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Abstract: We present a new architectural design to leverage Attribute-Based Encryption (ABE) in the Industrial Internet of
Things (IIoT). The general idea of our approach is to automatically issue and revoke attributes based on already
established identity management systems. Our design enables organisations to rely on arbitrary identity and access
management solutions across different security domain boundaries. We, furthermore, tackle privacy concerns
typically associated with outsourcing sensitive data to the cloud. To demonstrate the feasibility and versatility of our
approach, we evaluate our design by integrating both OAuth and the Austrian eID. Besides, we present performance
data. The evaluation results clearly show that our proposed design suits the requirements imposed by the IIoT well.

1 Introduction

Attribute-Based Encryption (ABE) is a cryptographic
way to achieve fine-grained access control on encrypted
data. There are two main flavours of ABE: Key-Policy
Attribute-Based Encryption (KP-ABE) (Goyal, Pandey,
Sahai, & Waters, 2006) and Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) (Bethencourt, Sahai, &
Waters, 2007). KP-ABE schemes embed access control
policies into a party’s secret key. CP-ABE schemes
incorporate access-structures in the ciphertext.

Problem. While ABE promises fine-grained access
control, one of the major challenges remaining is how to
authenticate and authorise users in heterogeneous envi-
ronments. Indeed, ABE does not provide a standardised
way to do so. The emergence of the Industrial Internet
of Things (IIoT) has also raised the question about the
performance of established ABE schemes. A primary
concern is that conventional ABE systems rely on high
computational power which cannot possibly be provided
in the IIoT. They also do not account for already de-
ployed legacy clients. Despite questions raised about
the practicability of ABE in the IIoT, little is known
how service providers can integrate existing solutions.
An approach, which allows defining fine-grained access
rights in a context separated from the service provider
and which accounts for legacy and lightweight clients is
still missing.

Approach. We evaluate how ABE can efficiently be
used in IIoT environments. Consequently, we tackle
this issue from three angles. First, we evaluate how
service providers can enforce existing access control
policies. Second, we demonstrate how ABE can be
applied in heterogeneous environments. Finally, we
evaluate our approach under realistic constraints for the
targeted scenario to prove its feasibility.

Contribution. Our contributions are as follows:

1. We present an architectural design to combine es-
tablished Identity and Access Management (IAM)
solutions with ABE. Our approach supports arbitrary
protocols and allows managing policies in a context,
separated from the service provider.

2. To demonstrate the practicality of our approach,
we provide a software implementation. We inte-
grate OAuth and the Austrian eID, to demonstrate
compatibility with two distinct IAM schemes.

3. We present performance data and discuss the over-
head of our implementation.

Outline. We present our results in five parts. First, we
describe the architecture of our approach in Section 2.
We present the solution of our system and illustrates how
it can be used in practice. Next, we evaluate our approach
in Section 3. Section 4 discusses previous research in
this area and highlights the contribution of this work.
Finally, the conclusion provides both a summary and a
critical review of the findings.



2 Architecture

We, first, give a high-level overview of the architecture,
consisting of two separate tenants. We introduce all
entities and showcase the workflow. Next, we explain
the necessary building blocks. We rely on the concepts
proposed by Hur and Noh (2011), Green, Hohenberger,
and Waters (2011) and Lin, Hong, and Sun (2017) as
the base ABE system. Their works address several
typical challenges of IIoT systems, including instant
attribute revocation, backward and forward secrecy, and
performance. In general, however, any ABE system
which offers similar properties is suitable for the proposed
architecture.

2.1 Entities

Data Owner (DO). A Data Owner produces (en-
crypted) information for entities in the system to con-
sume. DOs are typically lightweight components.
Client (CL). A Client is a party trying to access a
resource through a front-end device.
Identity Provider (IdP). The Identity Provider is re-
sponsible for authenticating users. It issues attributes and
allows administrators to add or revoke identities.
Resource Provider (RP). The Resource Provider acts
as a transparent gateway between an enterprise and a ser-
vice provider tenant. It handles decryption of ciphertexts
and is responsible for attribute management.
Key Authority (KA). The Key Authority is the sole
authority to grant attributes and the associated ABE keys.
Re-Encryption Server (RS). The Re-Encryption
Server (1) transforms ciphertexts from DOs to ensure
attribute revocation and (2) stores them.
Decryption Server (DS). The Decryption Server per-
forms most parts of expensive operations necessary to
(partially) decrypt a ciphertext.

2.2 Workflow

Figure 1 displays the steps in the system. First, a DO en-
crypts some data under an access structure. Next, it 1©
uploads the resulting ciphertext to the RS. Clients can
now 2© request access to this resource. They, first 3©
authenticate with the IdP. The RP can then 4© retrieve
the necessary identity attributes for a user. It creates an
attribute attestation and 5© sends the digitally signed
claim to the KA. Afterwards, the RP 6© fetches the
requested ciphertext, from the RS. In a conventional
ABE system, the RP would now have to perform an ex-
pensive decryption operation. In our system, we delegate
this task to a powerful proxy, provided by some service
provider. The RP, thus, 7© offloads the partial decryption
operation to the DS. Finally, the DS 8© obtains the

decryption keys from the KA and the RS to partially
decrypt the ciphertext. Afterwards, the DS 9© sends the
now transformed ciphertext to the RP. In the last step,
the RP extracts the plaintext by a simple exponentiation
and 10© sends it to the client.

2.3 System Setup

We setup the ABE system, in three steps. First, we
define the public base system parameters, based on some
security parameter λ. We select some bilinear group of
prime order and define generators for the groups. Next,
we initialise the system and generate random elements for
each attribute in the system. Furthermore, we generate
public parameters for the KA and the RS.

2.4 Key Creation & Update

Generating keys is a two stepped process. First, the
KA and the RS generate initial keys. To do so, they
calculate a shared secret over a Multi-Party Computation
(MPC) protocol. Both actors then compute their initial
keys based on the calculated secret and some random
element. In the second step, the KA can issue private
keys for the clients. We refer to this process as key
update. Analogous to the initial key agreement, the
KA and RS first agree on their respective private keys
using their initial keys. Next, the KA, the RS and the
RP carry out a MPC protocol for each client CL. The
resulting private key contains all attributes the client
holds. Relying on this two stepped process has two
advantages. First, decryption keys are split between
multiple parties. Hence, no (malicious) actor in the
system alone can decrypt a ciphertext. Second, whenever
a key needs to be revoked, the KA and the RS only need
to run the key update protocol to issue a new key.

2.5 Encryption

To encrypt a plaintext, a DO first generates some random
element m. Together with a random Initialisation Vector
(IV), the element will act as input to a hash function from
which the payload key is derived. The DO then encrypts
the plaintext with the payload key. Next, the DO can
encrypt the random element under the public parameters
of the RS. It, furthermore, generates a random secret s
and calculates a share matrix from the access structure.
In the last step, in encrypts the required attributes under
the public key of the KA. The DO now generates the
initial ciphertext. It consisting of the payload, the random
element m, the share matrix and the attributes. Finally,
the DO sends it to the RS.
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Figure 1: System Architecture: Two separate tenants for the service provider and enterprise.

2.6 Re-Encryption

Once the RS receives an initial ciphertext, it transforms it
into a suitable format for revocation and partial decryp-
tion. To do so, it derives a unique element for each CL,
based on its unique identifying bits. The algorithm then
generates random attribute group keys for each encrypted
attribute. To recover these attribute group keys in a later
step, a ciphertext header Hdr is necessary. It allows
the DS to solve equations based on its entries. Finally,
all attribute ciphertext parts are re-encrypted with the
respective key. Subsequently, the Hdr is appended to the
final ciphertext CT .

2.7 Decryption

To decrypt a ciphertext, two steps are necessary. First,
the RP sends the ciphertext, requested by some client, to
the DS. The DS, then, retrieves the key parts from the
KA and the RS. Using the header Hdr of the ciphertext,
it then attempts to recover the attribute group keys. If
successful, the DS recovers the ciphertext secret s by
solving a system of linear equations, given the CLs
authorised attributes. Finally, it can perform the partial
decryption of the random element m and returns it to the
RP. In the second step, the RP can recover the payload
key by a simple exponentiation and decrypt the payload.

2.8 Authentication

To authenticate users, the RP first retrieves attribute
information from some IdP. It, then, creates an assertion
and sends the claims to the KA. We rely on JSON
Web Tokens (JWTs) (Jones et al., 2015) and Elliptic
Curve Digital Signature Algorithm (ECDSA) to securely
transfer these attribute claims between the RP and the
KA. The KA can thus verify that the asserted claims are
legitimate.

2.9 Attribute-Update & Revocation

Updating user attributes is as simple as adding them to
attribute groups. To revoke attributes, users are simply re-
moved from affected groups. Changing attribute groups,
however, entails that all ciphertexts which contain the
affected groups need to be re-encrypted. This means
that new group keys are chosen to re-encrypt the corre-
sponding ciphertext parts, with the keys being protected
by generating new ciphertext headers (see Section 2.4,
Section 2.6). Still, re-encryption is costly. As a result,
we apply a lazy re-encryption mechanism. We set a
re-encryption flag on all affected ciphertexts instead of
re-encrypting them. One advantage of this approach is
that updating attributes can be achieved in an instant.
Ciphertexts only get re-encrypted on first access or when
system load is low.

2.10 Security Requirements

We now analyse the basic security properties of our
design. We do not consider attacks on the implemen-
tation itself and assume the correctness of all involved
cryptographic primitives. We assume that parties are
honest but curious. Entities are curious about sensitive
data. The communication among parties is assumed to be
secure and authentic. We further assume that data in the
enterprise tenant belong to the organisation and not to the
individual user. We define the security requirements and
behaviour of each entity and their attack vectors through
a theoretical analysis.

Curious Entities: Assume one of the entities in the
service provider tenant is curious about data they receive.
Then it should not be possible to infer any information
about the data itself. Indeed, in our protocol DOs always
encrypt plaintext data before sending them to another
entity. The used Advanced Encryption Standard (AES)



key is encrypted under a CP-ABE policy. No entity in
the service-provider can decrypt the ciphertext alone,
since the keys are split between KA, RS and RP. Hence,
no entity in the service-provider tenant can infer any in-
formation about the encrypted data. Only the designated
client, RP respectively, can decrypt data if the client has
the correct attributes.

Malicous Entities: Assume an entity in the system
has been compromised. Then an adversary should not
be able to decrypt arbitrary ciphertexts. Let us look
at the properties of each of the two tenants separately.
Malicious entities in the service provider tenant can
decrypt initial ciphertexts if they obtain both private
keys of KA and RS. Since the MPC protocol ensures
that no party has both keys, a single malicious entity
cannot decrypt arbitrary ciphertexts. Adversaries in the
enterprise tenant can decrypt ciphertexts if they obtain
a suitable secret key. The RP is the single authority to
update user attributes and to retrieve client secret keys.
As a result, the RP must not be compromised.

Revoked User: Assume a user in the system needs to
be revoked. Then a revoked user should not be able to
infer any information about encrypted ciphertexts.
Once an attribute is revoked, affected attribute groups
will be updated and new attribute group keys will be cal-
culated. As a result, affected secret keys cannot be used
to decrypt previously obtained ciphertexts. Replaying
old messages also does not work, as the DS needs to
retrieve the newly calculated public keys of KA and RS.

3 Experimental Results

We provide a Java and Kotlin based software implemen-
tation to establish the practicality of the solution. We
evaluate the solution and discuss our findings.

3.1 Evaluation

We tested the implementation regarding two metrics:
Computation overhead, and storage and communication
impact. We encrypted a random ciphertext as described
in Section 2.5. We repeated each test 100 times on a
single core on an Intel(R) Xeon(R) CPU E5-2699 v4
@ 2.20GHz. We relied on the IAIK Provider for the
JavaTM Cryptography Extension (IAIK-JCE)1 and the
IAIK ECCelerateTM for bilinear pairings and encryption
operations. We used the FRESCO (Alexandra Institute,
2019) library for the MPC computation. We tested
our implementation with policies containing up to n =
100 attributes. We use an asymmetric bilinear map

1https://jce.iaik.tugraz.at

e : G1×G2 → GT with security parameter λ = 256.
The bit-size of G1 is 265-bit, whereas the bit-size of G2
is 520-bit. The resulting group GT is 3072-bit. This
level is equal to near-term security (at least ten years) as
defined by ECRYPT-CSA (ECRYPT – CSA, 2018) and
NIST (Barker, 2016).

3.1.1 Computation Overhead

Figure 2a, shows the execution time for the operations
in the enterprise tenant. We are using a logarithmic
scale with a base of 10. The data are quite revealing
in several ways. First, we can see that the execution
time of the encryption operations grows linearly with the
number of attributes. Second, encryption takes just a few
tenths of a second for a small number of attributes and
only 100 ms for up to 100 attributes. Third, the graph
confirms our hypothesis that decryption is constant due
to it being a simple ElGamal operation. Interestingly, the
graph further reveals that generating a key is constant
for the enterprise tenant. We attribute this to the fact
that generating the key is merely executing the MPC
protocol. The key agreement between KA and RS does
not affect the performance on the client-side. From the
data, we see that updating attribute groups is constant
and independent from the number of attributes in the
enterprise tenant. This can be attributed to the fact
that all subsequent operations (e.g. re-encryption and
key-update) are performed in the service provider tenant.

In turn, Figure 2b, shows the timing of all operations
in the service provider tenant. The data confirm our
hypothesis that partial-decryption is among the most
expensive operations in the system. The second most ex-
pensive operation is the re-encryption operation. Lastly,
the graph shows the raw computation time for the key-
update operation.

3.1.2 Storage and Communication Overhead

Figure 2c shows the ciphertext size for encryption, re-
encryption and partial decryption operations. As ex-
pected, the size of the ciphertext increases with the
number of attributes for encryption and re-encryption
operations. It is independent of the plaintext data, though,
as only the constant size AES key is encrypted. Our
tests reveal that the initial ciphertext after the encryption
operation consumes approximately up to 50 kB when
enforcing a policy with 100 attributes. The re-encrypted
ciphertext consumes up to 80 kB. Our tests further reveal
that the partially decrypted ciphertext is constant sized
and consumes not more than 1 kB in our implementa-
tion. This can be attributed to the fact that the partially
decrypted ciphertext represents only a single element in
GT .

https://jce.iaik.tugraz.at
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Figure 2: Execution time and ciphertext size of involved ABE operations for security parameter λ = 256.

3.2 Integrating established IdPs

We showcase the steps necessary, to integrate both, Open
Authorization (OAuth) (Hardt, 2012) and the Austrian
eID into the proposed system. This process allows
us to draw conclusions about the interoperability with
industrial systems. Indeed, the Austrian eID features a
tight security concept with a strong focus on user privacy.
As a result, the lessons learned can also be applied to
evaluate the requirements of dedicated corporate eID
solutions. Our use case assumes an enterprise tenant with
a predefined OAuth or Austrian eID provider exists. Only
the RP needs to be extended, to integrate the proposed
system into this environment. We identify three steps.
First, the RP needs to be modified to support transforming
attestations issued by the IdPs. This procedure consists
merely of implementing the necessary protocols for
the IdPs and transforming the claims, as described in
Section 2.8. Second, to support attribute revocation, a
similar process is applied. The RP only needs to validate
tokens obtained from the IdP. If a token is expired, the
associated user is removed from the assigned attribute-
groups, and issued keys are invalidated. If an attribute is
removed from the scope, the RP creates an attestation
with the remaining attributes. Affected CLs are not
able to decrypt ciphertexts any more. Thus, existing
revocation strategies can be used. Third, matching
access control policies need to be created to account for
attributes issued by the IdP. Conveniently, attribute-based
access control policies are flexible enough to represent
arbitrary scopes. All that is necessary is creating an
access structure combining all necessary attributes.

3.3 Discussion

Our initial experiments show that our system can indeed
be used in industrial environments to provide fine-grained

access control. All expensive operations are executed
in some service provider tenant, which benefits from
on-demand resource allocation and scalability. Opera-
tions in the enterprise tenant are either constant or scale
linearly with the number of attributes. The communi-
cation overhead for our solution is at most 80 kB for a
ciphertext with 100 attributes. Admittedly, while these
figures do not seem as large overhead, given today’s
infrastructure, it can put a significant strain on the infras-
tructure in a highly dynamic environment. As a result,
a separate evaluation for those environments needs to
be considered. By integrating existing IAM solutions,
we have furthermore shown that our approach is valid
and achieves granular access control across different
security domain boundaries. The dynamic process of
our solutions even allows us to model arbitrary access
control policies or to mandate specific IdPs. Our analysis
also shows that the proposed system achieves its goal to
protect sensitive data. Data are always encrypted before
leaving the enterprise tenant. Decryption keys are split
between RP, KA and RS, Hence, the service provider
cannot learn the plaintext since no involved party has
access to all parts. In certain scenarios, the RP can,
however, be considered as a weak spot or a single point
of failure. In fact, the RP can easily be eliminated, at the
cost of backwards compatibility, to increase the security
of the system further. All operations performed by the
RP must then be performed by the client or the IdP.

4 Related-Work

We summarise the major contributions related to ABE in
cloud computing and discuss their relationship to our
work. Wang, Liu, and Wu (2010) tackle the security and
privacy issues related to outsourcing sensitive data to
Cloud Service Providers (CSPs). The authors present



a hierarchical ABE scheme where domain masters can
administer users on behalf of a root master. Our archi-
tecture differs from their scheme by providing a full
architecture for heterogeneous environments and does
not rely on require an attribute history list for revoca-
tion. M. Li, Yu, Zheng, Ren, and Lou (2013) proposed
a design which leverages ABE to provide secure data
sharing of personal health records. The scope of their
work does not, however, include resource-constrained
devices or existing infrastructure. J. Li, Zhang, Chen, and
Xiang (2018) present a lightweight approach for secure
fine-grained data sharing. Similar to our construction,
the majority of computations can be offloaded to more
powerful devices. Their scheme does not support direct
attribute revocation, as our architecture does. Sepehri
and Trombetta (2017) present an inner product-based,
attribute-based proxy re-encryption scheme. Like our
design, their scheme is suitable for computationally con-
strained scenarios. The authors do not discuss attribute
revocation or authentication across multiple security do-
mains. Michalas (2019) proposed a new protocol which
combines ABE and Symmetric Searchable Encryption
(SSE) to overcome current weaknesses of cloud stor-
age: Missing user revocation and overall efficiency. The
authors separate revocation from ABE by using Intel’s
Software Guard Extensions (SGX) to deploy a revocation
authority in a Trusted Execution Environment (TEE).
Notwithstanding, their protocol does not concentrate on
the performance of ABE itself. Hence, decryption and
thus, multiple bilinear pairing operations are still costly
from a users perspective. Summarising, in this paper, we
bridge the gap between heterogeneous environments and
fine-grained access control. We improve the state-of-the-
art by proposing a new design to incorporate ABE while
keeping security guarantees for data owners.

5 Conclusion

By presenting an architectural design based on Attribute-
Based Encryption (ABE) with outsourced decryption,
we demonstrated how secure resource sharing can be
achieved across different security domain boundaries.
Our approach differs from existing solutions by provid-
ing an industry-first approach, focusing on resource-
constrained devices and support for arbitrary Identity
Providers (IdPs). Existing workflows, as well as user
revocation, remain unchanged. The conducted evalua-
tion proves that the proposed design is practical. The
most apparent finding is that the proposed system only
introduces a nominal overhead for organisations.

The current system does not account for user privacy
or accountability of actions. Indeed, the issue of privacy
and accountability in these professional environments is

an intriguing one. We consider the privacy of users as one
of the most significant improvements to the system, in the
future. Furthermore, we will concentrate on improving
the overall performance of the system.
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