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Abstract. We present a visual servoing approach for controlling a mi-
cro aerial vehicle which is based on monocular camera input and a fuzzy
logic controller. Visual pose estimates are obtained using a state-of-the-
art visual SLAM approach combined with marker-based metrical initial-
ization. In comparison to related work, we demonstrate that our system
tolerates quickly changing velocity measurements which are commonly
observed in visual pose estimation, and that it is well suited for au-
tonomous inspection tasks because it does not require a nadir view onto
the scene.
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1 Introduction

Airborne image acquisition has a long tradition in photogrammetry, surveillance,
and inspection. Recent achievements in aerial robotics led to the development
of robust and easily usable micro aerial vehicles (MAVs) such as quad-rotor
helicopters, which are typically remote controlled but become increasingly au-
tonomous. As an effect, robotic applications emerge in typical human-operated
service tasks such as monitoring of oil and gas pipelines, power lines [1], power
pylons or large crowds [2]. All applications of autonomous flight require sophis-
ticated mechanisms for automatic take-off, hovering and landing, since these are
the critical flight phases.

A variety of algorithms for perception and control of autonomous aerial ve-
hicles has been proposed, mainly because the most suitable technique highly
depends on the available sensors. The most common approach is to obtain pose
information based on external systems; the Global Positioning System (GPS) is
frequently used for outdoor scenes [3], and the Vicon tracking system for indoor
scenes [4]. Often, Inertial Measurement Unit (IMU) readings are fused to the
external measurement for stabilization and control of the MAV. However, for
applications in an outdoor environment such as the inspection of power pylons
the accuracy delivered by GPS is not sufficient, and high-precision systems such
as differential GPS are not feasible due to cost, weight, and handling issues.

Other approaches rely on sensors which move along with the vehicle and need
Simultaneous Localization and Mapping (SLAM) procedures. Autonomous vehi-
cles often incorporate Laser Range Finders (LRFs) to perceive depth directly [5].



However, in outdoor environments LRFs have a restricted perception distance
and either the time for scanning an entire volume is considerably high, or the
scanner is too heavy for an MAV. In comparison, visual sensors are light-weight,
deliver the richest representation of a scene, and can be used for indoor as well
as for outdoor applications. Related work in visual localization [6] has shown
that a single sensor is enough to estimate motion in 6 degrees of freedom (DoF),
and yields higher precision than low-cost GPS sensors. The only drawback is
that visual input requires the most computational power to process the data.

In this work, we present a system which provides robust visual servoing
for MAVs based on monocular camera input and a fuzzy logic controller. The
system is well suited for inspection tasks, because the camera’s pitch angle can
be arbitrarily defined and is not restricted to nadir views. The incorporation of a
fuzzy controller allows to quickly change payloads as no model knowledge about
the MAV is required, and it tolerates quickly changing velocity measurements
which are commonly observed in visual pose estimation.

2 Fuzzy Visual Servoing

Visual servoing techniques use visual input to control the motion of a robot.
In general, the goal is to minimize the error between a desired system state
and the noisy measured system state by controlling the system’s variables. For
MAVs such as quad-rotor helicopters, it is feasible to control the speed of four
rotors independently, or on a higher level to control the three system angles roll
Φ, pitch Θ, and yaw Ψ , as well as the thrust T . Given a 6 DoF visual pose
estimate, it is also possible to control the position of the MAV in space using
Position-Based Visual Servoing (PBVS). A position controller has four inputs,
namely the desired position (x∗, y∗, z∗) and the desired yaw angle Ψ∗. Roll Φ and
pitch Θ depend on the position commands, as the MAV has to nick or roll to
obtain a certain position. By changing the desired values accordingly, the position
controller is used to control an autonomous MAV during take-off, hovering, and
landing; in other words, the desired trajectory control for inspection applications
is implemented.

The following sections give an overview of our fuzzy visual servoing approach
and discuss the advantages with respect to related work. Subsequently, our ap-
proach to autonomous take-off and landing is introduced.

2.1 System Design and Overview

Our system design incorporates several properties of the flight hardware, the
visual perception methodology, and the application of airborne inspection. An
overview can be found in Fig. 1.

Many commercially available MAVs, such as the Ascending Technologies Pel-
ican used in this work, already come with an attitude controller which translates
angular and thrust commands into rotational speeds [7]. Attitude control is based
on IMU and accelerometer readings and provides a good basis for robust and
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Fig. 1. Fuzzy visual servoing. Our system consists of a cascaded control loop with
an attitude controller and a position controller. Feedback is received using a camera
mounted on the MAV and subsequent processing by PTAM [8]. The position controller
consists of three independent PID fuzzy logic controllers and a simple proportional
controller to maintain the orientation of the MAV.

stable flight. However, due to the lack of exteroceptive sensors it is prone to drift
and bias, and depends on the accuracy of the system model.

Visual pose estimation overcomes this issue. We use a single monocular cam-
era and an adaption of the well-known Parallel Tracking and Mapping (PTAM) [8]
algorithm to localize the MAV. PTAM is capable of estimating the current cam-
era pose up to scale by simultaneously tracking image patches and maintaining
a bundle-adjusted map. Since visual navigation of an MAV also requires the
correct scale, we place a known ARToolKitPlus marker [9] into the scene dur-
ing initialization. We thus recover a metrical baseline, which leads to correct
metrical scaling of the entire map.

In a local environment, PTAM typically delivers good pose estimates within
a range of a few centimeters, depending on the distance to the scene. However,
the position estimate can considerably jump within that range because of the
error propagation of quantized feature measurements. This has a major effect on
control: The derivative of the position, i.e. the estimated velocity, suffers from
heavy salt-and-paper noise.

Different approaches have been presented to resolve this issue with visual
pose input. Kemp [10] maintains a set of multiple smooth position and velocity
estimates, where the best is selected based on likelihood and processed using
simple PID control. This is similar to particle filtering and thus requires a lot
of additional processing power. Bloesch et al. [11] and Achtelik et al. [12] try
to accurately model the system in a Linear Quadratic Gaussian control design
with Loop Transfer Recovery (LQG/LTR). They incorporate additional sensor
information from IMU, accelerometers, and an air pressure sensor to cope with
pose estimation uncertainties. While this fusion is beneficial, it requires consid-
erable system knowledge about the aerial vehicle and restricts the flexibility.
In contrast, our fuzzy control approach allows to interactively change payloads
based on the application, but also to change the set of rules based on the current
scene and the corresponding visual pose estimation quality.



Table 1. Fuzzy logic rule-set for determining the output based on the current position
error ex and velocity error ∆ex.

∆ex\ex BIG NEG NEG CENTER POS BIG POS

NEG BIG POS POS POS CENTER CENTER
CENTER POS POS CENTER NEG NEG
POS CENTER CENTER NEG NEG BIG NEG

Finally, airborne inspection tasks require a camera which looks at the scene
rather than on the ground. It has recently been shown that this can be achieved
with a single camera by interleaving detailed and overview images in a stream [13].
In contrast to most existing approaches [11][12], we do not require a nadir camera
view; we do not even require a rigid transformation between the camera and the
MAV due to the cascaded controller. Our system only employs the 3D position
and the yaw with respect to the scene for control, so mechanical stabilization of
the camera is possible and the camera’s pitch angle can be arbitrarily defined.

2.2 Fuzzy PID Control

The position controller consists of three identical PID fuzzy logic controllers for
the individual axes and a proportional controller to maintain the orientation of
the MAV. In the following, the controller for the x axis is described.

Based on the desired position x∗ and the current position x, the error ex and
the error change ∆ex can be calculated. Thus, two variables serve as controller
input, whereas the output is the desired pitch angle Θ∗. The error change

∆ex[n] = ex[n] − ex[n− 1], (1)

where n is the current time, gives a rough estimate for the velocity error. The
desired pitch angle Θ∗ is obtained by integrating the relative change of the pitch
angle over time, i.e.

Θ[n]∗ = Θ[n− 1]∗ +∆Θ[n]. (2)

The integration part is necessary to compensate MAV drifts along the roll angle.
Moreover, the temporal integration of the fuzzy logic output enables to cope with
external influences such as wind, battery drain or turbulences.

A typical fuzzy logic controller consists of three blocks, namely fuzzification,
inference and defuzzification. First, the two inputs and the output have to be
fuzzificated, meaning that the measured values are mapped to the truth values
of the fuzzy set. Then, the rule-set of the inference block as shown in Table 1 is
applied; it is defined in a way a human expert would control the pitch Θ when
manually flying the MAV. It can be read in a linguistic way as

IF ex is BIG NEG AND ∆ex is NEG THEN ∆Θ is BIG POS,

in other words if the position error is large and negative, and the velocity error
is also negative then the desired output is large and positive. Based on the five
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Fig. 2. (a) State machine for autonomous flight. (b) MAV trajectory during take-off
(green), drift compensation (magenta), hovering (blue) and landing (red).

membership functions of the first input ex and three of the second input ∆ex,
fifteen rules exist to control the x-position of the MAV.

Finally, the last block of the fuzzy logic control is the defuzzification. The
truth values of the output membership functions are mapped to a real value for
the system input. In case of the x-position controller the change of the pitch
angle is computed. We use the Center-of-Area method for defuzzification, where
the center-of-gravity of the area of the composited output function is mapped
to the x-axis.

2.3 Autonomous Take-off, Hovering, and Landing

Visual servoing is especially beneficial when high positioning accuracy is nec-
essary, namely during take-off, landing, and when hovering close to objects. A
state machine demonstrating the individual steps and a resulting trajectory is
shown in Fig. 2.

For autonomous take-off, we first acquire a sparse map of the area around
the starting point by manually translating the vehicle while looking towards the
marker. As the marker can be tilted, the reference coordinate system for naviga-
tion is set with an xy-plane parallel to the ground, based on the IMU readings
of the MAV. Finally, the first waypoint is set just above the starting point, and
the MAV increases the thrust until it starts climbing and receives the first valid
pose estimate. Typically, the missing accurate system model leads to a drift
compensation phase where the correct parameters are automatically estimated.
Afterwards, the MAV automatically hovers at the commanded waypoint until it
receives a new desired position. For landing, we decrease the thrust of the MAV
so that a visually supervised decline is initiated. Once the map is lost close to
the ground, the MAV continues to decline with the same thrust until it touches
the ground.



Table 2. Performance for outdoor hovering. The RMS and maximum error for the z
and xy-plane and in 3D space (xyz) are compared to [12].

Approach Distance [m]
RMS error [m] Max error [m]

z xy xyz z xy xyz

Ours, 320× 256 px 10.0 0.0643 0.1495 0.1627 0.2189 0.2716 0.3471
Achtelik et al.[12] 3.3 0.11 0.44 − − − −

3 Experiments and Results

We performed several experiments to evaluate the accuracy of our visual control
approach which are discussed in the following. To obtain these results, we used
an Ascending Technologies Pelican quad–rotor helicopter equipped with a me-
chanically stabilized industrial camera. We streamed images with a resolution
of 320 × 240 px at 30 Hz via a wireless 802.11n link to the ground station. To
ensure a reliable connection for control commands, we send control commands
over a separate X-Bee wireless data link directly to the MAV’s autopilot.

Note that a fair comparison of our visual servoing approach to other work
would only be possible in a simulated environment. All results depend on the
scene, the distance to the scene and for outdoor experiments on the wind con-
ditions.

3.1 Hovering Results

For measuring the hovering accuracy in an outdoor setting we hovered directly
above the take-off position at an altitude of 1.5m and a horizontal mean distance
to the feature points in the map of about 10m. As error measurement we use
the Root Mean Square error (RMS) in individual directions, and we compare
our results to the work of Achtelik et al. [12] in Table 2. It can be seen that
we are outperforming their approach, although we do not yet incorporate IMU
measurements and employ a non-nadir view with larger distance to the scene.
An example for the hovering trajectory is visualized in Fig. 2.

3.2 Trajectory Flight Results

Not only the accuracy at a fixed position is important, but also the trajectory
between defined waypoints is of interest. Therefore, we evaluated the accuracy
of flight trajectories during an indoor experiment. We defined a 2 × 2 m square
trajectory sampled in path lengths of 1.0 m at an altitude of 1.5 m as depicted
in Fig. 3 and measured the RMS error in individual directions. The results are
compared to those of Bloesch et al. [11] in Table 3. Our results can compete, and
we are not dependent on a wired connection between MAV and ground station.
Furthermore, we do not rely on a textured ground plane which is often not
available when flying above a road or grass, and our approach does not require
a system model of the MAV.



Table 3. Performance for the trajectory flight. The RMS and maximum error for xyz
are evaluated by sampling along the trajectory in 0.5 mm steps.

Approach
RMS error [m]

x y z xyz

Ours, 320× 256 px 0.0704 0.1109 0.0663 0.1471
Blösch et al. [11] 0.0995 0.0748 0.0423 −
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Fig. 3. MAV trajectory along a predefined 2.0 × 2.0 m square path. The first two
figures show the temporal change of the x and y coordinates and the third the spatial
representation of the trajectory in 3D space. Waypoints are defined in steps of 1.0 m.

Further results demonstrating our performance during take-off, hovering, and
landing, as well as during phases where occlusions of the scene occur, can be
found online1 in form of a video.

4 Conclusion

We have presented a robust visual servoing system for MAVs based on monocular
camera input and a fuzzy logic controller. The system is well suited for inspection
tasks, because the camera’s pitch angle can be arbitrarily defined and is not
restricted to nadir views. The incorporation of a fuzzy controller allows to quickly
change payloads as no model knowledge about the MAV is required, and it
tolerates quickly changing velocity measurements which are commonly observed
in visual pose estimation.

In future work we will focus on running the controller on–board by splitting
the tracking and mapping processes according to [14]. Additionally, we would
like to investigate the adaptation of the fuzzy rules based on the estimated visual
input quality.
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