
Differential Cryptanalysis of Keccak Variants

Stefan Kölbl, Florian Mendel, Tomislav Nad, Martin Schläffer

IAIK, Graz University of Technology, Austria

Abstract. In October 2012, NIST has announced Keccak as the win-
ner of the SHA-3 cryptographic hash function competition. Recently, at
CT-RSA 2013, NIST brought up the idea to standardize Keccak variants
with different parameters than those submitted to the SHA-3 competi-
tion. In particular, NIST considers to reduce the capacity to the output
size of the SHA-3 standard and additionally, standardize a Keccak vari-
ant with a permutation size of 800 instead of 1600 bits. However, these
variants have not been analyzed very well during the SHA-3 competition.
Especially for the variant using an 800-bit permutation no analysis on
the hash function has been published so far.
In this work, we analyze these newly proposed Keccak variants and pro-
vide practical collisions for up to 4 rounds for all output sizes by con-
structing internal collisions. Our attacks are based on standard differ-
ential cryptanalysis contrary to the recent attacks by Dinur at al. from
FSE 2013. We use a non-linear low probability path for the first two
rounds and use methods from coding theory to find a high-probability
path for the last two rounds. The low probability path as well as the
conforming message pair is found using an automatic differential path
search tool. Our results indicate that reducing the capacity slightly im-
proves attacks, while reducing the permutation size degrades attacks on
Keccak.

Keywords: hash functions, SHA-3, collision attack, differential crypt-
analysis

1 Introduction

In October 2012, NIST has announced Keccak [2] as the winner of the SHA-3
cryptographic hash function competition [16], which was held between 2008 and
2012 [15]. Traditionally, cryptographic hash functions take as input a string of
arbitrary finite length and produce a fixed sized output of n bits. As a conse-
quence, the following main security requirements are defined for cryptographic
hash functions:

– Preimage Resistance: For a given output y it should be computationally
infeasible to find any input x′ such that y = f(x′).

– Second Preimage Resistance: For given x, y = f(x) it should be compu-
tationally infeasible to find any x′ 6= x such that y = f(x′).

– Collision Resistance: It should be computationally infeasible to find two
distinct inputs x, x′ such that f(x) = f(x′).



Table 1. Summary of collision attacks on Keccak.

Variants Hash Size Capacity Permutation Rounds Complexity Reference

224 448 1600 4 practical [8]

256 512 1600 4 practical [8]

Keccak 256 512 1600 5 2115 [9]

(c = 2n) 384 768 1600 3 practical [9]

384 768 1600 4 2147 [9]

512 1024 1600 3 practical [9]

224 224 1600 4 practical this work

256 256 1600 4 practical this work

384 384 1600 4 practical this work

Keccak 512 512 1600 4 practical this work

(c = n) 224 224 800 4 practical this work

256 256 800 4 practical this work

384 384 800 4 2102 this work

other all ≤ 640 1600 4 practical this work

variants all ≤ 352 800 4 practical this work

For any ideal hash function with n-bit output size, we can find preimages or
second preimages with a complexity of 2n, and collisions with a complexity of
2n/2 using generic attacks. However, in practice the security of a hash function
is not necessarily linked to the hash output size. This is addressed by the sponge
construction [1] which is the underlying design principle of Keccak. The sponge
construction provides an internal capacity of c bits and allows an arbitrary hash
value output size of n bits. Therefore, the security is given by s = min (c/2, n)
bits against (second-) preimage attacks and by s = min (c/2, n/2) bits against
collision attacks. As a consequence, the SHA-3 candidates of Keccak submitted
to the competition were defined with a capacity of c = 2n bits.

At CT-RSA 2013, NIST proposed the idea to standardize Keccak variants
with different parameters than those submitted to the SHA-3 competition. More
specifically, NIST proposes to reduce the capacity c to n instead of 2n bits. Due to
the reduced capacity, NIST may also consider to standardize a smaller 800-bit
permutation for small capacities. Unfortunately, these variants have not been
analyzed very well during the SHA-3 competition.

Our Contribution. In this work, we analyze these new and the original variants
of Keccak using the same attack strategy. We use a standard differential attack,
which allows us to better compare the security of all variants. Our results show
that reducing the capacity does not lead to much better differential attacks on
Keccak. On the other hand, reducing the permutation size b from 1600 to 800
bits even increases the security against differential attacks. To summarize, we
are able to provide practical results for up to 4 rounds of all Keccak variants
proposed for SHA-3 with a permutation size of 1600 bits. This includes the
Keccak variants supporting arbitrary output sizes. A summary of our results
and related work can be found in Table 1.



Related Work. The collision resistance of Keccak with permutation size of
b = 1600 has already been investigated by a number of researchers. The first
practical attack on Keccak with c = 512 and n = 256 has been published
by Naya-Plasencia et al. in [17]. They have presented a 2-round collision attack
which uses an efficient method to find high probability differential characteristics
using the column parity (or kernel) property. By using these characteristics and
connecting them with the input using an algebraic method, Dinur et al. have
presented a 4-round collision attack for Keccak with c = 448 and n = 224, and
for Keccak with c = 512 and n = 256 in [8]. Furthermore, in [9] Dinur et al.
have presented the first attacks on reduced Keccak with c = 768 and n = 384,
and Keccak with c = 1024 and n = 512. For both variants practical collision
attacks on 3 rounds were shown. Moreover, they have shown theoretical attacks
on Keccak with c = 512 and n = 256 reduced to 5 rounds and Keccak with
c = 768 and n = 384 reduced to 4 rounds with a complexity of 2115 and 2147,
respectively.

Outline. The paper is structured as follows. In Section 2 we provide a short
description of Keccak. In Section 3 we give an overview of the basic attack
strategy. Section 4 presents our method to find high probability characteristics.
In Section 5, we discuss our approach to connect these characteristics to the
input, using an automated search tool.

2 Description of Keccak

Keccak is a family of hash functions based on the sponge construction, with
state sizes b ∈ {25, 50, 100, 200, 400, 800, 1600}. Keccak uses a b-bit permutation
Keccak-f [b] and a multi-rate padding scheme. A specific instance of Keccak is
defined by the two parameters r (the rate) and c (the capacity) with b = r+c. For
the NIST SHA-3 competition, the Keccak designers have defined one instance
for each output size n ∈ {224, 256, 384, 512} bits. All four instances use the
1600-bit permutation with capacity c = 2n, where n is the hash output size.
Additionally, to these four variants the Keccak designers also specify a variant
supporting arbitrary output sizes which they named Keccak[]. This variant has
capacity c = 576 and rate r = 1024.

The permutation Keccak-f used in Keccak operates on a three-dimensional
state with elements in F2. The dimensions for this state are 5 × 5 × w with
w ∈ {1, 2, 4, 8, 16, 32, 64}. This allows to represent each lane as a w-bit word.
A three-dimensional array is used, S[x][y][z], to describe the state. The hash h
for a message m is computed in the following way for Keccak with rate r and
capacity c:

1. Initialise the state S[x][y][z] = 0 for x = 0 . . . 4, y = 0 . . . 4 and z = 0 . . . w.
2. Compute the padded message M = m||10∗1 such that M is a multiple of r.
3. Absorb the next r-bit message block by computing S[x][y] = S[x][y] ⊕Mi

and update the state by computing S = Keccak-f(S). Repeat this process
until all message blocks are absorbed.



m pad

0

0

r

c

f

M0

f

M1

f

M2

f

h0

f

h1

h|∗|

Absorb Squeeze

Fig. 1. Overview of the sponge construction, which is used in the Keccak hash function.

4. Concatenate the first r bits to the hash value. Compute S = Keccak-f(S)
and repeat this process to get the desired number of output bits.

This procedure is also outlined in Fig. 1.

2.1 Keccak-f

Keccak uses the iterative permutation Keccak-f operating on Fw2 , with w being
the lane size. The permutation consists of multiple rounds in which five functions
are used in sequence R = ι ◦ χ ◦ π ◦ ρ ◦ θ. The number of rounds nr depends on
the lane size:

nr = 12 + 2 log2(w) (1)

Apart from ι, all functions are equivalent for each round.

Description of θ. This step adds to every bit of the state S[x][y][z] the bitwise
sum of the neighbouring columns S[x − 1][∗][z] and S[x + 1][∗][z − 1]. This
procedure can be described by the following equation:

θ : S[x][y][z]← S[x][y][z] +

4∑
n=0

S[x− 1][n][z] +

4∑
n=0

S[x+ 1][n][z − 1] (2)

Description of ρ. This step rotates the bits in every lane by a constant value.

ρ : S[x][y][z]← S[x][y][z + C(x, y)] (3)

where C(x, y) is a constant value.



Description of π. This function transposes the lanes using the following func-
tion: (

x
y

)
=

(
0 1
2 3

)
×
(
x
y

)
(4)

Description of χ. This step is the only non-linear step in Keccak and operates
on each row of 5 bits.

χ : S[x][y][z]← S[x][y][z]⊕ ((¬S[x+ 1][y][z]) ∧ S[x+ 2][y][z]) (5)

It can be seen as applying a 5-bit S-box in parallel to all rows.

Description of ι. This steps adds a round dependent constant to the state.
For a list of the constants see [2].

3 Differential Cryptanalysis of Keccak

In this section, we give a brief overview of our attack strategy on the Keccak
hash function. We use standard differential cryptanalysis which has first been
published to cryptanalyze the block cipher DES [3] and was later applied to hash
functions as well. The basic idea of our attack is the same as used by Wang et
al. in the cryptanalysis of the MD4-family of hash functions [19, 20]. The hash
function is split into two parts. We first construct a high-probability differential
characteristic for the second part and then, use a low-probability differential
characteristic and message modification to connect with the input in the first
part. In more detail, we perform the following 4 steps:

1. Find a differential characteristic for the hash function that results in a col-
lision and holds with a high probability for the last few rounds of the hash
function.

2. Find a differential characteristic (not necessary with high probability) for
the first few rounds of the hash function.

3. Use message modification techniques to find conforming message pairs for
the differential characteristic in the first few rounds.

4. Use the message pairs of the previous step to find a solution for the high-
probability characteristic in the last few rounds of the hash function.

This strategy has already been used in [8] by Dinur et al. in the attack on
4 rounds of Keccak with c = 512 and n = 256. In this paper, we revisit the
attack, extend it, and apply it to other variants of Keccak. Our attack differs
from the attack of Dinur et al. in several ways. First of all, we show how to
construct high probability differential characteristics for the last few rounds of
Keccak that result in a (internal) collision for more than 256 bits. This allows
us to construct collisions for larger output sizes of Keccak reduced to 4 rounds
including the variant of Keccak supporting variable output sizes.



c

r

c0

0

M0 M1

connect with input

(Step 2,3)

high probability path

(Step 1,4)

Fig. 2. Outline of our 4-round differential attack strategy.

Second, we present a more general technique to perform Step 2 and 3 of the
attack. We use an automatic search tool implementing a guess-and-determine
strategy that constructs a differential characteristic and uses message modifi-
cation techniques to find conforming message pairs. For this purpose, we use a
similar tool as published by Mendel et al. in the analysis of SHA-2 [13,14]. Fig. 2
shows an high-level overview of our attack strategy.

In Step 1 of the attack, we search for 2-round high-probability characteristics
which lead to (internal) collisions. To find collisions for larger output sizes than
in [8], we use a linearized version of Keccak and methods from coding theory
(see Sect. 4).

In Step 2 and Step 3 of the attack, we need to connect the input difference
of the high-probability characteristic with the fixed input value given by the
capacity c. We solve this problem by searching for a differential characteristic
and conforming message pair using an automatic search tool (see Sect. 5). The
difficulty of finding a solution depends on the size of the capacity c. By improving
the search strategy of our tool, we are able to solve the problem for larger values
of the capacity c.

4 Finding Colliding High-Probability Characteristics

High-probability differential characteristics can be constructed for Keccak by
using the column parity property of θ. Using this property, Naya-Plasencia et al.
presented the first practical collision attacks on round-reduced versions of Keccak
in [17]. Similar differential characteristics over 2 rounds were also used by Dinur et al.
in [8]. A method to construct all column parity paths up to a given Hamming
weight is described in [17], and a full characterization of kernel paths was done
in [6]. However, no low-weight paths over three consecutive rounds exist [2].



4.1 Differential Characteristics and Coding Theory

To find a good characteristic for 2 rounds of Keccak, we use a linearized model
of the Keccak hash function. Therefore, we replace all non-linear operations by
a linear approximation resulting in a linear code over F2. Finding characteris-
tic in the linear code is not difficult, since it depends only on the differences
at the input. The probability that the characteristic holds in the original hash
function is related to the Hamming weight of the characteristic. In general, a
characteristic with low Hamming weight has a higher probability than one with
a high Hamming weight. Hence, for finding a characteristic with high probabil-
ity, i.e. with low Hamming weight, we use probabilistic algorithms from coding
theory. It has been shown in the past [4, 11, 12, 18] that these algorithms work
quite well. Furthermore, we can impose additional restrictions on the charac-
teristic by forcing certain bits/words to zero. Note that this is needed to find
suitable characteristics for Keccak resulting in an (internal) collision for the hash
function. In the following we will briefly discuss the linear approximation and
algorithms we were using to find the characteristics.

Linear Approximation of Keccak. The only non-linear transformation in
Keccak is χ. There are many ways to approximate χ by a linear function. For
our analysis we decided to use the identity function, since it comes very close to
the original definition and we are aiming for sparse characteristics.

χ : S[x][y][z]← S[x][y][z] (6)

All other transformations are linear facilitating our approach.

4.2 Finding low-weight Codewords

To find codewords with low Hamming weight we use the publicly available Cod-
ingTool Library1. It implements the probabilistic algorithm from Canteaut and
Chabaud [5] to search for codewords with low Hamming weight. Moreover, it
provides some other usable functionalities that turned out to be very useful for
our purpose. With this tool we can find good characteristics for different choices
of c and n in a few seconds on a standard PC. Table 2 and Table 3 show the
best (lowest Hamming weight) characteristics we have found for a different set of
parameters. It has to be noted that we can use these characteristics to construct
internal collisions for Keccak with capacity up to 416 resp. 832 bits. However,
for Keccak with variants with c = 2n this is too small to attack versions with
output sizes larger than 208 resp. 416 bits. Therefore, we also give the results
for characteristics resulting only in a collision for the hash function. The results
are characteristics that can be used for collision attacks for up to 448 resp. 832
bits.

Using this general approach the whole (linear) search space is covered and
arbitrary differences in the state words are possible. However, it turned out that

1 http://www.iaik.tugraz.at/content/research/krypto/codingtool/

 http://www.iaik.tugraz.at/content/research/krypto/codingtool/


Table 2. Low-weight differential characteristics for 2 rounds resulting in an internal
collision for Keccak with capacity c.

Permutation Capacity Weight Kernel Path

800

320 16 yes

352 16 yes

384 16 yes

416 20 yes

1600

640 20 yes

704 20 yes

768 20 yes

832 28 yes

Table 3. Low-weight differential characteristics for 2 rounds resulting in a collision for
Keccak with hash size n.

Permutation Hash Size Weight Kernel Path

800

320 12 yes

352 12 yes

384 20 yes

416 30 no

448 32 yes

1600

512 16 yes

640 20 yes

704 20 yes

768 20 yes

832 28 no

the best characteristics we have found are indeed column parity kernel paths. In
hindsight the same differential characteristics could have been found using the
method described in [17].

Extending the Approach to 3 Rounds. Using the same method one could
try to construct differential characteristics for more than 2 rounds. Unfortu-
nately, we did not find any sparse solutions which is conform with the work by
Daemen and Van Assche in [6]. Another approach we tried was to non-linearly
propagate the linear paths for 2 rounds forward using the automatic tool de-
scribed in Sect. 5. As we can not linearly combine these paths, we use a brute
force algorithm to check if a combination results in a collision after three rounds.
However, since the search space is too large to cover, we restricted ourselves to
a combination of only a few candidates. Unfortunately, we could not find a so-
lution, which confirms that a sparse 3-round path is unlikely to exist.

5 Non-Linear Characteristics and Message Modification

Once we have determined a high-probability characteristic for the second half
of Keccak, we need to connect this path with the constraints at the input of
the Keccak permutation. In [8], Dinur et al. have used their target difference
algorithm to find a solution for both differences and values of the input message.



In our work, we use the improved differential path search algorithm of Mendel
et al. [14]. Using this automated search tool, complex nonlinear differential char-
acteristics can be found. Additionally, the tool can be used for solving nonlinear
equations involving conditions on state and message words (i.e. for message mod-
ification).

Using the bitsliced propagation method used in [14], we were not able to find
a solution for the first two rounds of Keccak. The problem is, that the linear
functions used in Keccak are significantly larger than the linear functions used in
SHA-2. However, using the linear propagation method proposed in [10] and some
other minor improvements, we are able to find solutions for the first two rounds
of Keccak. In the following, we give a brief description of the search algorithm.

5.1 Search for Differential Characteristics and Message Pairs

The basic idea of this search algorithm is to pick and guess previously unre-
stricted bits. After each guess, the information due to these restrictions is prop-
agated to other bits. If an inconsistency occurs, the algorithm backtracks to an
earlier state of the search and tries to correct it. Similar to [14], we denote these
three parts of the search by decision (guessing), deduction (propagation), and
backtracking (correction). Then, the search algorithm proceeds as follows.

Let U be a set of bits. Repeat the following until U is empty:
Decision (Guessing)

1. Pick randomly (or according to some heuristic) a bit in U .
2. Impose new constraints on this bit.

Deduction (Propagation)
3. Propagate the new information to other variables and equations as de-

scribed in [14].
4. If an inconsistency is detected start backtracking, else continue with

step 1.
Backtracking (Correction)

5. Try a different choice for the decision bit.
6. If all choices result in an inconsistency, mark the bit as critical.
7. Jump back until the critical bit can be resolved.
8. Continue with step 1.

In the deduction, we use generalized conditions on bits [7]. To propagate
information, we use the techniques of [10] and during the search, we backtrack
as shown in [14]. In the message search, we additionally consider linear conditions
on two related bits (Xj ⊕Xk = {0, 1}) as proposed in [13].

Note that in each stage different bits are chosen (guessed). In total we have
two stages which can be summarized as follows.

1. Characteristic Search: In the first phase we search for a consistent differ-
ential characteristic in the state words. Therefore, we only add unconstrained
bits ’?’ to the set U .



2. Message Search: In the second stage we search for a conforming message.
In this phase, we only add bits with many linear two-bit conditions to the
set U . This ensures that bits which influence a lot of other bits are guessed
first.

Note that we dynamically switch between the two stages. Additionally, we
restart the search from scratch after a certain amount of inconsistencies to ter-
minate branches which appear to be stuck because of exploring a search space
far from a solution.

5.2 Improved Linear Propagation in Keccak

Using the bitsliced propagation method used in [14], we were not able to find
a solution for the first two rounds of Keccak. The problem is, that the linear
layer λ = π ◦ ρ ◦ θ of Keccak is significantly larger than the linear functions used
in SHA-2. We have tried to split the linear layer into bitslices and at least 320
bitslices are needed. In this case the linear information propagates very badly
and many contradictions in the linear layer are not detected.

To avoid this problem, we use the linear propagation method of [10]. In this
case, a linear system of equations is defined, which contains all equations of the
linear functions for Xi and X∗i , as well as the equations for the linear generalized
conditions at the input and output of the function. The resulting system of
equation is solved using Gauss-Jordan elimination to detect contradictions and
propagate information.

We get the best results when applying this linear approach to the complete
linear layer λ = π ◦ ρ ◦ θ of Keccak. We have also performed experiments which
include the XORs of the S-box layer χ, or by combining the linear parts of
two Keccak rounds. However, the best performance/propagation trade-off was
achieved for the linear layer λ.

5.3 Finding Solutions for 2 Rounds of Keccak

Using the automated search tool combined with the linear propagation method,
we can efficiently find both, differential characteristics and conforming message
pairs for up to two rounds of Keccak. However, the difficulty of finding a solution
depends on fine-tuning of the search algorithm based on a number of parameters.

The parameter which influences the search most is the capacity c. If too many
bits are fixed by the capacity, then we are not able to find a solution. For the
1600-bit permutation, we could find solutions for capacities of up to 640 bits
(ten 64-bit lanes), and for the 800-bit permutation, we could find solutions for
capacities of up to 352 bits (eleven 32-bit lanes).

Our experiments have shown, that for a zero value at the input it is harder
to find a solution, in particular for larger capacities. The running time of the
search algorithm can be improved by prepending a random first message block
with random differences. This was used for the results given in the appendix.



c

n

capacity (c)

o
u
tp

u
t

(n
)

128 256 352 512 640 768 1024

128

256

384

512

c = 2n

(theoretical [9])

c = n

(theoretical)

Keccak[]

1600 bits:
Dinur et al. [8]

this work

800 bits:
this work

Fig. 3. Overview of all 4-round collision attacks on Keccak with permutation size of
1600 and 800 bits, respectively. Blue: attacks by Dinur et al. and green: our attacks
on Keccak with permutation size of 1600 bits. Orange: our attacks on Keccak with
permutation size of 800 bits. Additionally, a theoretical 5-round collision attack on
Keccak-256 has been published in [9].

6 Results

For the 1600-bit permutation reduced to 4 rounds with a capacity of c ≤ 640
we can find internal collisions and hence, collisions for the hash function with
arbitrary output size. We want to note that that this also includes the Keccak
variant with capacity c = 576, which was proposed by the Keccak designers for
supporting variable output sizes. The confirming message pair and the according
differential characteristic is given in Appendix A. Note that for the zero IV of
Keccak, our automatic search tool does not work very well. By using a first
message block with differences (which could even be meaningful), the tool works
much better. In this case a solution was found within minutes on a standard PC.

For the smaller 800-bit permutation we can show internal collisions for a
capacity of c ≤ 352 bits. A confirming message pair and the according differential
characteristic is given in Appendix B. Finding this solution took about 140
minutes on a standard PC. This corresponds to about 238 Keccak computations.
Note that in an attack on the hash function with a capacity of 352 bits, the
values and differences of 32 additional bits can be chosen freely. Based on this,
we estimate the complexity to construct an internal collision with capacity 384
to be at most 264+38 = 2104. However, we expect the complexity to be much
smaller in practice. Our results are shown in Fig. 3.



Acknowledgements

This work has been supported in part by the Secure Information Technology
Center-Austria (A-SIT), by the Austrian Science Fund (FWF) under grant num-
ber TRP 251-N23 (Realizing a Secure Internet of Things - ReSIT), and by the
Austrian Research Promotion Agency (FFG) and Styrian Business Promotion
Agency (SFG) under grant number 836628 (SeCoS).

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of
the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT. LNCS, vol. 4965,
pp. 181–197. Springer (2008)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference. Sub-
mission to NIST (Round 3) (January 2011), available online: http://csrc.nist.
gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

4. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision
Attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) ASIACRYPT.
LNCS, vol. 5912, pp. 560–577. Springer (2009)

5. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Transactions on Information Theory 44(1), 367–
378 (1998)

6. Daemen, J., Assche, G.V.: Differential Propagation Analysis of Keccak. In: Can-
teaut, A. (ed.) FSE. LNCS, vol. 7549, pp. 422–441. Springer (2012)

7. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. LNCS, vol. 4284, pp.
1–20. Springer (2006)

8. Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-256.
In: Canteaut, A. (ed.) FSE. LNCS, vol. 7549, pp. 442–461. Springer (2012)

9. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. In: Moriai, S. (ed.) FSE. LNCS,
Springer (2013), to appear

10. Eichlseder, M., Mendel, F., Nad, T., Rijmen, V., Schläffer, M.: Linear Propagation
in Efficient Guess-and-Determine Attacks. In: Budaghyan, L., Helleseth, T., Parker,
M.G. (eds.) WCC (2013), http://www.selmer.uib.no/WCC2013/

11. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. J. Cryptology 24(1),
1–23 (2011)

12. Mendel, F., Nad, T.: A Distinguisher for the Compression Function of SIMD-512.
In: Roy, B.K., Sendrier, N. (eds.) INDOCRYPT. LNCS, vol. 5922, pp. 219–232.
Springer (2009)

13. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT. LNCS, vol. 7073, pp. 288–307. Springer (2011)

14. Mendel, F., Nad, T., Schläffer, M.: Improving Local Collisions: New Attacks on
Reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT. LNCS,
vol. 7881, pp. 262–278. Springer (2013)

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://www.selmer.uib.no/WCC2013/


15. National Institute of Standards and Technology: Cryptographic Hash Algorithm
Competition (November 2007), available online: http://csrc.nist.gov/groups/
ST/hash/sha-3/index.html

16. National Institute of Standards and Technology: SHA-3 Selection Announcement
(October 2012), available online: http://csrc.nist.gov/groups/ST/hash/sha-3/
sha-3_selection_announcement.pdf

17. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round
Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT. LNCS, vol. 7107,
pp. 236–254. Springer (2011)

18. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA. LNCS,
vol. 3376, pp. 58–71. Springer (2005)

19. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT. LNCS, vol. 3494, pp. 1–
18. Springer (2005)

20. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT. LNCS, vol. 3494, pp. 19–35. Springer (2005)

A Results for Keccak with a 1600-bit Permutation.

Table 4. The 4-round characteristic used for the second block to find an internal
collision for Keccak with a 1600-bit permutation and a capacity of 640. Note that a
random first block was used in this case.

Round State

0

737bc39f15b62ce3 4-ae-67d9-f67961 72c17e19ecf12b7b 2ba7b749c7949634 fc-cfc935859fb2e
3d196398efcd8-85 fce83de1dec57822 585c3e88-e91a216 7abfed54f57e1dd9 d9a96ed7944d8ede
147b6be6e6-24fdb --4a7743-1159181 -1df19ab97369543 77a1e8bca7-c--6f -5e697e1852d7fd5
1a9b2c7d9b5a9abf 2913f4ef6ca6b829 4--b84511febc4ff 236c8edaa59db4a3 fa16a175b84e4326
6c34feb1242754fb cb2ea33a4c-db176 b2c5aa5a8-df6238 7bafafd7ee121941 8b4cf1f55781e-9f

1

96--3182f1fad467 22--9-644fa7e-f- de--54fb5f2e9a6b 7e--726f824-bd4c d2--114a6bb11583
96-171-2f1fad467 26--9-644fa7e-f- de--54fb5f2e9a6b 7e--726f8244b14c d2--114a6fb51583
96-17112f1fad467 22--b-244fa7e-f- de--54fb5f2e9a4b 7e--726f8244b14c d2--114a6bb11583
96-171-2f1fad467 26--9-644fa7e-f2 de--54fb5f2e9a6b 7e--726f884-b14c d2--114a6bb11583
96-171-2f1fad467 22--9-644fa7e-f- da--5-fb5f2e9a6b fe--726f8244b14c d2--114a6ab11583

2

----4-8--------- ------4--------- ---1------------ ---------------- ----------------
----4-8--------- ------4--------- ---------------- ---------------- --8-------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---1------------ ---------------- --8-------------
---------------- ---------------- ---------------- ---------------- ----------------

3

----4-8--------- -----------4---- ---------------- ---------------- ----------------
---------------- -------------8-- ---------------- ---------------- ----------------
------8--------- ---------------- ---------------- 8--------------- ----------------
---------------- -----------4-8-- ---------------- 8--------------- ----------------
----4----------- ---------------- ---------------- ---------------- ----------------

4

----4-8--------- --8------------- ----------1----- ------8---1----- --8-4-----------
---------------- -1---4---------- -----4---------- 81-------------- ----------------
---------1-8---- ---------------- ---------1-----1 ---------------1 ---------------1
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf


Table 5. A 4-round internal collision for Keccak with a 1600-bit permutation and a
capacity of 640.

M0:

0000000082784B27 0000000027B97209 00000000F9E7B4C3 00000000FE890B5C 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

M1:

1AE4DA9BCE0F58C5 3E41B66FEC61367F 60EFB06502B1E522 8F2689B944C6ADA4 3679B40E76AEE052
29023AF14A8D1931 0589A067B9C0882B 9CDCF37544841411 52448031E1488314 295FB9F654DD515D
58783A446CC0DF27 DC575C851C1DA5C0 9F82D47401FC7A76 7D7971B3C8B6D25A EA79DD2396CA4FEE

M2:

0000408000000000 0080000000000000 0000000000100000 0000008000100000 0080400000000000
0000000000000000 0100040000000000 0000040000000000 8100000000000000 0000000000000000
0000000001080000 0000000000000000 0000000001000001 0000000000000001 0000000000000001

M∗
0 :

000000006DF2B918 00000000EF86D9FE 0000000040DD1D22 00000000326C57A3 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

M∗
1 :

93A3B74748B2D4D0 D1224F333B3E30CD E37E9B50203D12F1 9558EABAEB983C68 036275C12894EBCD
E56F4097FFB56F5F 06070F676C145DFD FB11961465177857 C831E04FD29B424E 04AFAA83CF448D0B
59A7AC2AE2163340 E0E482684E961996 778732CDA01B329D BED51FB2554F233A 7830FB4DC95AB3C4

M∗
2 :

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

State after processing third block:

8E485EC7CC0271CA BA770EFBBD69EE16 5A3DA8FFD2F4C521 081E39496F095437 756E97B6477B1ED9
833FB0900600EB96 26A93661FE6F9531 86ADA9C976EB9861 9DD0D44634EC35AC F0D14E73C1916C96
3C0FF867406BB4EA 8EDF8F16DABCBAE9 DE3EDE57965FEE6F B34B3B20F466A277 7726B4B7AA8A84D8
272A11E9F2AD4981 046F4AF7DA9F98EC 4788C486729AC3A7 F95AFA8787C36990 06E3748CA8574FDC
929C857723322ED0 6706560C7EE7A3E3 313BB48B67DCCDB2 795A30724698D71C 3BC9CFF2827373AC



B Results for Keccak with a 800-bit Permutation.

Table 6. The 4-round characteristic used for the second block to find a internal collision
for Keccak with a 800-bit permutation and a capacity of 352. Note that a random first
block was used in this case.

Round State

0

551c2e5a 5b7cc9a2 d7fab224 893-5cd9 f3a536f5
7198b13f c8fb3e45 c82abe5e e85886f1 226465c-
-a9f5-d6 d5b9-fb6 47926282 2538236- 996272ee
16f3b671 2fa-3-dd 3aad9-1e 6252-cfd 777383b4
7f928adf c7dcfa85 d8b21bf2 5bf4c55- 27dfd4dd

1

9-25244a 4-721523 612e18b- 8-ae-689 b-e28e-c
b-242442 5-731563 61ae18b- 81ae-688 b-e28f-c
b-27244a 5-721563 612a18b- 81ae4688 b-e28e-c
b-25244a 5-7295e3 6-2e189- 81ae-688 3-c28e-c
b-25244a 5-721563 e1ae18b- 91ae8688 b-e2-e-c

2

2------- 1------- -------- -------- --------
-------- 1------- -------- -------- --1-----
2------- -------- -------- ------8- --------
-------- -------- -------- ------8- --1-----
-------- -------- -------- -------- --------

3

2------- -----1-- -------- 1------- --------
-------- -----1-- -------1 -------- --------
2------- -------- -------1 1------- --------
-------- -------- -------- -------- --------
-------- -------- -------- -------- --------

4

2----8-- --1--8-- -----8-- 2------- 2-1-----
-1-----1 -------- -------1 -------- --------
--2--24- ------4- --2----- -----2-- --------
-------- -------- -------- -------- --------
-------- -------- -------- -------- --------



Table 7. A 4-round internal collision for Keccak with a 800-bit permutation and a
capacity of 352

M0:

8F1075E0 EDFC1488 58EFE9FC 433877BD 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

M1:

B051BED6 1DECB0DA D26B2923 01734BC7 2D2002D8
120AB268 10634585 16F789D1 4AD2F036 AF13E319
3DD3C552 0FF14835 8049189A 9786F56E

M2:

20000800 00100800 00000800 20000000 20100000
01000001 00000000 00000001 00000000 00000000
00200240 00000040 00200000 00000200

M∗
0 :

3BBBA6F0 97006B85 09124595 C63FA0D6 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

M∗
1 :

1B9837F7 1FFE60AD 13269184 9F567790 6C0191B1
DF45607B 97EE79C4 D963BDDA 00FF2D4A BE6F08C8
1FFBDA2C B787E7C8 34F8358A 8EB37499

M∗
2 :

00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

State after processing third block:

85AF483E 0CED18F7 BC101BB2 2F2CC963 0DCE54BE
30C5B7F8 B5CE439A 465B540D 760424F3 006BB414
045BBB7A 7C14CDA7 F082AF8E 2BA59219 A730ACCD
D5DBAE77 E1598F25 89373578 552A4091 E7D9C411
043CF740 A1D66CA3 F454A015 0E2A1D74 5FA83840



C Differential Distribution Table

Table 8. Differential distribution table for χ.

∆out
00 01 02 03 04 05 06 07 08 09 0A0B0C0D0E0F101112 13 14 15 16 17 18 19 1A1B1C1D1E1F

∆in

00 32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
01 - 8 - 8 - 8 - 8 - - - - - - - - - - - - - - - - - - - - - - - -
02 - - 8 - - - 8 - - - 8 - - - 8 - - - - - - - - - - - - - - - - -
03 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - - - - - - - - - - - - - - - -
04 - - - - 8 - - - - - - - 8 - - - - - - - 8 - - - - - - - 8 - - -
05 - 4 - 4 - - - - - - - - - 4 - 4 - 4 - 4 - - - - - - - - - 4 - 4
06 - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 -
07 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
08 - - - - - - - - 8 8 - - - - - - - - - - - - - - 8 8 - - - - - -
09 - - - - - - - - 4 - - 4 4 - - 4 - - - - - - - - 4 - - 4 4 - - 4
0A - - 4 4 - - 4 4 - - - - - - - - - - - - - - - - - - 4 4 - - 4 4
0B - 4 4 - - 4 4 - - - - - - - - - - - - - - - - - - 4 4 - - 4 4 -
0C - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - -
0D - - - - 4 - - 4 4 - - 4 - - - - - - - - 4 - - 4 4 - - 4 - - - -
0E - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2
0F - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 -
10 - - - - - - - - - - - - - - - - 8 8 8 8 - - - - - - - - - - - -
11 - - - - - - - - - - - - - - - - 4 4 4 4 4 4 4 4 - - - - - - - -
12 - - - - - - - - - - - - - - - - 4 4 - - - - 4 4 4 4 - - - - 4 4
13 - - - - - - - - - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 - - - - 4 - 4 - - - - - 4 - 4 - - - - - - 4 - 4 - - - - - 4 - 4
15 - 4 - 4 - - - - - - - - - 4 - 4 4 - 4 - - - - - - - - - 4 - 4 -
16 - - 4 - 4 - - - - - 4 - 4 - - - - - - 4 - 4 - - - - - 4 - 4 - -
17 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
18 - - - - - - - - 4 4 4 4 - - - - - - - - - - - - 4 4 4 4 - - - -
19 - - - - - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2
1A - - - - - - - - 4 4 - - - - 4 4 4 4 - - - - 4 4 - - - - - - - -
1B - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 - - - - - - - -
1C - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2
1D - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2 - - - -
1E - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - -
1F - 2 2 - 2 - - 2 2 - - 2 - 2 2 - 2 - - 2 - 2 2 - - 2 2 - 2 - - 2


	Differential Cryptanalysis of Keccak Variants

