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Abstract
Nowadays, non-linear classifiers are available that claim to generalize well at a low

amount of data. Recently, we conducted an on-line study, where a random forest (RF)
classifier successfully drove an electroencephalography (EEG) based sensorimotor rhythms
(SMR) brain-computer interface (BCI) by classifying discrete Fourier transform (DFT)
features. In this work, we re-analyse that data-set and simulate the use of common spatial
patterns (CSP) features with a RF classifier and a shrinkage regularized linear discriminant
analysis (sLDA). We found that the RF classifier could make better use of the CSP features
and outperformed sLDA. The mean and median classification accuracy during the feedback
period were improved by ∼ 2% and ∼ 3% when using a RF classifier. The effect is small, but
statistically significant (p < 0.05) and consistent over the participants. Therefore, we argue
that the widespread view that linear methods are ideal for BCIs should be reconsidered
and RF classifiers should be taken into account when choosing a classifier for SMR-BCIs.

1 Introduction
Thus far, linear machine-learning methods are considered ideal for the application in brain-
computer interfaces (BCIs) [3]. Particularly with the main argument that simplicity should be
preferred, especially when limited data are available as in BCIs. However, substantial progress
has been made in the field of machine-learning. Nowadays, certain non-linear methods claim
to generalize well when only limited amount of data are available. One such a method is
the random forests (RF) classifier [2]. Our interest in this classifier is mainly based on his
following properties: (1) RF classifiers provide a complex model which allows non-linear decision
boundaries. (2) RF classifiers are “over-fitting” resistant, even with a large number of features.
(3) RF classifiers are able to merge features originating from different statistical distribution
into one model. Particularly hybrid BCIs and passive BCIs make use of such features. (4)
RF classifiers are regularized by nature. (5) There exist efficient implementations of the RF
classifiers which enables on-line operation. (6) RF classifiers are multi functional tools for data
analysis. E.g. RF classifiers offer importance ratings of the features, they allow for analysis of
features’ proximities and provide an estimate of the expected accuracy.

Recently, we conducted an on-line study, where a RF classifier was deployed in an elec-
troencephalography (EEG) based sensorimotor rhythms BCI (SMR-BCI) [4]. Discrete Fourier
transform (DFT) magnitudes were used as features for the classification. The on-line feedback
results in 13 users demonstrate an classification accuracy competitive to other state of the art
SMR-BCIs. Detailed results will be published elsewhere.

In the present work, we address two questions arising from the RF driven SMR-BCI: (1)
The first question addresses the features for classification. Common spatial patterns (CSP)
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filtering is a more powerful feature extraction method than DFT [5]. Hence, we hypothesize
that replacing the DFT features by CSP features will boost the performance of the RF classifier
driven SMR-BCI. (2) The second question addresses the impact of the RF classifier’s non-linear
model. According to literature, we hypothesize that the RF non-linear model outperforms a
linear classification model although only a limited amount of data is available. The linear model
is represented by an analytic-shrinkage-regularized linear discriminant analysis (sLDA) as LDA
classifier are commonly used in BCIs [1]. For evaluating this two hypothesis, we conduct BCI
simulations using the data of the on-line study mentioned above.

2 Methods
Summary of the on-line studies set-up. The paradigm was based on the cue-guided Graz-
BCI training paradigm [4]. Hence, recording, training, and feedback was performed within a
single session. The session consisted of eight runs, five of them for training and three with
feedback for validation. One run was composed of 20 trials. Taken together, we recorded 50
trials per class for training and 30 trials per class for validation. Participants had the task
of performing sustained (5 seconds) kinaesthetic motor imagery (MI) of the right hand and of
the feet each as instructed by the cue. Feedback was presented in form of a white coloured
bar-graph. The length of the bar-graph reflected the amount of correct classifications over
the last second. EEG was measured with a biosignal amplifier and active Ag/AgCl electrodes
(g.USBamp, g.LADYbird, Guger Technologies OG, Schiedlberg, Austria) at a sampling rate
of 512 Hz. The electrodes placement was designed for obtaining three Laplacian derivations.
Center electrodes at positions C3, Cz, and C4 and four additional electrodes around each center
electrode with a distance of 2.5 cm, 15 electrodes total. The reference electrode was mounted
on the left mastoid and the ground electrode on the right mastoid. The 13 participants were
aged between 20 and 30 years, 8 näıve to the task, and had no known medical or neurological
diseases.

BCI simulation. In this work, we want a balance between data-sets from näıve and non-näıve
participants. We include all 5 data-sets of the non-näıve participants and 5 data-sets from näıve
participants chosen by random. For the BCI simulation, each data-set is divided in two parts.
The first part is used for CSP and classifier training, the second part for validation. The valida-
tion is carried out with a running classifier. The applied signal processing pipeline: (1) A filter
bank of 8th order Butterworth band-pass-filters divides the EEG data into 15 sub-bands. Cut-
off frequencies: [i, i+ 2] i = 6, 8, 10, 12 in the α-band and [i, i+ 5] i = 14, 17, 20, 23, 26, 29, 32, 35
in the β-band. (2) We calculate a separate set of CSP filters for each sub-band [5]. The spatial
filters according to the three highest and three lowest eigenvalues of each set of CSP filters
are selected. Hence, one CSP calculation per sub-band and six filters per CSP results in 90
virtual channels. (3) The features used for classification are obtained by calculating logarith-
mic band-power for each of the 90 virtual channels. The logarithm changes the band-power
features distribution to a normal distribution. Normal distributed features are not necessary
for the RF classifier, but for the sLDA classifier. The band-power was estimated by squaring
and subsequent averaging over a sliding window with a length of 1 s. (4) The classification was
performed with a RF classifier on the one hand, and with a sLDA classifier on the other hand.

For training, we picked the features from the 1 s long window starting 2.5 s after the cue
of each trial [6]. This implies a trials-to-features ratio of 100/90 = 1.11. For validation, we
performed a separate classification on each time point of each trial to obtain one course of
classification accuracy per participant.



Random Forests and analytic-shrinkage-regularized linear discriminant analysis.
RF denotes for an ensemble classifier comprising of many decision trees. The decision trees
are decorrelated by random processes during their construction. A majority voting of the trees
defines the forests’ decision. The voting is an important step as it reduces the variance of the
forest which is commonly high for individual trees. This is a kind of regularization and improves
the accuracy of a forests dramatically when compared with any single decision tree [2]. Due to
our experience with the RF classifier, we chose to build 1000 trees per classifier and used the
standard value for randomly drawn features per node (

√
#offeatures).

A comparison of the RF classifier with a non-regularized classifier is unfair since the RF
classifier is regularized by nature. Hence, we chose an sLDA classifier for comparison. Shrinkage
is a common remedy for achieving well conditioned covariance matrices even when the data is
high-dimensional and only a few data points are given. For further information on sLDA, please
see [1].

3 Results
For each participant, the peak, mean and median accuracies during the feedback period were
calculated and are presented in Table 1. Peak means highest accuracy during the feedback
period. Mean refereed the mean accuracy over the feedback period and median stands for the
median accuracy over the feedback period. The approaches using CSP features significantly
outperformed the approach using DFT features in terms of peak (82% < 89.67%, 87.83%;
p < 0.05), mean (66.82% < 79.30%, 77.15%; p < 0.01), and median (67.67% < 80.42%, 77.83%;
p < 0.01) performance (paired t-tests, Bonferoni-Holm correction). The combination of CSP
features with a RF classifier significantly outperformed the combination of CSP features with
sLDA in terms of mean (79.3% > 77.15%; p < 0.05), and median (80.42% > 77.83%; p < 0.05)
performance (paired t-test, Bonferoni-Holm correction).

ID naive? Online DFT+RF Simulation CSP+RF Simulation CSP+sLDA
peak mean median peak mean median peak mean median

P1 no 71.67 56.14 56.67 81.67 74.56 76.67 78.33 69.69 70.00
P2 no 86.67 67.27 68.33 91.67 80.52 82.50 90.00 79.22 80.00
P3 no 100.00 90.71 91.67 100.00 99.30 100.00 100.00 99.22 100.00
P4 no 76.67 64.39 65.00 95.00 81.85 81.67 93.33 79.09 77.50
P5 no 80.00 59.81 60.00 81.67 65.44 65.00 78.33 63.10 61.67
P6 yes 93.33 82.79 83.33 96.67 88.46 88.33 95.00 84.35 85.00
P7 yes 96.67 83.25 86.67 98.33 88.33 92.50 100.00 88.61 92.50
P8 yes 83.33 66.54 66.67 95.00 83.28 85.83 88.33 78.93 81.67
P9 yes 66.67 47.35 48.33 88.33 76.64 78.33 83.33 73.10 73.33
P10 yes 65.00 49.99 50.00 68.33 54.61 53.33 71.67 56.22 56.67
average 82.00 66.82 67.67 89.67* 79.30**? 80.42**? 87.83* 77.15** 77.83**
std 12.27 14.63 15.11 9.87 12.56 13.40 9.69 12.42 13.20

Table 1: Binary validation accuracies of the different BCI systems in %. Best performing
method per participant is highlighted. * significantly better than DFT+RF (p < 0.05). **
significantly better than DFT+RF (p < 0.01). ? significantly better than CSP+sLDA (p <
0.05).



4 Discussion and Conclusion
By using CSP features instead of DFT features, the average peak, mean and median perfor-
mance during the feedback period was significantly improved from 82% to 89.7%, from 66.8%
to 79.3% and from 67.7% to 80.4%, respectively when combined with a RF classifier and from
82% to 87.3%, from 66.8% to 77.2% and from 67.7% to 77.8%, respectively when combined with
an sLDA classifier. It is not surprising that an optimized spatial filtering outperforms the DFT
features. CSP features have a higher signal-to-noise ratio and are therefore easier to classify.
For example, the peak classification accuracy of one participant was improved by ∼ 22% (Table
1, P9). However, our results show that a RF classifier can make better use of CSP features
than an sLDA classifier, at least for the present data. This is remarkable, as the RF classifier
relies on a complex, non-linear model and the trials-to-features ratio is low (100/90 = 1.11).
The effect of using a RF classifier instead of a sLDA classifier is small (peak ∼ 2%, mean ∼ 2%,
median ∼ 3%), but statistically significant for mean and median performance and consistent
over the participants. For 8 of the 10 participants the combination of a RF classifier with CSP
features is the best performing method. For participant P7 the combination of sLDA with CSP
features performed slightly better, but not in median performance. For participant P10, both
methods failed, since the achieved performance is around 70% only. The enhancement of the
sustained (i.e. mean and median) performance is of particular importance, as the Graz-BCI
paradigm calls for these. Concluding, the present work on performance, in combination with
previous work on RF classifiers as powerful tools for data analysis [7], underlines the potential
of the RF classifier in the field of BCIs. Further, we argue that the widespread view that linear
methods are ideal for BCIs should be reconsidered.
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