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Abstract. The advent of hand-held devices which incorporate a Java
Virtual Machine (JVM) has greatly facilitated the development of mo-
bile and wireless applications. Many of the possible applications, e.g. for
e-commerce or e-government, have an inherent need for security which
can be satisfied by methods of public-key cryptography. This paper in-
vestigates the feasibility of public-key implementations on modern mid-
range to high-end devices, with the focus set on Elliptic Curve Cryptog-
raphy (ECC). We have implemented the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) for both signature generation and verification
and we show that both can be done on a J2ME-enabled cell phone—
depending on the device—in times of a few seconds or even under a
second. We also compare the performance of ECDSA with RSA signa-
tures and provide some key issues for selecting one protocol type for
implementation in a constrained device.

Keywords: Public-key cryptography, elliptic curve cryptography, digital
signature, ECDSA, J2ME-enabled device.

1 Introduction

Today the market for mobile communication and computing devices like cell
phones and PDAs is growing rapidly. The issue of application development for
such a great number of different devices has been addressed by the integration
of Java Virtual Machines (JVMs). Most of today’s devices conform to Sun Mi-
crosystems’ Java 2 Platform, Micro Edition (J2ME). J2ME devices allow a fast
deployment of mobile and wireless applications. Many possible applications have
an inherent need for security, e.g. applications for mobile electronic payment,
authentication to access secure networks, digitally signed mobile transactions,
secure messaging and digital rights management. Cryptographic secret-key and
public-key algorithms can be employed to satisfy this need for security.

It is noteworthy that public-key methods require the presence of a public-key
infrastructure (PKI). A PKI allows public keys to be validated and connected
to the respective owner. This is accomplished through the generation, provision
and revocation of user certificates which is usually done by trusted parties called
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Certificate Authorities (CAs). Once established, PKI services can be provided
to all network-enabled devices including hand-held devices.

It is a good practice to implement security systems as open systems. An open
system complies with specified, publicly maintained, readily available standards
and can therefore be connected to other systems that comply with the same
standards. Such systems bear many advantages, e.g. interoperability, flexibility,
and public acceptance. For example, an operator of an e-commerce portal may
want to enable customers to buy via cell phones. Requirements for transactions
are most likely secrecy, protection from data manipulation and non-repudiation.
Additionally, the customers could require the e-commerce portal to authenticate
itself. All these services can be provided by a set of secret-key and public-key
cryptographic methods. If public standards like [1,12,13,14] are used, then the
portal can make use of already established PKIs, interact with already existing
client application and may even be able to act as a intermediary for other portals.

The usefulness of public-key methods in mobile and wireless applications
is evident, but they come at a price. All public-key algorithms require com-
plex mathematical computations. Constrained devices may not be able to offer
enough resources to allow an implementation of the required public-key proto-
cols. The work described in this paper has been conducted to examine the cur-
rent situation in this regard. With our implementations we show the feasibility of
digital signature operations in modern-day cell phones. We provide performance
timings which have been measured on four different cell phone types for imple-
mentations of ECDSA and RSA signatures. The results are subsequently used
to derive some general recommendations for mobile and wireless applications.

The rest of the paper is organized as follows. Section 2 gives a short overview
of public-key cryptography and highlights important properties of Java-enabled
hand-held devices. Section 3 deals with optimizations for Java applications which
incorporate public-key algorithms. In Section 4 we provide the results and con-
clusions from our performance measurements on four different cell phone models.
Section 5 gives a short summary of the presented work and also some prospects
on the integration of public-key algorithms into constrained computing devices.

2 Public-key Cryptography in Constrained Devices

2.1 Public-key Cryptography

Public-key cryptography is a relatively new topic in the long history of cryp-
tography. It was first proposed in the 1970s by Diffie and Hellman with their
key agreement protocol [2] and by Rivest, Shamir, and Adleman with the RSA
algorithm [15].

Public-key methods are generally based upon so-called trapdoor one-way
functions. These are mathematical functions which are easy to compute in one
direction, but are hard to invert. However, the inversion can be facilitated if one is
in the possession of some piece of additional information: the so-called trapdoor
information. The main current public-key algorithms rely on the hardness of one
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of two mathematical problems: integer factorization (IF) or discrete logarithm
problem (DLP). The equivalent of the DLP for elliptic curves—denoted as elliptic
curve discrete logarithm problem (ECDLP)—is particularly interesting, as no
subexponential-time algorithm for solving it has been discovered so far. This fact
distinguishes Elliptic Curve (EC) algorithms from other cryptosystems which
are based on IF or DLP like RSA [15] and Diffie-Hellman [2]. In contrast to the
ECDLP, there are known subexponential-time algorithms for solving both the
IF problem and the DLP in conventional number fields.

A general relation exists between the hardness of the underlying problem
and the minimal length of the operands, i.e. keys and other parameters, of the
public-key algorithm. For a given cryptographic algorithm and a desired level of
security the operands must have a certain length. The operand length has a direct
impact on the performance and memory requirements of an implementation of
the algorithm. The assumed hardness of ECDLP results in shorter operands for
EC methods in comparison to other algorithms. In [9], Lenstra et al. provide a
thorough comparison of the security of public-key cryptosystems based on IF,
DLP, and ECDLP. For instance, a key size of 190 bit for an EC algorithm is
approximately equivalent to an RSA key size of 1937 bit under the condition
that there will be some progress made towards more efficient solutions of the
ECDLP in the future. If no such progress is made, then the required RSA key
for equivalent security even grows to over 3137 bit.

2.2 Properties of Java-enabled Devices

If public-key algorithms are to be implemented in constrained devices then EC
methods appear to be an attractive option. But all public-key operations re-
quire substantial computing resources. Furthermore, despite the many advan-
tages which are offered by Java it has a poor performance in comparison to
native code. Therefore, achieving an adequate performance is the biggest chal-
lenge of implementing public-key algorithms in Java on constrained devices. In
the following we will examine the current situation on Java-enabled devices re-
garding support for cryptographic algorithms.

The most widely supported mechanism for Java deployment on hand-held
devices conforms to Sun Microsystems’ Java 2 Platform, Micro Edition (J2ME).
The base set of application programmer interfaces (APIs) is defined in the Con-
nected Limited Device Profile (CLDC) which is currently available in version 1.0
and 1.1 [17,19]. The CLDC together with the Mobile Information Device Profile
(MIDP) form the Java runtime environment for most of today’s Java-enabled
hand-held devices. The MIDP is available in version 1.0 [18] and version 2.0
[6]. Applications which conform to MIDP are commonly called MIDlets. MIDP
1.0 provides a thinned down variant of the standard Java API and is imple-
mented today in many mobile devices. MIDP version 2.0 adds limited support
for games, media control and public-key certificates. Moreover, secure connec-
tions over HTTPS and secure socket streams (based on either TLS version 1.0,
SSL version 3.0 or WTLS) are provided. However, there is no access to the cryp-
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tographic algorithms which implement the secure connection. Therefore, tasks
like data signing cannot be done with the MIDP 2.0 API.

The best solution for the provision of general public-key methods for the
application programmer would be the inclusion of the required cryptographic
algorithms into MIDP. In this scenario, the computational extensive methods
could be implemented efficiently by the Java Runtime Environment (JRE) and
could use all the features of the respective device. Unfortunately, so far neither
version of MIDP offers support for cryptographic methods. Not even the highly
useful BigInteger class from the standard Java API, which facilitates low-level
arithmetic for many cryptographic algorithms, is included. However, the Java
Specification Request (JSR) 177 [7], which is currently being prepared for first
release, proposes the integration of a Security Element (SE) into J2ME devices.
Such an SE provides support for secure storage of sensitive data, cryptographic
operations and a secure execution environment for security features. The in-
tegration of these APIs into J2ME devices will be a big step towards mobile
and wireless application security. But J2ME devices without such a support will
nevertheless stay in broad use in the next years.

Device-specific APIs for cryptographic operations could be provided by the
manufacturer. But the use of such APIs would necessitate different Java MIDlet
versions for different devices. So this option is only applicable if there is a known
and relatively small number of target devices.

Due to complications with code signing, MIDP 2.0 does not include the
possibility for the installation of user libraries. Therefore it is not possible to
install a cryptographic library shared by different MIDlets to reduce code size.

The current situation leaves only one practical option for applications which
require access to cryptographic algorithms. This option is to bundle the required
cryptographic classes with the actual application classes. A drawback of bundling
is that it leads to relatively large code sizes. This can cause problems with devices
which enforce a limit of the application size and therefore inhibit application
deployment.

3 Implementation Issues

As outlined in Section 2, two important factors must be considered for MIDlets
which include public-key algorithms: performance and code size. Based on our
practical work, we provide some hints for optimization of both factors.

3.1 Performance

The effectiveness of different performance optimizations is dependent on the un-
derlying machine and JRE. However, there is a number of useful general rules
which should be regarded. Many articles are available which give hints for achiev-
ing better performance in Java. From our experience, some of these hints are
more applicable to public-key implementations than others and we try to list
the more effective ones in the following.
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The most convenient way for optimization is to use the optimization switch
of the java compiler (-O for Sun’s javac). Such an compiler optimization can
both increase performance and decrease code size.

An important step of optimization consists of application profiling. Profiling
identifies methods, which are frequently called and are worth optimizing. Various
tools are available for profiling of Java applications. For example, Sun’s JRE has
a non-documented switch -prof which turns on profiling. All general rules for
optimization like object recycling, avoidance of String concatenation, inlining
of short methods and replacement of short library methods (e.g. Math.max) by
local methods should be considered.

Implementations of public-key algorithms often deal with multi-word values
and look-up tables. Java arrays seem to be the natural choice, but it should be
noted that array accesses introduce a certain overhead for index range checking.
If array elements are statically indexed, i.e. the index is a constant value, then it
can be favorable to break the array into a number of separate variables. Appli-
cation wide constants should always be declared as static final, which allows
for better performance and reduces code size.

Another problem can be posed by lengthy initialization code. Such initial-
izations can be moved to a static initializer block of a class which is loaded
at startup. This way the execution of the actual public-key algorithm can be
shortened at the expense of a longer MIDlet load time. Another way is to do
initialization in a separate background thread. This approach can be very favor-
able if the MIDlet has to wait for input, as the initialization can be done during
this period. In the case of ECDSA signature generation, this strategy can lead
to a dramatic performance gain, as outlined in Section 4.2.

3.2 Code Size

The first step to reduce code size is to get rid of unused classes. If all of the
MIDlet classes are written by the developer, then he can handcraft them to his
specific requirements. In this fashion, the code size can be kept small. When
an existing cryptographic library is included, then there are often many unused
classes. There are quite a few tools available which can analyze MIDlets and
remove unnecessary classes.

Most J2ME devices require the class files and additional resources (e.g. pic-
ture files) to be put in a Java Archive (JAR) file. A JAR file conforms to the
widely adopted ZIP format and features some additional meta data. Most im-
portantly JAR files provide compression of the bundled files. Compression is
optional, but should always be used for MIDlets.

Another possibility for code size reduction is obfuscation. Normally, obfusca-
tion is used to prevent decompilation of Java class files. Obfuscator tools usually
replace field, method and class names with shorter ones, remove debug infor-
mation and compress constants. These measures can result in a substantially
smaller bytecode. There are however some issues related to obfuscation which
can affect the functionality of a program. Most importantly, class renaming can
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prevent the explicit dynamic loading of classes. Obfuscation tools can be con-
figured to perform only certain code modifications and we recommend a careful
selection of those modifications.

4 Practical Results

We have implemented the complete ECDSA signature generation as specified in
ANSI X9.62 [1] in a Java MIDlet. We have used the parameters and vectors of
Section J.2.1 of ANSI X9.62, which are based on an elliptic curve over the binary
extension field GF(2191). All our MIDlets bundle the application classes with the
library classes which provide the cryptographic functionality. The MIDlets have
been built with Sun’s Wireless Toolkit version 2.1 and J2SDK 1.4.2.

Four different J2ME-enabled cell phone types have been used to measure
execution times for EC point multiplication and ECDSA and RSA signature
generation and verification. Timing results for the mid-range devices Siemens
S55, Nokia 6610, Nokia 6600, and the high-end Ericsson P900 are provided.

All measurements have been done on the actual devices using their system
time features available through the CLDC 1.0 API. Therefore the accuracy of the
measured times is not very high. Nevertheless the measurements provide a solid
basis for comparison of different algorithms and for estimates of response times
of public-key enabled applications. The measurements of different algorithms are
given as time for the first execution and—where sensible—as an average of 20
executions. Algorithms with running times of more than 30 seconds are clearly
unsuited for that particular device and therefore no averaging was done (RSA
signature generation on Nokia 6610 and Siemens S55, ECDSA signature gener-
ation on Siemens S55). Note that normally, but not always, the first execution
takes longer than the average due to initializations like class loading.

4.1 EC Point Multiplication

The fundamental building block of virtually all EC cryptosystems is a compu-
tation of the form Q = k · P , which is nothing else than adding a point k − 1
times to itself, i.e. k · P = P + P + · · · + P . This operation is called point mul-
tiplication or scalar multiplication, and dominates the execution time of EC
cryptosystems. Scalar multiplication on an EC is analogous to exponentiation in
a multiplicative group. The inverse operation, i.e. to recover the integer k when
the points P and Q = k · P are given, is the elliptic curve discrete logarithm
problem (ECDLP). The hardness of the ECDLP is fundamental to the security
of ECC as outlined in Section 2.1.

The time which is required for a EC point multiplication determines the
overall execution time of an ECC algorithm to a very high degree. Therefore we
concentrated our effort on an efficient implementation of the point multiplication.
We used Montgomery’s method [11] in combination with the fast multiplication
(projective version) as described by López et al. [10]. For the arithmetic opera-
tions in the underlying finite field GF(2191) we implemented methods described
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Table 1. EC point multiplication execution time (in ms)

Device First execution Average

Nokia 6610 2.183 2.150
Nokia 6600 984 720
Ericsson P900 578 428
Siemens S55 17.135 17.216

in [4]. For field multiplication we used the left-to-right comb method (Algorithm
4 in [4]) with a window size of 4. Squaring was done with precomputed 8-bit poly-
nomials (Algorithm 7) and inversion with the Extended Euclidean Algorithm for
inversion in GF(2m) (Algorithm 8).

Table 1 lists the measured execution times in milliseconds for a single point
multiplication over the finite field GF(2191) on the different tested devices. An
EC point multiplication can be realized in under a second to a few seconds on
three of the tested devices. However, it can be seen that the performance on the
Siemens S55 is not high enough to allow an implementation of EC algorithms
with a sensible response time.

4.2 ECDSA and RSA Signature Generation and Verification

The timings for ECDSA and RSA signature generation are given in Table 2,
while the signature verification results are listed in Table 3. The key sizes of both
implementations have been chosen according to [9] to provide the same level of
security. Both algorithms use the hash method SHA-1 for message digesting.

The ECDSA implementation uses elliptic curves over the binary extension
field GF(2191) and a key size of 191 bit. For the test runs, the parameters and
vectors of Section J.2.1 of ANSI X9.62 [1] have been used. The implementation
uses the code of the previously described EC point multiplication. Modular mul-
tiplication and inversion in GF(p) are done in the Montgomery domain. We have
used Montgomery multiplication with the Separated Operand Scanning (SOS)
as described in [8] by Koç et al. and the Modified Kaliski-Montgomery inverse
as described in [3] by Savaş et al.

The RSA implementation uses a key size of 1937 bit. The implementation
is based on the IAIK JCE micro edition [5], which uses the Chinese Remain-
der Theorem and Montgomery multiplication. The RSA implementation just
serves as comparison for the ECDSA implementation and therefore no special
algorithms like Multi-Prime RSA [16] have been examined.

The code sizes of our MIDlets were 53 kB for ECDSA and 60 kB for RSA.
These figures refer to the size of the JAR file of the full implementations of
signing and verifying including test code. No obfuscation has been used.

ECDSA signature generation has the property that a great deal of precom-
putation can be done which does not involve the signed data. Most significantly,
the EC point multiplication can be precomputed at runtime. If an application
has some idle time (e.g. waiting for user input), then the precomputation can be
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Table 2. ECDSA and RSA signature generation execution time (in ms)

ECDSA RSA

Device First execution Average First execution Average

Nokia 6610 2.294 2.266 74.682 N/A
Nokia 6600 860 763 7.125 4.077
Ericsson P900 453 418 3.703 2.725
Siemens S55 18.963 18.117 883.602 N/A

Table 3. ECDSA and RSA signature verification execution time (in ms)

ECDSA RSA

Device First execution Average First execution Average

Nokia 6610 4.382 4.449 2.825 2.488
Nokia 6600 1.266 1.247 157 139
Ericsson P900 843 854 109 97
Siemens S55 35.277 N/A 30.094 30.661

done in the background in a low priority thread. In this way, the completion of
the signing process upon availability of the data to sign becomes negligible. Our
tests showed that signing can be done in a few milliseconds.

4.3 Analysis of the Measured Data

It can be seen from the listed timings that the EC point multiplication is indeed
the dominating factor for the ECDSA operations. ECDSA signing requires one
point multiplication while verifying requires two. Therefore verification takes
approximately twice the time of signing. The difference between signing and
verification is more dramatic for RSA signatures. RSA public-key pairs are nor-
mally selected so that the public key is relatively small while the private key is
big. This is the reason that the RSA signature verification is up to 30 times as
fast as signature generation (Nokia 6600).

A direct comparison of ECDSA and RSA signatures reveals that ECDSA
signing is faster than RSA signing (33 times on the Nokia 6610) and RSA ver-
ifying is faster than ECDSA verifying (9 times on the Nokia 6600 and Ericsson
P900). ECDSA signing and verifying performs in under 5 seconds on all devices
(except Siemens S55). RSA verifying performs in under 3 seconds on all devices
(except Siemens S55). RSA signing takes under 5 seconds on the Nokia 6600 and
the Ericsson P900 but is very slow on the Nokia 6610, probably due to the lack
of an efficient hardware multiplier. Unfortunately, there are rarely any details
like microprocessor type, incorporated hardware accelerators (e.g. coprocessors),
memory types and sizes, clock frequency etc. publicly available for the particu-
lar phone models. This hampers all attempts to interpret the measured results
based on these data and to draw conclusions in this regard.

Decisions for a cryptosystem should be based on details of the particular ap-
plication. Important factors can be the number and ratio of signature generations



A Survey of Public-Key Cryptography on J2ME-Enabled Mobile Devices 943

and verifications, the presence of waiting times for user input and compatibility
with existing systems. For example, the full check of digital signed data requires
the retrieval of the whole certificate chain and one verification for each certifi-
cate. In this case RSA should be chosen for its faster verification. On the other
hand, applications which perform a signature of data which is entered by the
user could perform precomputations for ECDSA during waiting times and do
the actual signing in a few milliseconds.

The following general recommendations for implementation of public-key
cryptosystems in J2ME devices can be derived from our measured performance
results:

– If only the verification of digital signatures is to be performed, then RSA
signatures should be implemented.

– If only signing of data is required, then ECDSA signatures should be chosen.
– If both signing and verification are required, then the choice should be de-

pendent on the particular application.

5 Summary

In this paper we have outlined the current situation regarding the implementa-
tion of public-key algorithms in J2ME-enabled devices. We have presented some
practical hints for the optimization of performance and code size. Furthermore
we have shown the feasibility of Java implementations of public-key operations
on constrained devices regarding both ECDSA and RSA signatures. Our timing
results have shown that modern J2ME devices are capable of performing public-
key algorithms which offer a high degree of security (191 bit ECDSA, 1937 bit
RSA). High-end devices like the Ericsson P900 can even execute ECDSA sig-
nature generation and verification in under one second. Furthermore we have
compared ECDSA and RSA signature algorithms which can serve as a basis for
selecting particular public-key protocols for secure mobile applications.

It is only a matter of time until the growing processing power of mobile
devices allows for an easy integration of public-key algorithms into mobile and
wireless applications. The adoption of the Security and Trust Services API (JSR
177) [7] by device manufacturers will provide a good basis for application de-
velopers to produce secure MIDlets. And such secure applications are vital for
building trust of end users and for opening whole new fields of application for
mobile computing.
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