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Abstract. Wireless Sensor Networks (WSNs) are susceptible to a wide
range of malicious attacks, which has stimulated a body of research on
“light-weight” security protocols and cryptographic primitives that are
suitable for resource-restricted sensor nodes. In this paper we introduce
MoTE-ECC, a highly optimized yet scalable ECC library for Memsic’s
MICAz motes and other sensor nodes equipped with an 8-bit AVR pro-
cessor. MoTE-ECC supports scalar multiplication on Montgomery and
twisted Edwards curves over Optimal Prime Fields (OPFs) of variable
size, e.g. 160, 192, 224, and 256 bits, which allows for various trade-offs
between security and execution time (resp. energy consumption). OPFs
are a special family of “low-weight” prime fields that, in contrast to the
NIST-specified fields, facilitate a parameterized implementation of the
modular arithmetic so that one and the same software function can be
used for operands of different length. To demonstrate the performance
of MoTE-ECC, we take (ephemeral) ECDH key exchange between two
nodes as example, which requires each node to execute two scalar mul-
tiplications. The first scalar multiplication is performed on a fixed base
point (to generate a key pair), whereas the second scalar multiplication
gets an arbitrary point as input. Our implementation uses a fixed-base
comb method on a twisted Edwards curve for the former and a simple
ladder approach on a birationally-equivalent Montgomery curve for the
latter. Both scalar multiplications require about 9 · 106 clock cycles in
total and occupy only 380 bytes in RAM when the underlying OPF has
a length of 160 bits. We also describe our efforts to harden MoTE-ECC
against side-channel attacks (e.g. simple power analysis) and introduce
a highly regular implementation of the comb method.

1 Introduction

Some ten years ago, an article in MIT’s Technology Review magazine identified
Wireless Sensor Networks (WSNs) as one of the technologies that will change
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the world in the 21st century [6]. This prediction could not have been more true
given today’s omnipresence of wireless sensors in various kinds of applications
ranging from medical monitoring over home automation to environmental sur-
veillance [1]. All these applications rely on distributed sensor nodes being able
to collect, process and transmit data correctly and reliably, which has initiated
a large body of research on the security of WSNs. Unfortunately, a WSN is, in
general, harder to protect than a “traditional” (i.e. wired) network like e.g. an
Ethernet-based LAN, which has two major reasons. First, the wireless nature
of communication within a WSN makes eavesdropping fairly easy. Second, the
nodes themselves can be subject to an attack since WSNs are often deployed in
unattended areas. An attacker could, for example, capture one or more nodes
and compromise them to obtain all stored data, or he may even reprogram the
nodes and inject them into the WSN to conduct malicious activities [25].

Similar to conventional networks (e.g. the Internet), Public-Key Cryptogra-
phy (PKC) can play a vital role in the security arena of WSNs [25]. The main
problem with the practical use of PKC are the extremely constrained resources
of battery-powered sensor nodes. For example, the prevalent MICAz mote from
Memsic [8] is equipped with an 8-bit AVR processor (the ATmega128 [3]) and
features only 4 kB of RAM and 128 kB flash memory. Gura et al [13] were the
first to demonstrate that Elliptic Curve Cryptography (ECC) [15] is feasible on
such restricted 8-bit platforms. Thanks to their so-called hybrid multiplication
technique (a smart optimization of long-integer multiplication by exploiting the
large register file of the ATmega128), they managed to reach an execution time
of just 6.4 · 106 clock cycles for a full scalar multiplication on a SECG-specified
elliptic curve over a 160-bit generalized-Mersenne prime field. TinyECC [23] is
the currently most-widely used ECC library for WSNs; it is highly configurable
and features a number of optimizations for “standardized” curves over 160 and
192-bit prime fields. Other examples of highly-optimized ECC implementations
for 8-bit AVR processors are WM-ECC [33], Nano-ECC [31], MIRACL [7], and
RELIC [2]. Very recently, it was shown that even high-security ECC using an
elliptic curve over a 255-bit pseudo-Mersenne prime field is feasible on the AT-
mega128 [17]. However, as noted in [31], the feasibility of ECC on constrained
devices does not automatically imply that it is attractive to use ECC since the
state-of-the-art in terms of performance is still not satisfactory for many kinds
of application. Therefore, the efficient implementation of ECC on sensor nodes
remains an active research topic and approaches to further reduce the execution
time (i.e. energy cost) and memory footprint are still eagerly sought.

In this paper we introduce MoTE-ECC, a light-weight ECC implementation
for Memsic’s MICAz motes and other 8-bit AVR-based sensor nodes (or, more
generally, embedded devices equipped with an 8-bit AVR processor). The main
goal we aimed to achieve with the design and implementation of MoTE-ECC
was to find a suitable compromise between the following four requirements: (1)
short execution times, (2) high flexibility and scalability (i.e. support of curves
providing different levels of security), (3) low memory (i.e. RAM) footprint, and
(4) some basic protection against passive implementation attacks. Energy is, in
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general, the most precious resource of a battery-powered sensor node. There-
fore, it is important to optimize the performance of ECC software because the
energy consumption of scalar multiplication grows linearly with the execution
time. Another essential requirement of an ECC implementation for WSNs is to
support curves of different order (i.e. different cryptographic “strength”) since
the various tasks a sensor node performs during its lifetime have very different
security needs [30, 22]. For example, a multi-tier security framework for WSNs
can permit lower security levels (i.e. shorter keys) for some less-critical tasks in
order to save energy. High flexibility at the field-arithmetic layer is difficult to
achieve with the NIST-specified generalized Mersenne primes as each of them
requires a different reduction routine (see [15, Section 2.2.6]). Consequently, an
implementation supporting all five NIST fields needs five different modular re-
duction functions, which massively bloats code size. MoTE-ECC uses so-called
Optimal Prime Fields (OPFs), a special family of fields that allows for flexible
yet efficient modular arithmetic [24, 34]. Formally, an OPF is defined through a
prime of the form p = u · 2k + 1 where u is “small” in relation to 2k (e.g. u is a
16-bit integer). All arithmetic functions of our OPF library get the factor u as
well as the length of p as parameter and can process operands of arbitrary size
(e.g. from 160 to 512 bits) without the need to re-compile the library. Thus, we
can easily trade security versus performance and energy efficiency, which means
MoTE-ECC is an energy-scalable ECC implementation.

The version of MoTE-ECC we describe in this paper supports two families
of elliptic curves, namely Montgomery [27] and twisted Edwards [5] curves. An
outstanding feature of elliptic curves in Montgomery form is the existence of a
differential addition law that involves only the x-coordinate of the points. The
so-called Montgomery ladder for scalar multiplication can use such differential
additions in an efficient way and has the further benefit of a regular execution
profile, which naturally protects against Simple Power Analysis (SPA) attacks
[20]. Montgomery curves excel in settings where run-time memory (i.e. RAM)
is scarce and scalar multiplication has to be performed with an arbitrary base
point that is not known a priori. On the other hand, twisted Edwards curves
provide the currently fastest formulas for general (i.e. non-differential) addition
of points. Furthermore, the addition law presented in [5, Section 6] is complete
if the curve parameters fulfill certain conditions. These properties make twisted
Edwards curves attractive for applications that perform scalar multiplications
by a fixed base point using e.g. the comb method [15]. In this paper, we take
ephemeral ECDH key exchange as example3 to evaluate the performance and
memory consumption of MoTE-ECC. Ephemeral ECDH has one big advantage
over static ECDH, namely forward secrecy, which is a highly desirable feature

3 In accordance with previous work on ECC for WSNs (e.g. [23]), we use a straight-
forward (i.e. unauthenticated) variant of the ECDH protocol for our performance
evaluation. However, a real-world application of (ephemeral) ECDH key exchange
would require protection against Man-in-the-Middle (MitM) attacks, which can be
achieved by signing the messages sent in each run of the protocol, or by using an
advanced version of ECDH with “implicit” authentication, e.g. ECMQV.
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for any kind of network, including WSNs. Our ECDH implementation combines
the individual advantages of the Montgomery form and twisted Edwards form
by exploiting the fact that every twisted Edwards curve is birationally equiva-
lent to a Montgomery curve [5]. Ephemeral ECDH key exchange between two
sensor nodes requires each node to execute two scalar multiplications; the first
is performed with a fixed base point (namely the generator of an elliptic curve
group) to generate a key pair, whereas the second scalar multiplication gets an
arbitrary point as input and yields the shared secret key. Our implementation
uses a fixed-base comb method on a twisted Edwards curve for the former and
a Montgomery ladder on a Montgomery curve that is birationally equivalent to
the Edwards curve for the latter, thereby combining the specific computational
advantages of the two curve shapes in an optimal way4.

We also made an effort to protect MoTE-ECC against passive, non-invasive
implementation attacks. In the case of our ephemeral ECDH, this boils down to
protecting the two scalar multiplications against Simple Power Analysis (SPA)
attacks since, in each run of the protocol, a freshly generated random scalar is
used, i.e. Differential Power Analysis (DPA) is not possible. All field-arithmetic
operations are implemented in a highly regular fashion (i.e. without conditional
statements such as if-then-else constructs) so that always exactly the same
sequence of instructions is executed, independent of the value of the operands
[24]. Furthermore, we developed a new approach for performing the fixed-base
comb method with the goal of reducing SPA-leakage in relation to a standard
implementation. It should be noted, however, that WSN applications have less
stringent demands regarding side-channel resistance than e.g. smart cards. The
integration of countermeasures against all known forms of side-channel attacks
would introduce unfeasible overheads for most WSN applications. Instead, we
aimed to protect our ECDH implementation against a so-called stealthy node
compromise (i.e. a side-channel attack mounted “in the field” without physical-
ly capturing a node) as described in [9]. Since such in-field attacks are carried
out under sub-optimal conditions (e.g. large noise levels), it normally suffices to
have some basic countermeasures in place.

2 Arithmetic in Optimal Prime Fields

The prime fields we use in MoTE-ECC belong to a special class of finite fields
known as Optimal Prime Fields (OPFs) [11]. These fields are defined by primes
that can be written as p = u · 2k + v whereby u and v are “small” compared to
2k so that they fit into one or two registers of the target platform. MoTE-ECC
supports OPFs with 215 ≤ u < 216 (i.e. u is 16 bits long) and v = 1. A concrete
example is p = 65356 · 2144 + 1 (i.e. u = 65356 and k = 144), which happens to
be a 160-bit prime that looks as follows in hex notation.

p = 0xFF4C000000000000000000000000000000000001

4 MoTE-ECC is an abbreviation for Montgomery and Twisted Edwards based ECC.
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Primes of such form are characterized by a low Hamming weight since only the
two most significant bytes and the least significant byte are non-zero; all bytes
in between are zero. The low weight of p allows for specific optimization of the
modular arithmetic because only the non-zero bytes of p need to be processed
in the reduction operation. For example, Montgomery’s algorithm [26] can be
simplified for these primes so that the modular reduction has only linear com-
plexity, similar to generalized-Mersenne or pseudo-Mersenne primes [15].

2.1 Parameterized OPF Library

Our implementation of arithmetic operations in OPFs is largely based upon the
OPF library for 8-bit AVR processors described in [24]. This library provides
the full spectrum of arithmetic functionality required for scalar multiplication
on Montgomery and twisted Edwards curves (i.e. addition, subtraction, multi-
plication, squaring and inversion), whereby each operation includes a reduction
modulo a low-weight prime of the form p = u · 2k + 1. Both multiplication and
squaring employ a special variant of the Montgomery reduction method [26] so
that only the non-zero bytes of p are processed. All functions of the library are
written in assembly language and optimized to yield a good trade-off between
performance and (binary) code size. Furthermore, the arithmetic functions are
parameterized, which means the operand length is not fixed (i.e. hard-coded)
but passed as parameter to the function. In this way, the OPF library provides
a high degree of flexibility as one and the same function can process operands
of any length. Another important feature of the library is its resilience against
SPA attacks as all arithmetic operations are implemented in a regular fashion
and execute always the same sequence of instructions, regardless of the actual
value of the operands. Only the inversion from [24] has a non-regular execution
profile; therefore, we implemented a Fermat-based inversion from scratch (see
below). A detailed description of the OPF library can be found in [24].

2.2 Fermat-Based Inversion in OPFs

Unlike to field addition and multiplication, inversion in Fp is not executed dur-
ing the scalar multiplication when using projective coordinates [15]. In fact, the
inversion operation is only needed to convert the result from projective back to
affine coordinates. Two well-known techniques for computing the inverse of an
element of Fp are the Extended Euclidean Algorithm (EEA) [15] and Fermat’s
little theorem. However, the EEA is highly irregular and may leak information
about the input value that could be exploited to mount an attack as described
in [28] to recover a few bits of the secret scalar. Therefore, it is mandatory to
use an inversion algorithm that executes in a regular way and is not vulnerable
to SPA and SPA-like attacks. Our implementation of the inversion in OPFs is
based on Fermat’s little theorem ap−2 ≡ a−1 mod p, i.e. we perform inversion
via exponentiation. Unfortunately, the conventional square-and-multiply expo-
nentiation method with an exponent of the form u · 2k − 1 requires n squarings
and almost n multiplications, whereby n denotes the bit-length of p. To reduce
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Algorithm 1. Optimized exponentiation-based inversion for OPFs

Input: Element a of Fp with p = u · 2k + 1.

Output: r ≡ au·2k−1 ≡ a−1 mod p.
1: u′ ← u− 1
2: r ← a, b← dld(k)− 2e, i← 1
3: while b > 0 do
4: t← r2

5: for j = 1 to i− 1 do
6: t← t2

7: end for
8: r ← r · t
9: i← i� 1

10: if k & b > 0 then
11: r ← r2 · a
12: i← i + 1
13: end if
14: b← b� 1
15: end while

16: t← r · a
17: b← 1
18: while b < 0x8000 do
19: if u′ & b > 0 then
20: r ← r · t
21: end if
22: t← t2

23: b← b� 1
24: end while
25: if u′ & b > 0 then
26: r ← r · t
27: end if

execution time, we developed an inversion technique that is specifically crafted
for OPFs (specified in Algorithm 1). Thanks to this algorithm, it is possible to
nearly halve the overall number of operations to n squarings plus only HW (k)
+HW (u− 1) + 1 multiplications, where HW (x) denotes the Hamming weight
of x. In practice, this optimization almost doubles the performance compared
to a straightforward square-and-multiply exponentiation. Algorithm 1 operates

in two phases; in the first phase, a2
k−1 is calculated using the exponentiation

method of Itoh and Tsujii [18], which was originally proposed for binary exten-
sion fields. In the second phase, a right-to-left square-and-multiply algorithm is
carried out. Note that, for our primes, this second phase is much shorter since

u is (at most) 16 bits long. In step 16, the multiplication r · a = a2
k−1 · a yields

t = a2
k

, which is needed for the right-to-left square-and-multiply algorithm.

3 Scalar Multiplication for Ephemeral ECDH

Performing ephemeral ECDH key exchange between two sensor nodes requires
each node to execute two scalar multiplications; one to generate an ephemeral
key pair and the second to obtain the shared secret. MoTE-ECC uses a twisted
Edwards curve [5] for the former and a Montgomery curve [27] for the latter. In
fact, it is more correct to say that both scalar multiplications are computed on
the same elliptic curve; in one case we adopt the twisted Edwards form of this
curve and in the second case its Montgomery form. We describe both forms in
the next subsection and also discuss the execution time of scalar multiplication
algorithms by counting the number of underlying field operations, whereby we
adhere to the following notation: M (multiplication), S (squaring), A (addition
or subtraction), I (inversion), and D (multiplication by a curve constant).
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3.1 Montgomery and Twisted Edwards Curves

Montgomery Curve. In 1987, Peter Montgomery introduced a special model
of elliptic curves, today known as Montgomery model [27]. An elliptic curve in
Montgomery form over a prime field Fp is defined through the equation

EM : Bv2 = u3 + Au2 + u (1)

where A ∈ Fp \{−2, 2} and B ∈ Fp \{0}. The major attraction of these curves
is the possibility to perform point arithmetic with the x-coordinate only. More
precisely, when using projective coordinates to represent curve points, just the
X and Z coordinate are needed to perform point addition and doubling. A so-
called “differential” point addition requires exactly 3M + 2S + 6A, whereas the
doubling of a point costs 2M + 2S + 1D + 4A. The Montgomery ladder is well
known for being a per se highly regular algorithm for scalar multiplication on
Montgomery curves [29]. Its regularity is simply due to the fact that it always
executes both a point addition and a point doubling per scalar bit, irrespective
of whether said bit is 0 or 1. Therefore, given a scalar k and base point P , the
cost of computing k · P amounts to 5M + 4S + 1D + 10A per bit of k.

Normally, the parameter A is chosen so that multiplication by (A + 2)/4 is
fast. However, in our case this means the Montgomery image of (A + 2)/4 has
to be small since, as stated in Section 2.1, the OPF library uses Montgomery’s
reduction technique [26] for the modular multiplication.

Twisted Edwards Curve. Currently, elliptic curves in twisted Edwards form
offer the most efficient formulae for general (i.e. non-differential) point addition
[16], which makes them attractive for practical implementations. According to
Bernstein et al [5], a twisted Edwards curve over a non-binary field Fq is given
by an equation of the form

EE : ax2 + y2 = 1 + dx2y2 (2)

whereby a and d are distinct, non-zero elements of Fq. The authors of [5] also
introduced formulae for addition and doubling on such a curve using standard
projective coordinates. Thereafter, Hişil et al proposed an extended coordinate
system that includes an auxiliary coordinate t = xy [16]. Instead of represent-
ing a point on a twisted Edwards curve EE by its x and y coordinate only, one
can use the extended affine coordinates (x, y, t). The corresponding projective
coordinates of that point are (X : Y : T : Z), whereby the auxiliary coordinate
T has the property T = XY/Z with Z 6= 0. Thanks to these coordinates, Hişil
et al were able to devise very efficient point addition formulae, especially if the
parameter a = −1. After applying some straightforward optimizations [14], the
computational cost of a mixed point addition on a curve with a = −1 amounts
to 7M + 6A, while a doubling requires 3M + 4S + 6A.

Birational Equivalence. Bernstein et al proved in [5] that the set of twisted
Edwards curves over a non-binary field Fq is equivalent to the set of Montgom-
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ery curves over Fq. In particular, they showed that the twisted Edwards curve
EE over Fq with non-zero parameters a, d is birationally equivalent over Fq to
the Montgomery curve EM given by

A = 2(a + d)/(a− d), B = 4/(a− d) (3)

For an arbitrary point (x, y) on the twisted Edwards curve EE , we can get the
related point (u, v) on the equivalent Montgomery curve EM as follows

u = (1 + y)/(1− y), v = (1 + y)/((1− y)x) (4)

Conversely, given the curve parameters A ∈ Fq \{−2, 2} and B ∈ Fq \{0}, the
corresponding Montgomery curve EM is birationally equivalent over Fq to the
twisted Edwards curve EE with the parameters

a = (A + 2)/B, d = (A− 2)/B (5)

and the point (x, y) corresponding to (u, v) can be obtained as follows

x = u/v, y = (u− 1)/(u + 1) (6)

3.2 Generation of Curves

The security of elliptic curve cryptosystems is based on the intractability of the
underlying Elliptic Curve Discrete Logarithm Problem (ECDLP). To date, the
most efficient algorithm for solving a generic instance of the ECDLP in a given
elliptic curve group E(Fp) has complexity O(

√
n) where n is the largest prime

divisor of #E(Fp) [15]. Therefore, one must be careful to choose a field Fp and
a curve E over Fp so that E(Fp) has prime order or contains a large subgroup
of prime order. More concretely, when writing #E(Fp) as a product of a prime
n and a co-factor h, then n should have a length of approximately 160 bits and
h should be small, e.g. h ≤ 4 [15]. Furthermore, one has to ensure that E does
not belong to a class of curves for which the ECDLP can be solved in less than√
n steps. Examples for such “weak” curves over Fp are anomalous curves and

curves with small embedding degree (e.g. supersingular curves). Depending on
the application, further security criteria not directly related to the ECDLP in
E(Fp) may need to be considered. One example is twist security, which means
that not only the curve E itself, but also the quadratic twist E′ of E meets all
criteria for hardness of the ECDLP. Using a curve with a secure twist thwarts
certain implementation attacks (e.g. [10]) and allows for a simplification of the
ECDH protocol when only the x-coordinates of points are exchanged [4].

Besides the security requirements from above, our curve generation process
also takes certain efficiency criteria into account to ensure the point arithmetic
on both the twisted Edwards curve and its Montgomery equivalent can achieve
the best possible execution times. When generating a Montgomery curve, it is
common practice to choose the curve parameter A such that (A + 2)/4 is small
(as suggested in [27]). In our case, this actually means the Montgomery image
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of (A + 2)/4 has to be small since our OPF library uses Montgomery reduction
for the multiplication in Fp. The second curve parameter B does not appear in
the addition/doubling formulae and, therefore, has no impact on the execution
time. On the other hand, the point arithmetic on a twisted Edwards curve is
most efficient when the parameter a is fixed to −1 as in this case Hisil et al’s
fast and complete 7M formula for mixed addition can be used [16]. The second
parameter d appears as operand in the complete addition formula described in
Section 3.1 of [16], but not in the dedicated addition from [16, Section 3.2]. In
our case, we can still use the complete addition formula without loss of perfor-
mance since the comb method always adds a fixed base point P (or a multiple
of P ), which allows us to pre-compute 2d T2 as suggested in [16]. Another issue
to consider is that the addition formula from [16, Section 3.1] is only complete
when a is a square and d a non-square in Fp. Fortunately, a = −1 is always a
square in an OPF defined by a prime of the form p = u · 2k + 1; this becomes
immediately evident by an evaluation of the Legendre symbol

(−1
p

)
taking into

account that (p− 1)/2 is highly even for all our primes.
As pointed out in Subsection 3.1, every twisted Edwards curve over a non-

binary finite field Fq is birationally equivalent over Fq to a Montgomery curve
and, conversely, every Montgomery curve is birationally equivalent to a twisted
Edwards curve [5]. However, this does not imply that every Montgomery curve
is birationally equivalent to a twisted Edwards curve with a fast and complete
addition law. The goal of our curve generation procedure is to find a Montgom-
ery curve along with its twisted Edwards counterpart so that both satisfy the
security and efficiency criteria outlined above. To achieve this, we used the com-
puter algebra system Magma. Magma provides an extensive pool of functions
for computations on elliptic curves given in both short and long (non-simplified)
Weierstraß form, but does not directly support the twisted Edwards from. How-
ever, a twisted Edwards curve with the parameters a, d ∈ Fq can be expressed
via a non-simplified Weierstraß equation as follows.

a2 =
a + d

2
, a4 =

(
a− d

4

)2

, and a1 = a3 = a6 = 0 (7)

The above formulas were derived by simply exploiting the fact that any twisted
Edwards curve over a non-binary field Fq is birationally equivalent to a Mont-
gomery curve, which was formally proven in [5]. We fixed the parameter a to −1
to take advantage of the fast formulas for point addition and doubling presented
in [16]. Furthermore, we only consider values of d that are non-square so as to
ensure completeness of the addition formula.

3.3 Regular Digit-Set Conversion for Comb Method

When performing a scalar multiplication k · P on a fixed base point P , one can
take advantage of the so-called comb method to reduce execution time [15]. In
general, the comb method processes w ≥ 2 bits of the scalar k at once and re-
quires pre-computation and storage of (up to) 2w curve points, all of which are
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linear combinations of w multiples of P . An n-bit scalar multiplication consists
of exactly d = dn/we point doublings and at most d point additions. Thus, the
w-bit comb method cuts the number of point doublings by a factor of w versus
the binary (i.e. “double-and-add”) technique. The number of point additions is
not constant but depends on the scalar since, similar to the binary method, the
addition step is simply omitted if the corresponding w bits of k are all 0. It is
possible to reduce the number of pre-computed points to 2w−1 at the expense
of point negation operations to be carried out “on-the-fly,” resulting in a slight
performance degradation. Our implementation of the comb method follows this
avenue; in each step we process w = 4 bits of the scalar at once using 2w−1 = 8
pre-computed points, which are negated on-the-fly if necessary.

A conventional implementation of the comb technique can leak information
related to the scalar k since, as explained above, the number of point additions
is not constant but depends on k. MoTE-ECC uses the comb method for fixed-
point scalar multiplication on a twisted Edwards curve, which means we could
exploit the completeness of the Edwards addition law and just add the neutral
element O to achieve a (more) regular execution profile. Even though such an
approach would foil timing attacks, it may still leak SPA-relevant information
since the coordinates of O consist of the field elements 0 and 1. Multiplying an
arbitrary field element by 0 or 1 causes less bit flips in the multiplier hardware
and register file than a multiplication of two random elements of Fp. Thus, we
opted to not add O but represent the 4-bit digits processed in each step of the
comb method using a signed digit-set that does not contain 0.

To foil SPA attacks, all operations involving bits of the secret scalar k need
to be implemented in a highly regular way without conditional statements. In
our case, this requirement boils down to the demand for a regular algorithm to
convert a radix-24 integer with digits from the set D = {0, 1, 2, . . . , 14, 15} into
an equivalent radix-24 representation using a “zero-free” digit set of the form
D′ = {±1, ±3, . . . , ±13, ±15}. Algorithms for this kind of digit-set conversion
were proposed in e.g. [19, 14]. However, we use a different conversion technique
that is more regular and easier to implement than the state-of-the-art. Our al-
gorithm for digit-set conversion is based on the following observation: Any odd
n-bit integer k given by k =

∑n−1
i=0 ki · 2i with ki ∈ {0, 1} for 0 < i < n− 1 and

kn−1 = k0 = 1 can be written in standard Binary Signed-Digit (BSD) form as

k = 2n−1 +
∑n−2

i=0 (2ki+1− 1) · 2i. The expression 2ki+1− 1 yields either 1 (when
ki+1 = 1) or −1 (if ki+1 = 0), i.e. all digits of our BSD representation of k are
non-zero. One can verify the correctness of this conversion as follows.

k = 2n−1 +

n−2∑
i=0

(2ki+1 − 1) · 2i = 2n−1 −
n−2∑
i=0

2i +

n−2∑
i=0

2ki+1 · 2i =

= 1 +

n−2∑
i=0

ki+1 · 2i+1 = 1 +

n−1∑
i=1

ki · 2i =

n−1∑
i=0

ki · 2i with k0 = 1 (8)

Equation (8) leads to a simple technique to convert an odd integer given in
conventional binary form into a BSD representation consisting of only non-zero
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Algorithm 2. Regular w-bit comb method for fixed-base scalar multiplication

Input: n-bit scalar k = (kn−1, . . . , k1, k0)2 with k0 = 1, point P ∈ E(Fp).
Output: Q = k · P .
1: Pre-compute R[j] = R[aw−2, . . . , a1, a0] = 2dwP + (2aw−2 − 1)2(d−1)wP + . . . +

(2a1− 1)2wP + (2a0− 1)P for all bit-strings j = (aw−2, . . . , a1, a0) of length w− 1
2: Q← R[kdw, . . . , k2d, kd]
3: for i = d− 1 downto 1 do
4: Q← 2Q
5: Q← Q + (2k(w−1)d+i − 1) ·R[k(w−2)d+i, . . . , kd+i, ki]
6: end for

digits, namely −1 and 1. We just have to shift the whole binary representation
of k one bit to the right and insert a “1” at the vacant MSB position. Now this
shifted bit-string is already exactly the BSD-form of k when we interpret all 0
bits as −1. A radix-24 representation can be obtained by dividing the bit-string
into groups of 4-bit digits, each of which corresponds to an odd number in the
range [−15, 15]. In this way, we get a signed radix-24 representation that does
not contain zero digits. Similar to Joye et al’s signed-digit recoding algorithm
from [19, Sect. 3.2], our conversion technique requires k to be odd as otherwise
the result will be off by 1. More precisely, when performing a scalar multiplica-
tion using the proposed digit-set conversion with an even k, the actual result is
(k − 1) · P instead of k · P , which means a final addition of P is required. How-
ever, such a final addition does not necessarily introduce an irregularity in the
comb method since we can define private keys to be odd (or even) so that the
final addition is either never or always executed. Unlike the recoding technique
from [19], the execution time and power consumption profile of our conversion
is independent of the position of the MSB of k since a leading bit-string of the
form 000 · · · 001 becomes 11̄1̄ · · · 1̄1̄1̄ where 1̄ denotes −1. Hence, short scalars
(i.e. scalars having less than n bits) are processed in precisely the same way as
an n-bit scalar, which is not the case for the conversion proposed in [19].

Algorithm 2 shows a highly regular variant of the fixed-base comb method
for point multiplication. We use the same notation as Sect. 3.3.2 in [15], which
means w denotes the number of bits (i.e. length of the bit-string) processed in
each iteration of the loop and d = dn/we. Similar to the straightforward comb
method specified in [15, Algorithm 3.44], our variant comprises an offline phase
(Step 1) and an online phase. In the first phase, 2w−1 points are pre-computed
and stored, all of which are linear combinations of P . Our implementation pre-
computes eight points as we use w = 4 to achieve a balance between execution
time and storage requirements. Note that an expression of the form (2ai − 1) in
Step 1 yields either 1 (when ai = 1) or −1 (if ai = 0), thereby performing the
digit-set conversion described above. The online phase consists of a simple loop
that executes a doubling followed by an addition in each iteration. However, in
contrast to the standard comb method, w − 1 bits (instead of w bits) of k are
used to determine which of the 2w−1 pre-computed points is to be added, while
a further bit (namely k(w−1)d+i in Step 5 of Algorithm 2) defines whether this
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point is actually added or subtracted. To achieve a regular execution, we need
a function that, depending on the value of a bit, assigns either a point R or the
negative of that point (i.e. −R) to a destination. The negative of a point R in
extended affine coordinates is −R = (−x, y,−t) [16]; consequently, the problem
of negating a point boils down to the negation of elements of Fp, which can be
realized through subtractions from p. MoTE-ECC performs the negation of an
element x ∈ Fp depending on the value of a bit b as follows. First, we compute
x′ = p− x via subtraction. Then, we use the bit b to derive a mask m, which is
either an “all-1” byte (if b = 1) or an “all-0” byte (if b = 0), in the same way as
described in [24]. Furthermore, we need a second mask m′ that is the bit-wise
complement of m, i.e. m′ is 0 if m is an “all-1” byte and vice versa. After these
preparations, we compute (xi

′ & m) | (xi & m′) for all bytes of x′ and x (where
& and | denote the bit-wise and and or operation, respectively) and assign the
result to the corresponding byte of the destination. The field element we get in
this way is either −x = p− x (if b = 1, i.e. the negation is actually carried out)
or simply x (if b = 0, i.e. no negation). In summary, our regular comb method
executes always exactly d− 1 point additions and d− 1 doublings, irrespective
of the actual value of the scalar bits and the index of the MSB.

4 Implementation and Evaluation

We implemented MoTE-ECC for the 8-bit AVR platform (e.g. ATmega128 [3])
and assessed its execution time and memory footprint using ephemeral ECDH
key exchange as example. The main idea of our ECDH protocol is to exploit the
birational equivalence between Montgomery and twisted Edwards curves [5] to
improve the overall performance. Assume two sensor nodes, named A and B in
the following, want to establish a shared secret key, whereby the set of domain
parameters (a, d, A, B, G, p) has already been agreed upon. Here, a and d are
the parameters of a twisted Edwards curve EE , while A and B characterize the
birationally-equivalent Montgomery curve EM . G is a point of prime order on
EE , and p defines the underlying OPF. One round of our ECDH key exchange
protocol can be divided into two stages as follows:

1. Node A generates a private key dA and computes the corresponding public
key Q = dA ·G. This scalar multiplication is done on the twisted Edwards
curve EE using generator G. Then, node A converts the point Q = (xq, yq)
to a point M = (xm, ym) on the birationally equivalent Montgomery curve
EM and sends the x-coordinate xm of M to node B. Node B performs the
same steps with private key dB and sends its x-coordinate to A.

2. After node A has received the x-coordinate from B, it computes the scalar
multiplication S = dA ·M (whereby M consists of only an x coordinate) on
the Montgomery curve EM . Node B does the same with the x coordinate it
received from node A.

Both node A and node B have to carry out two scalar multiplications to obtain
the shared secret key S = dA · dB ·G. Since the base point G is fixed and known
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Table 1. Execution time (in clock cycles) of field arithmetic operations for operands
of a length of 160, 192, 224, and 256 bits

Operation 160 bits 192 bits 224 bits 256 bits

mod add 530 631 732 833

mod sub 530 631 732 833

mod mul 3237 4500 5971 7650

mod sqr 2901 3909 5058 6347

mod inv 571916 830823 1163655 1491839

in advance, we can speed up the execution of the first scalar multiplication with
help of the fixed-base comb method using a window width of w = 4 and eight
pre-computed points as described in Section 3.3.

MoTE-ECC adopts the “extended” coordinate system for twisted Edwards
curves introduced in [16], which means we obtain the point Q resulting from the
first scalar multiplication in extended projective coordinates. A straightforward
conversion of a point Q on a twisted Edwards curve EE into a point M on the
birationally-equivalent Montgomery curve EM can be executed in the following
way. We firstly convert the projective point Q = (Xq, Yq, Tq, Zq) on EE to its
affine representation Q = (xq, yq) and then calculate the equivalent point M =
(xm, ym) on EM via xm = (1 + yq)/(1− yq) and ym = (1 + yq)/((1− yq) · xq) as
specified in [5]. However, when doing so, we have to execute an inversion in the
affine-to-projective conversion to get 1/Zq and another inversion as part of the
Edwards-to-Montgomery transformation (to obtain 1/[(1− yt) · xt]). To reduce
the computational overhead caused by two inversions, we directly transform the
point Q = (Xq, Yq, Tq, Zq) to the point M = (xm, ym) as follows.

xm = (1 + yq)/(1− yq) = (1 + Yq/Zq)/(1− Yq/Zq) = (Zq + Yq)/(Zq − Yq) (9)

ym = (1 + yq)/(xq · (1− yq)) = (Z2
q + YqZq)/(XqZq −XqYq) (10)

In this way, we only need one inversion to compute 1/(XqZq −XqYq), which we
just have to multiply by Xq to get 1/(Zq − Yq).

4.1 Execution Time

As explained in Section 2, we implemented the OPF inversion from scratch and
used the OPF library from [24] for all other arithmetic operations. Table 1 lists
the simulated execution times for the ATmega128. The modular multiplication
only takes 3237, 4500, 5971 and 7650 clock cycles for 160, 192, 224 and 256-bit
operands, respectively. As stated in [24], these timings represent speed records
for modular multiplication on an 8-bit AVR processor. For 256-bit operands, the
OPF multiplication is even faster than the multiplication of the NaCl software
for AVR [17]. As also shown in Table 1, our regular Itoh-Tsujii inversion needs
571916 clock cycles (in a 160-bit OPF), which is about 1.36 times faster than
the unprotected inversion of the well-known TinyECC library [23].
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Table 2. Execution time (in clock cycles) of point arithmetic operations over 160, 192,
224, and 256-bit OPFs

Operation 160 bits 192 bits 224 bits 256 bits

Mo point add 19479 25890 33207 41428

Mo point dbl 15950 21072 26884 33390

TE point add 27355 36903 47907 60367

TE point dbl 25421 33848 43463 54262

We wrote the functions for point arithmetic in ANSI C and determined the
execution time of point addition and point doubling on both twisted Edwards
and Montgomery curves. The timings are reported in Table 2 for OPFs of sizes
ranging between 160 and 256 bits. Taking the 160-bit OPF as example, it turns
out that addition and doubling on a Montgomery curve require exactly 19, 479
and 15, 950 clock cycles, respectively. On the other hand, adding two points on
a twisted Edwards curve needs 27, 355 clock cycles, while a doubling operation
costs 25, 421 cycles. Our simulation results are exactly in line with the analysis
in Section 3. For example, the point addition on a Montgomery curve requires
only 3M + 2S, which is clearly more efficient than the 7M for adding points on
a twisted Edwards curve. Thus, it is not surprising that the point arithmetic on
the Montgomery curve is much faster than on the twisted Edwards curve. The
addition and doubling operation of our implementation for Montgomery curves
outperform that of the TinyECC library by a factor of more than three. On the
other hand, the point addition and doubling on the twisted Edwards curve are
roughly 2.1 and 1.9 times faster than TinyECC, respectively.

Table 3. Execution time (in clock cycles) of scalar multiplication over 160, 192, 224
and 256-bit OPFs

Operation 160 bits 192 bits 224 bits 256 bits

Scalar mul. Mo curve 6276630 9964549 14856446 21118778

Scalar mul. TE curve 2767454 4412519 6603888 9420788

Full MoTE-ECDH 9044084 14377068 21460334 30539566

The execution times of a full scalar multiplication using the two curve sha-
pes over 160, 192, 224 and 256-bit OPFs are summarized in Table 3. Each run
of our ECDH key exchange protocol consists of two scalar multiplications; the
first one is performed on a twisted Edwards curve, while the second is carried
out on the birationally-equivalent Montgomery curve. When using a fixed-base
comb method as described in Section 3.3, the first stage of the ECDH protocol
can be executed in about 2.76 · 106 clock cycles over a 160-bit OPF (i.e. 0.37 s
at the typical sensor-node frequency of 7.37 MHz), which already includes the
Edwards-to-Montgomery conversion. The second stage of the ECDH protocol is
more expensive than the first one since it involves a scalar multiplication by an
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elliptic-curve point that is neither fixed nor known a priori. MoTE-ECC uses a
simple ladder on a Montgomery curve for this second scalar multiplication and
achieves an execution time of roughly 6.27 · 106 cycles in the 160-bit case. The
complete computational cost of an ephemeral ECDH key exchange amounts to
about 9.04 · 106 clock cycles when using a 160-bit OPF as underlying algebraic
structure, which corresponds to an execution time of 1.22 s at 7.37 MHz.

4.2 Memory Footprint and Code Size

Besides performance, run-time memory consumption is an important criterium
for WSN applications since a typical AVR-based sensor node features only 4 kB
RAM. Our comb method for scalar multiplication on a twisted Edwards curve
requires to store eight points given in extended affine coordinates. However, as
these points are pre-computed “off-line,” we can store them in ROM or in flash
memory. In this way, we only need to transfer the point that is required for the
current iteration of the comb method from ROM or flash memory to RAM. As
a consequence, a full ephemeral ECDH key exchange supporting elliptic curves
over 160, 192, 224, and 256-bit OPFs (without re-compilation) occupies a mere
556 bytes in RAM, which includes besides all global and local variables also the
stack. A stripped-down variant of MoTE-ECC supporting only fields of a size
of up to 160 bits has a RAM footprint of just 380 bytes.

Even though ROM (resp. flash) usage is, in general, less critical than RAM
footprint, it is still important to analyze the (binary) code size. The arithmetic
library for OPFs used by MoTE-ECC is implemented in a parameterized form
with rolled loops (so as to support operands of varying length [24]), which has
the side-benefit of compact code size. Besides the field arithmetic, also the con-
crete implementation of the fixed-base comb method has a large impact on the
ROM (resp. flash) requirements of MoTE-ECC. Our choice of w = 4 with eight
pre-computed points represents a fair trade-off between performance and code
size. The total ROM/flash footprint of MoTE-ECC supporting Montgomery as
well as twisted Edwards curves is 14.7 kB, which constitutes some 11.5% of the
128 kB flash memory that is available on a typical AVR-based sensor node.

4.3 Comparison with Related Work

Many ECC implementations for the 8-bit AVR platform have been reported in
the literature. However, most of them were solely optimized for speed and did
not properly consider the limited resources of 8-bit sensor nodes. We compare
our MoTE-ECC library with previous work in three main aspects: performance
(i.e. execution time of fixed-point and variable-point scalar multiplication, and
execution time of both together), RAM footprint, and ROM requirements. The
key figures of MoTE-ECC and previous ECC implementations can be found in
Table 4, whereby all timings are specified for an ATmega128 processor clocked
at a frequency of 7.37 MHz. We take the implementations using a 160-bit field
as example to demonstrate the advantages of MoTE-ECC. Our implementation
achieves the best execution time for ephemeral ECDH key exchange among all
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Table 4. Comparison of ECC libraries for 160, 192, 224, and 256-bit prime fields

Reference Field Fixed P. Rand. P. RAM ROM ECDH

Liu [23] 160 bit 2.05 s 2.30 s 1174 B 19.0 kB 4.35 s

Wang [33] 160 bit 1.24 s 1.35 s 3200 B 15.8 kB 2.59 s

Szczech. [31] 160 bit 1.27 s 1.27 s 1800 B 46.1 kB 2.54 s

Gura [13] 160 bit 0.88 s 0.88 s 282 B 3.7 kB 1.76 s

Ugus [32] 160 bit 0.57 s 1.03 s 543 B 3.6 kB 1.60 s

Großschädl [12] 160 bit 0.74 s 0.74 s n/a n/a 1.48 s

MoTE-160 160 bit 0.37 s 0.85 s 556 B 14.7 kB 1.22 s

Liu [23] 192 bit 2.90 s 2.90 s 1510 B 19.0 kB 5.80 s

Gura [13] 192 bit 1.35 s 1.35 s 336 B 4.0 kB 2.70 s

Lederer [21] 192 bit 0.71 s 1.67 s 1398 B 23.0 kB 2.38 s

MoTE-192 192 bit 0.60 s 1.35 s 556 B 14.7 kB 1.95 s

Gura [13] 224 bit 2.38 s 2.38 s 422 B 4.8 kB 4.76 s

MoTE-224 224 bit 0.90 s 2.01 s 556 B 14.7 kB 2.91 s

Hutter [17] 255 bit 3.80 s 3.80 s 922 B 17.4 kB 7.60 s

Hutter [17] 255 bit 3.11 s 3.11 s 681 B 28.9 kB 6.22 s

MoTE-256 256 bit 1.28 s 2.86 s 556 B 14.7 kB 4.14 s

prime-field based ECC libraries documented in the literature. In particular, we
require just about 28% of the execution time of TinyECC [23]. However, since
MoTE-ECC supports two curve shapes, it occupies slightly more RAM and is
larger in terms of code size than the implementations from [13] and [32]. When
compared with all known implementations using 160-bit fields (including also
binary-field libraries, which are not specified in Table 4), our implementation is
only slower than the work of Aranha et al [2]. However, their software employs
a carefully-optimized multiplication technique for binary fields, which achieves
high performance at the expense of a RAM footprint of 2.8 kB and a code size
of 32.0 kB. Furthermore, it should be noted that MoTE-ECC contains counter-
measures against SPA attacks, which is not the case for all other ECC libraries
listed in Table 4 except NaCl [17] and the work introduced in [21]. NaCl is the
only implementation with a high level of SPA resistance similar to ours. While
NaCl is fast and small in terms of code size5, it supports only a single curve. In
contrast, our implementation is highly scalable as it supports fields and curves
of various size (e.g. from 160 to 256 bits) without re-compilation.

5 Conclusions

The main contributions of this paper can be recapitulated as follows: First, we
extended Liu et al’s [24] parameterized yet efficient arithmetic library for OPFs

5 The ROM size of NaCl given in Table 4 is for the complete library, which includes
besides the Curve25519-based ECC part also SHA-512, Salsa20, and Poly-1305.
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with a Fermat-based inversion that is robust against SPA attacks. Second, we
presented a highly regular implementation of the comb method so as to reduce
the SPA-leakage of fixed-base scalar multiplication. Third, we described a new
way of performing ephemeral ECDH key exchange by combining the individual
computational benefits of Montgomery and twisted Edwards curves. Fourth, we
discussed how these curves have to be generated to satisfy both efficiency and
security criteria. The former three contributions have been implemented and
evaluated in MoTE-ECC, an efficient, scalable, and SPA-resistant ECC library
for AVR processors such as the ATmega128. MoTE-ECC is able to perform the
two scalar multiplications of an ephemeral ECDH key exchange in a little more
than 9 · 106 clock cycles altogether when the underlying OPF has a size of 160
bits, which significantly advances the state-of-the-art in prime-field based ECC
on an 8-bit processor. Another advantage of MoTE-ECC is its scalability since
it supports fields and curves of different size (e.g. 160, 192, 224, and 256 bits)
without re-compilation. The RAM footprint of MoTE-ECC for OPFs of up to
256 bits is 556 bytes, which is less than 15% of the available RAM of a typical
AVR-based sensor node. A stripped-down variant of MoTE-ECC that supports
OPFs of a size of up to 160 bits occupies only 380 bytes in RAM.
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