime fields and binary extension fields.

7 Summary of Results and Conclusions

In this paper we introduced a functional unit (FU) for increasing the perfor-
mance of embedded processors when executing cryptographic algorithms. The
main component of the FU is a unified multiply-accumulate (MAC) capable to
perform integer and polynomial multiplication as well as reduction modulo an
irreducible polynomial of degree 8. Due to its rich functionality and high degree
of flexibility, the FU facilitates efficient implementation of a wide range of cryp-
tosystems, including ECC and AES. When integrated into the Leon2 SPARC
V8 processor, the FU allows to execute a 128-bit AES encryption with precom-
puted key schedule in about 1,000 clock cycles. Hardware support for the S-box
operation further reduces the execution time to 260 cycles, which is more than
six times faster than a conventional software implementation on the Leon2 pro-
cessor. The hardware cost of the AES extensions is roughly 1,300 gates and the
additional area for the support of ECC and AES amounts to just 8,352 gates
altogether. These results confirm that the functional unit presented in this paper
is a flexible and cost-effective alternative to a cryptographic co-processor.
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