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Anisotropic small strain stiffness within the multilaminate framework
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ABSTRACT: Using the spectral decomposition of the global compliance matrix, a novel approach to modelling
anisotropic elasticity within the multilaminate framework is presented. The new approach is implemented into
a soil model which accounts for degradation of small strain stiffness with increasing shear strain and stress
dependency of stiffness. The model is calibrated by back-analysis of element tests on London Clay and applied
in a Finite Element calculation to evaluate the influence of anisotropic small strain stiffness on deformations
connected with tunnel excavation.

1 INTRODUCTION

The high initial elastic stiffness of soils at very small
strains (<10−6) and its degradation with accumulation
of strain is well known since the early 1970ies. With
increasing progress in both laboratory testing and soil
modelling, taking that effect into account in geotech-
nical engineering has become more and more common
practice within the last decade.

Still, in most practical cases soil is assumed to
behave isotropically at very small strains, although
laboratory tests on natural soils indicate strongly cross-
anisotropic behaviour (Gasparre 2005, Fioravente
2000).

In the following study an approach to model inher-
ently cross-anisotropic elastic material and degrada-
tion of small strain stiffness is presented. The model
is applied to a tunnelling problem in order to evaluate
the effect of initial anisotropy on deformations within
the tunnel and at the ground surface.

2 MULTILAMINATE FRAMEWORK

Multilaminate material models are based on the con-
cept that the material behaviour can be formulated on
a distinct number of local planes with varying orien-
tation. The stress – strain state varies from plane to
plane, resulting in loading induced anisotropy within
an intrinsically isotropic material. The global response
of the material to a prescribed load is obtained by
summation of the contributions of all planes.

The local stress vector σi,loc is obtained by project-
ing the global stress vector σgl with the transformation
matrix Ti on plane i.

The transformation matrix Ti contains the derivatives
of the local stress components with respect to the
global axes, represented by the direction cosine of the
unit vector nT

i = (ni,1, ni,2, ni,3) normal to the plane i and
of two unit vectors within the plane, sT

i = (si,1, si,2, si,3)
and tTi = (ti,1, ti,2, ti,3). Vectors ni, si and ti must form
an orthogonal system of local axes, such that ni·si = 0,
ni·ti = 0 and ti·si = 0.

The local elastic strains εi,loc are calculated as

In the case of isotropic linear elastic material, Cloc is
equal for all planes. For non-linear elasticity (small
strain stiffness), Cloc depends on the strain history of
each plane and therefore differs from plane to plane,
resulting in anisotropic global behaviour.

Global strains are obtained by back-transformation
and summation of all local strains:

The factor of 3 in front of the summation can be derived
from the principle of virtual work (Bažant & Prat
1988). The weight factors wi depend on the chosen
integration rule. In this study an integration rule based
on 2 × 33 planes (Bažant & Oh 1985) is used.

While local stresses are a projection of the global
stress state (static constraint), local strains are in gen-
eral not the projection of global strains (kinematic
constraint) in multilaminate models but they are in
so-called microplane models (Bažant & Prat 1988).
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3 ANISOTROPIC SMALL STRAIN STIFFNESS
MODEL

3.1 Concept

In previous multilaminate-type soil models it was pos-
tulated, that the local stress state could be represented
by 3 components, whose directions coincided with the
direction of the vectors n, s and t (Scharinger et al.
2008). That assumption results in a 3 × 3 local elas-
tic compliance matrix Cloc and a 3 × 6 transformation
matrix T. For elasticity it was further assumed, that on
local level normal strains are only caused by normal
stresses and tangential strains are only caused by tan-
gential stresses. Therefore, Cloc was a diagonal matrix
with elements outside the main diagonal equal to 0.

For anisotropic material, the aforementioned
assumptions can no longer be maintained. Isotropic
compression of an anisotropic material results in shear
strains on all planes which are not parallel to the global
axes, although only normal stresses are obtained on
these planes from Equation 1. Anisotropic material
behaviour can therefore not be modelled by using a
diagonal local compliance matrix.

The spectral decomposition of the global stress
vector offers the possibility to obtain local compli-
ance matrices directly. Cross-anisotropic material with
a vertical axis of symmetry is considered further
on, although the method is also applicable to fully
anisotropic material. Only the step-by-step procedure
will be demonstrated in this paper. For details on
the theoretical background see Theocaris & Sokolis
(2000) and Cusatis et al. (2008).

The global compliance matrix Cgl of a cross
anisotropic elastic material is fully defined by 5 param-
eters: two elastic moduli Ev and Eh, one independent
shear modulus Gvh, and two Poisson’s ratios, νvh and
νhh. If written in Kelvin notation, Cgl possesses four
eigenvalues, λ1 . . . λ4.

Using the idempotent matrices E1 . . . E4, which are
defined by the 4 eigenvectors of Cgl, the global stress
vector can be split up into its spectral components or
stress modes σgl,1 . . . σgl,4.

Local stress modes σi,loc,m on plane i are obtained by
projecting each global stress mode separately using
transformation matrices according to Equation 2.

Local strain modes εi,loc,m are calculated by multiply-
ing each local stress mode σi,loc,m separately with the
corresponding eigenvalue λm (Equ. 11).The sum of all
local strain modes yields the local strain vector εi,loc,
and the sum of all local stress modes equals the local
stress vector σi,loc (Equ. 12).
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Back transformation to global level and summation
of the local strains follows the same procedure as for
isotropic material (Equ. 4).

It should be noted, that in this procedure the local
stresses depend on global material parameters, while
local strains are obtained by multiplying the local
stress modes with the scalar eigenvalues. That differs
quite substantially from multilaminate models, where
local stresses only depend on plane orientation, and all
elastic material properties are described by the local
compliance matrix Ci,loc.

However, local compliance matrices can also be
derived directly from the global compliance matrix.
Combining Equations 7 and 10–12 yields.

Comparing Equation 13 with Equation 1 and 3,
Equation 14 is found.

As the matrices Em are of the order 6 × 6, Equation
13 only has a unique solution if both Ti and Ci,loc also
are 6 × 6 matrices. In that case Equation 13 can be
transformed to

That means, that the local stress vector is split up into
six components. For the present study local stress and
strain components on plane i are defined as

with σi,n,vol . . . volumetric normal stress, σi,n,dev . . .
deviatoric normal stress, τi,s1 and τi,t1 . . . tangential
stresses in direction of s and t resulting from global
axial stresses, τi,s2 and τi,t2 . . . tangential stresses in
direction of s and t resulting from global shear stresses.

For this split, the transformation matrix of plane i can
be written as

Ci,loc depends on the plane orientation and con-
tains non-zero off-diagonal elements for general non-
isotropic material. In the case of isotropic elastic
material, Cgl has only two unique eigenvalues (Equ.
18), yielding a diagonal local compliance matrix
(Equ. 19).

Both local stresses and local strains are projections of
the corresponding global quantities. Therefore, both
the static and the kinematic constraint are fulfilled.

3.2 Stress dependency of stiffness

Laboratory test data indicate, that in cross-anisotropic
natural soils Eh depends on σh and Ev depends on σv
(Kuwano & Jardine 2002). However, using such an
approach in boundary value problems is prone to cause
numerical problems at stress free boundaries because
high stresses in one direction and stresses close to
zero in the other numerically induce extreme ratios
of anisotropy in the material, which causes the global
stiffness matrix to become almost singular.

In order to avoid such problems, in this study global
stiffness parameters Ev, Eh, and Gvh are assumed to
depend on the mean effective stress p′ only.

With that approach a reference local compliance
matrix Cloc,ref can be established, calculated from
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Figure 1. Degradation of anisotropic small strain stiffness.

global stiffness parameters Eh,ref , Ev,ref , Gvh,ref at the
reference pressure pref . The local compliance matrix
at the current stress level is then obtained according to
Equation (21).

3.3 Degradation of stiffness

Experimental data from laboratory tests show a
S-shaped degradation of the initial stiffness with accu-
mulated shear strain (e.g. Gasparre 2005). Various
functions describing the degradation of small strain
stiffness can be found in the literature, involving
trigonometric, exponential and logarithmic functions
(e.g. Jardine et al. 1986, Benz 2007).

For the anisotropic multilaminate model, it
is assumed that the initially anisotropic material
approaches isotropy with increasing accumulated local
shear strain γ . Stiffness degradation of Eh follows
Equation 22, for the other anisotropic parameters
equivalent equations apply. At shear strains larger than
γ2, the material at local level is isotropic, described by
the elastic modulus Eur and Poisson’s ratio νur.

As the development of local shear strains differs
from plane to plane, also local stiffness parameters
vary over the planes, thus resulting in a smooth transi-
tion from small to large strain behaviour on global
level. The local shear strains γ1 and γ2 have to be
determined by back-analysis of laboratory tests.

3.4 Plastic strains

Once the large strain region is reached locally, the
model can also account for strain hardening plastic-
ity. As this study is focused on elastic small strain

Table 1. Elastic soil properties of London Clay.

Parameter Isotropic Anisotropic Unit

Eur,ref 13000 13000 kPa
pref 100 100 kPa
m 1.0 1.0 –
νur 0.2 0.2 –
Ev0,ref 48960 30000 kPa
Eh0,ref 48960 78000 kPa
Gvh0,ref 20400 20400 kPa
νhh 0.2 0.02 –
νvh 0.2 −0.16 –
γ1 0.0025 0.0025 %
γ2 0.03 0.03 %

Figure 2. Degradation of equivalent shear modulus.

behaviour, the reader is referred to Schweiger et al.
(2009) for details on the plasticity part of the model.

4 ELEMENT TESTS ON LONDON CLAY

4.1 Small strain parameters

Recent experimental data on anisotropic small strain
stiffness of London Clay have been published by
Gasparre (2005). The samples were retrieved from
the site of the Heathrow Terminal 5 and tested
using bender element aided triaxial tests. For a depth
of 22.6 m, values of Ev0 = 110 Mpa, Eh0 = 285 Mpa,
Gvh0 = 75 Mpa, νvh = 0.02 and νhh = −0.16 are
reported. Reference values at 100 kPa are listed in
Table 1. Back analysis of the equivalent shear modu-
lus Geq in undrained triaxial compression tests yielded
local shear strains γ1 = 0.0025% and γ2 = 0.03% for
fitting experimental data (Fig. 2).

However, the same initial shear stiffness Geq and
degradation curve could also be obtained assuming
isotropic material behaviour (Fig. 2). In that case,
Geq would equal the isotropic shear modulus G.
Setting ν = 0.2, isotropic values can be derived as
G0,ref = 20.4 Mpa and E0,ref = 48.96 Mpa.
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Figure 3. FE-model and boundary conditions.

4.2 Elastic large strain parameters

The inclination of the unloading/reloading line in
isotropic compression of natural samples is reported
as κ = 0.029 (Gasparre 2005). With V = 1 + e = 2.12
(specific volume at reference pressure pref ), νur = 0.2
and pref = 100 kPa, the unloading reloading stiffness
can be obtained as Eur,ref = 13000 kPa according to
Equation 24.

5 INFLUENCE OF ANISOTROPIC SMALL
STRAIN STIFFNESS

5.1 FE-model and boundary conditions

The soil model described above is utilized to investi-
gate the influence of small strain stiffness anisotropy
on tunnel induced surface settlements and displace-
ments at the tunnel cross section.The model developed
by Scharinger et al. (2008) has been extended to
account for anisotropic small strain stiffness.Although
the model can also account for plasticity in the large
strain range, only elastic strains are considered in this
study.

The tunnel centre is situated at 30.5 m depth, diam-
eter of the circular tunnel is 4.75 m. Soil layering is
simplified to only one soil layer (Fig. 3).

The calculations are performed with the Finite
Element code PLAXIS2D V9.0, using triangular
15-noded elements. Three different sets of soil prop-
erties are considered:

• Set 1: no small strain stiffness
• Set 2: isotropic small strain stiffness (Table 1)
• Set 3: anisotropic small strain stiffness (Table 1)

The following boundary conditions are applied in
all calculations:

• Ground water table 5 m below ground surface
• K0 = 1.5 (constant over depth)
• Hydrostatic pore water pressure

For simplicity drained conditions are assumed in
this study. Starting from the initial stress state, the
nodal forces of the tunnel boundary are subsequently
reduced from 100% to 0.

Figure 4. Vertical displacement point A.

Figure 5. Vertical displacement point B.

Figure 6. Horizontal displacement point C.

5.2 Results

The displacements due to tunnel excavation are com-
pared at the following points:

• Point A – at ground surface above tunnel
• Point B – at tunnel crown
• Point C – at tunnel bench

The development of vertical and horizontal dis-
placements with reduction of initial nodal forces
within the tunnel is summarized in Figures 4–6.
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Table 2. Displacements [mm] at 40% stress relaxation.

set 1 set 2 set 3 set 3 / set 2

Point A – uv −2.1 −1.2 −1.4 120%
Point B – uv −10.8 −7.0 −7.6 109%
Point C – uh 16.7 10.4 8.6 83%

The curves for point B and C become parallel at
40–50% excavation, indicating the complete loss of
small strain stiffness within the soil volume relevant to
these points. For point A slightly different inclinations
can be found even at full relaxation. The ratio

at 40% stress relaxation varies from 83% to 120%
(Table 2).Although fu,aniso follows the ratio of isotropic
vs. anisotropic stiffness (with uv being governed by
1/Ev and uh by 1/Eh), the stiffness ratio is consid-
erably higher than fu,aniso (Ev0 / Eiso = 61%; Eh0 /
Eiso = 160%).

6 CONCLUSION

A new approach for modelling anisotropic, stress -
dependent small strain stiffness within the multil-
aminate framework has been developed. The stress
dependency of stiffness currently implemented in
the model does not fully agree with experimentally
observed soil behaviour and requires further investi-
gation. Regarding the influence of anisotropy in the
small strain range on practical boundary value prob-
lems, the study must be seen as preliminary. Only
one set of anisotropic parameters was used, and only
elastic deformations in a tunnelling problem were con-
sidered. However, in the case investigated isotropic
and anisotropic small strain stiffness result in simi-
lar displacements, if both sets of parameters fit the
degradation curve of the equivalent shear modulus
Geq. Whether this is a general trend or just coincidence

needs to be investigated with more sets of parameters
and also in different boundary value problems.
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