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Abstract—Ever more dependable embedded systems are built
with commercial off-the-shelf hardware components that are not
intended for highly reliable applications. Consequently, software-
based fault tolerance techniques have to maintain a safe operation
despite underlying hardware faults. In order to efficiently develop
fault tolerant software, fault injection is needed in early develop-
ment stages. However, common fault injection approaches require
manufactured products or detailed hardware models. Thus, these
techniques are typically not applicable if software and hardware
providers are separate vendors. Additionally, the rise of third-
party OTS software components limits the means to inject faults.

In this paper, we present a virtual fault injection framework
that simulates safety-standard aligned fault models and supports
OTS software components as well as widely-used embedded
processors such as ARM cores. Additionally, we show how
to integrate the framework into various software development
stages. Finally, we illustrate the practicability of the approach by
exemplifying the integration of the framework in the development
of an industrial safety-critical system.

I. INTRODUCTION

Dependability is of the utmost importance for many em-
bedded and cyber-physical systems. For example, a reliable
and safe operation is essential for systems whose failures
could result in loss of life, significant property damage, or
damage to the environment. Since such systems have to
realize ever more features they have increasing demands on
computing performance. In some domains this lead to the
trend of using commercial off-the-shelf (OTS) processors that
are not intended for highly reliable applications. By using OTS
processors, the designers can use state-of-the-art hardware that
offers a high performance. Moreover, costs can be reduced
significantly, since OTS components come at lower costs
than their certified counterparts [1], even though they may
imply in additional redundant units. However, note that such
components are not suited for highly-critical domains where
it is only allowed to use certified hardware (e.g. railway).

At the same time, the semiconductor industry continues
with structure and voltage downscaling, which leads to highly
integrated but also highly sensitive devices. Reliability issues
arise from permanent hard errors due to manufacturing, pro-
cess variations, aging, and wear out [2]. Furthermore, there are
soft errors caused by energetic radiation particles, capacitive
coupling, electromagnetic interference, and other sources of
electrical noise [3]. Historically, soft errors were mostly of
concern for space applications. However, it is expected that
failures in time for a chip will increases with Moore’s law

and thus handling soft errors will be a key challenge in future
embedded system design.

Consequently, software should be effective in coping with
faults in the underlying hardware. In order to master this
challenge, we propose to create systems that are inherently re-
silient. Today, the issue of hardware fault tolerance is typically
assigned to specialized persons. To enhance the resilience of
the entire software system, we propose to introduce reliability-
awareness throughout all stages of software development. For
example, the vulnerability to hardware faults can be signifi-
cantly reduced by exploiting inherent fault masking properties
of software algorithms and defensive programming.

However, to establish this approach, software developers
need to understand the impact of hardware faults on their
software. Even though analysis techniques exists to evaluate
software behavior in the presence of hardware errors (e.g.
Hardware-Software Interaction Analysis), there still exists a
major need for a fault injection tool to evaluate the vulner-
ability to hardware faults in early development stages. The
tool should provide an understanding and measurement of how
hard and soft errors affect the behavior of the software. This
allows the identification of software parts that are especially
vulnerable to hardware faults in early stages. Thus, software
developers can early adapt their software in order to fulfill the
reliability targets. This could prevent late stage redesigns. To
ensure a high level of feasibility, a simple integration into an
existing tool chain is desired.

Another trend is to use third-party OTS software. Typically,
their source code is not available. Thus, to assess the reliability
of such software components and software systems including
these components, a fault injection technique that does not
rely on knowing the source code is needed.

This paper contributes towards filling these gaps of reliabil-
ity assessment with the following main contributions.

¢ Introduction of a software-based virtual fault injection
(VFI) framework that is applicable without knowing
hardware or software implementation details.

o Proposal how to integrate the VFI framework in a typ-
ical software development process in order to establish
reliability-awareness throughout the implementation and
test stages.

o An industrial case study illustrating the integration of the
VFI framework in the development of a safety-critical
controller for hydro-electrical power plants.



II. RELATED WORK

Fault injection (FI) allows better understanding of the sys-
tem behavior, if faults are present. Table I gives an overview of
FI techniques and their applicability for OTS-based systems.
Depending on the design stage, faults can be injected with
hardware FI techniques into finalized parts (e.g., by using
radiation or manipulation), or during earlier phases using
adaptable prototyping approaches [4]. During concept phases
system-level description languages (e.g., SystemC) could be
used the trigger of faulty hardware behavior [5]. Further
established approaches are simulation- and emulation-based
techniques that manipulate high-level hardware descriptions
(e.g., VHDL models) [6]. A considerable disadvantage of these
methods is that the detailed design of the processor (e.g., RTL
model, netlist) is required. This information is typically not
available when using third-party processors.

An approach to perform FI for OTS processors-based plat-
forms is to use their on-chip debug features (e.g., JTAG) as
proposed in [7]. However, these approaches are very platform
dependent, since they rely on specific hardware features.
Another approach is software-based FI that executes additional
software to modify the state of the system [8]. These methods
can represent faults in hardware components, which are acces-
sible by the software, such as registers, memory, etc. However,
software-based FI offers only limited levels of observation and
control and it is very challenging to model permanent faults.
Furthermore, it requires to modify source code. Consequently,
it does not support closed-source OTS software components.
Thus, the Islam et al. [9] proposed a binary-level fault injection
technique. However, their approach only supports input errors
and does not model specific hardware faults.

To overcome these limitations of traditional FI techniques,
there are proposals to adapt emulators performing hard-
ware virtualization to simulate faults. The Quick EMUIlator
(QEMU) [10] is open source and targets the emulation of hard-
ware for embedded systems. It features the fast emulation of
several CPU architectures (e.g., ARM, x86, Sparc, Alpha) on
several host platforms (e.g., ARM, x86, PowerPC). Recently,
QEMU-based tools realizing the injection of soft errors have
been proposed [11], [12]. Permanent memory-related faults are
considered in [13]. For our approach, we extend the QEMU-
based FI tool presented in [14]. It supports advanced realistic
memory and processor fault models that go beyond simple
bit-flips and stuck-at faults (SAF).

TABLE I
COMPARISON OF FAULT INJECTION TECHNIQUES
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However, it is not possible to simulate faults that can not be
mapped to the processor components represented by QEMU
(e.g. instructions, memory cells/addressing). Such faults in-
clude for example, voltage glitches, clock drifts, short circuits,
etc. Another drawback of the QEMU-based approach is the
relatively slow simulation speed (e.g. compared to emulation-
based approaches). Thus, we propose to design the fault library
carefully, so that only representative faults are tested.

Although, many researchers have focused on FI, only a very
few studies show how to apply them during various develop-
ment stages in domains with high dependability requirements.
To the best of our knowledge, only Pintard et al. [15] present
an initial approach for automotive development according to
ISO 26262. However, their approach depends on techniques
that are not applicable when using OTS hard- and software.

III. VIRTUAL FAULT INJECTION FRAMEWORK
A. Fault Modeling

The proposed VFI framework supports the fault model
shown in Table II. This allows to fulfill IEC 61508 SIL 3
requirements regarding fault modeling to assess fault tolerance
techniques for processor and RAM [14]. According to their
duration, the simulated faults can be permanent, transient, and
intermittent. The fault can be triggered if a certain program
counter (PC) is reached or whenever the target resource is
accessed. Furthermore, the accuracy of the fault models is
increased by taking particularities of memory components
into account. The framework features functional fault models
describing the deviation of an observed and a specified behav-
ior after a certain number of memory operations have been
performed [16]. The framework supports static and dynamic
functional faults that are sensitized by performing operations
on a single cell or on two cells. The fault model includes
faults that are triggered after one or two operations. The faults
can be defined in a user-friendly XML format. For a detailed
description of the fault model the reader is reffered to author’s
previous work [14].

B. Fault Injection Procedure

We propose a reliability assessment based on four steps as
shon in Fig. 1. First, the hardware usage characteristics of
the application are profiled. Based on this information a fault
library is created containing fault models for an efficient fault
injection campaign. Next, the framework injects the defined
faults and the resulting application outputs are then saved.
Finally, these outputs are interpreted and a clear and detailed
report is provided. We implemented the framework for an
ARMD architecture. However, the approach could be relatively
easiliy adapted for other architectures.

1) Application Profiling: To improve the efficiency of fault
injection campaigns, the VFI framework first collects exe-
cution statistics for the tested application. A golden run is
executed to record the memory and register usage, similar to
that proposed in [17]. QEMU dynamically translates currently
processed guest instructions to host instructions. The execution
statistics are collected before the translation takes place. More
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specifically, if the instruction performs a memory or register
access, the current PC and the address is logged.

If the assessed software is non-functional and purely imple-
ments fault tolerance mechanisms, this step can be skipped.
Then the fault library generation is not based on an execution
profile, but on a definition of faults that should be handled by
these mechanisms.

2) Fault Library Generation: The fault library consists of
multiple XML files, where each file defines a fault that should
be injected. Although, the FI tool allows to inject multiple
faults at the same time, we only consider single faults to
limit the execution time. Based on user-provided information
a script generates the fault library. The user can define the
target components, fault types and number of injected faults.
For example, to achieve a quick overview of the behavior of
the application under faulty circumstances SAF and bit-flips
are often sufficient.

Instruction Decoder Faults: Random instructions chosen
from the binary are replaced with a NOP instruction to sim-
ulate ’inactive decoder faults’ or by another randomly chosen
instruction to simulate 'wrong instruction decoder faults’ as
defined in [18].

Memory/Register Cell and Address Decoder Faults: The
tested fault modes and the number of cells that are affected
are user-defined. For example, the fault can have an effect on
only one bit or on a whole word.

To increase the efficiency of permanent fault injections, the
hardware parts that are used more frequently by the application
are more likely to become victims. Therefore the register
and memory usage statistics are used. Target cells are chosen
randomly by using probabilities that are weighted according
to the number of accesses of these cells.

Transient faults are generated by randomly chosing
PC/address pairs from the execution statistics. To ensure that
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Overview of VFI framework showing the steps of hardware reliability assessment of an application-software.

transient faults are injected at a point in time when the target
address is used, the fault is triggered whenever the given PC
is reached.

3) Fault Injection: To inject faults during the execution of a
binary, QEMU is extended. A fault injector reads the currently
processed instruction and a fault library. This information is
used by a controller to decide whether and where a fault
should be injected. For a more detailed description about the
FI extension, we refer to [14].

4) Interpretation of Results: Finally, the consequences of
the injected faults are evaluated by analyzing the generated
outputs. We consider the following three fault effects. First,
the fault could be masked, which means that the output is
identical to the result of the golden fault-free execution.

Second, the execution could crash. For example, it the fault
could delaying the output (e.g., due to an infinite loop) or
cause a segmentation fault. There are well-known techniques
to manage these kind of faults, such as a watchdog or fault
handling mechanisms provided by the operating system. To
identify time-related faults, we execute the faulty application
with a timeout. If the execution has not finished after a time
twice as long as the time needed for the golden run, the fault
is considered as a timing fault. Other faults that are detected
by the system (e.g., segmentation faults) are identified by
searching error messages in the output files.

Third, we consider silent corruptions that lead to incor-
rect outputs. Such faults are especially hard to handle by
the application, since the system seems to work correctly,
although it produces erroneous results. Thus, it is of utmost
importance for the developer of a reliable system to be aware
of these kind of faults. The VFI simulates faults that potentially
cause silent-corruptions and gives feedback about the resulting
erroneous output. Then, the developer can design appropriate
mechanisms according to the impact of the error.

TABLE II
DETAILS ABOUT FAULT LOCATION AND MODES OF SUPPORTED FAULTS

Comp.  Target Fault modes Implementation
CPU Instruction decoder New value Replaces current instruction with a given instruction
Register cell Bit-flip, SAF, new value Changes the data of the register according to the fault mode
Register address decoder Bit-flip, SAF, new value Changes the address of the register according to the fault mode
RAM Address decoder Bit-flip, SAF, new value Changes the address according to the fault mode

Memory cell or R/W logic  Bit-flip, SAF, static and dy-

namic fault models

Changes the data according to the fault mode
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Fig. 2. Proposed Fault Injection in Development Process

In order to provide clear feedback to the developer, we
summarize the frequency of these fault effects in an XML
report. For more detailed information, the report also includes
details of the injected faults and links to the corresponding
results generated by the application.

C. Tool Chain Integration

The VFI framework is well suited for the integration in an
existing tool chain. It does not require to adapt the software
or the binary that should be assessed. In many tool chains
QEMU is already used for cross-platform development. Since
the VFI framework is an extension of QEMU, the standard
QEMU installation routines can be applied and various oper-
ating systems are supported (e.g. Windows, Linux, OSx). For
assessing a binary with the VFI framework, it is only necessary
to execute a script managing the above described steps of the
FI campaign. Finally, the results of the FI experiments are
represented in an XML format that allows an easy parsing
and representation by existing tools.

D. Support of OTS-Based Systems

1) VFI for the Assessment of OTS Software Components:
As the use of OTS-based software components in the context
of safety-critical applications is increasing, the problem of
profiling this software is of paramount importance. For ex-
ample, the automotive AUTOSAR standard proposes a higher
penetration of OTS software across product lines [9]. They
should enhance the re-usability, reduce the time to market, and
improve product quality [19]. Typically, these components are
commercially available without source code that could be used
for assessment purposes. However, before reusing a software
component, the context it is intended to be build in has to be
carefully evaluated [20]. This includes hardware and physical
aspects. To assess the reliability and behavior of OTS software
when faults appear in the underlying hardware, fault injection
is needed. Additionally, this supports the development of

component wrappers that should detect errors or suspicious
activity of the OTS component.

The proposed VFI is well suited to analyze the reliabil-
ity characteristics of OTS software, since it can be applied
straight-forward without the need to change the source code
or executable. Additionally, it offers a fault model that is able
to realistically represent the target hardware.

2) VFI for Systems Based on OTS processors: The QEMU-
based VFI framework provides a high-level emulation of
typical embedded processor architectures, such as ARM cores.
Based on this abstraction, the VFI framework supports realistic
instruction-level hardware faults without the need for detailed
hardware models. Thus, it is applicable for third-party proces-
sors without provided netlists or HDL models.

IV. VIRTUAL FAULT INJECTION THROUGHOUT THE
DEVELOPMENT PROCESS

Here, we describe how to use the VFI framework in various
stages of the V-model, which is recommended by many safety
standards (e.g., ISO 26262, IEC 62508).

A. Fault Injection from Specification to Design

Typically, the left side of the V-model is related to devel-
opment activities. Here, the VFI framework is applicable as
soon as an executable software is available. For example, if
in an incremental approach is adapted, an executable version
of the software is early available. However, then several gold
runs may be needed along the process causing overhead. Nev-
ertheless, early feedback about the reliability of the software
can prevent expensive late redesigns.

B. Fault Injection during Implementation and Test

Often, a software system is divided into software modules,
which are developed by individual teams. In parallel the hard-
ware development takes place. After testing and integrating
the software components, the software system is deployed on
the hardware. Typically, FI campaigns are conducted after
the integration of hard- and software. If they lead to the
result that the fault tolerance of the system does not fulfill
the requirements, usually the persons that are responsible for
reliability take actions. This actions could involve changes in
the hardware or software. For example, additional reliability
is established by adding extra fault tolerance methods (e.g.,
increasing the level of redundancy). To prevent such overhead
and late stage redesigns, we propose to raise the awareness
regarding hardware faults throughout implementation and test
stages.

1) VFI in the Implementation Stage: During the implemen-
tation stage, the programmer can use the VFI framework to
receive reliability metrics of the newly created code. Develop-
ers of certain software parts, have deep knowledge of their
structure and behavior. This can be helpful for improving
the fault tolerance characteristics of the software. For exam-
ple, programmers know the typical value domains of used
variables, which helps to create efficient plausibility checks.
Furthermore, the code could be modified in such a way that the



inherent fault masking capabilities of software are efficiently
exploited.

2) VFI in the Module and Integration Testing Stages:
Hardware fault tolerance assessment using the VFI framework
should complement regular functional testing activities to iden-
tify less reliable parts of the software. Software test engineers
know each module and/or the entire software system. In
contrast to the implementation stage, the modules and system
are regarded more like black-boxes, which can pose new views
on the resilience characteristics.

3) Fault Injection after Integrating Hard- and Software: We
propose to apply traditional hardware FI after the integration
of hard- and software. For example, the finalized parts can be
analyzed regarding their behavior, if there is to high input
voltage or if there are disruptive environmental influences
(e.g. high temperature). However, it can be assumed that the
identified reliability weaknesses will be reduced due to the
prior reliability assessments.

V. INDUSTRIAL USE CASE

We integrated the VFI framework in the software devel-
opment tool chain of our industrial partner. This company
develops next-generation highly reliable controllers for hydro-
electrical power plants. Due to the different nature and con-
figurations of power plants, there can be many ways to realize
the control functions. Thus, the principles of component-based
software-engineering are used to realizing functions with func-
tional block diagrams according to IEC 61131. Systems are
built as compositions of components. These components could
implement small functions (e.g. basic logic, arithmetic oper-
ations), but also complex functions (e.g. controllers, filters).
Due to performance and economic reasons the system is based
on a commercial OTS ARMO926EJ-S processor. This CPU
was designed and manufactured for multimedia applications
without high reliability requirements. Thus, two processors
are used redundantly in an loo2 architecture. The software
implements several reliability functions. This includes mutual
checking of the redundant hardware channels, periodically
software-based self-tests, and fault handling mechanisms.

A. Current and Proposed Application of Fault Injection

Several teams are involved in the development as shown
in Fig. 3. For creating the hardware platform and basic soft-
ware (e.g., real-time operating system, network communica-
tion, component container) individual hardware and embedded
software teams are working in parallel. Additionally, there
are engineers developing components using the C program
language. They have deep knowledge of how to develop IEC
61131 compliant components. Furthermore, a team focuses on
project-specific control engineering aspects and implements
control algorithms with functional block diagrams. Currently,
only test teams apply fault injection and only consider high-
level hardware faults such as DC offsets, current changes, etc.

However, we propose that multiple development teams
consider reliability aspects by using the VFI framework. The
framework supports the emulation of the used SoC (ARM9
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Fig. 3. Teams and their workproducts for the development of a power-plant
controller. Currently, fault injection is only applied after system integration.
We propose the use of VFI in all teams to assess the reliability.

processor, RAM, in- and outputs, etc.) and does not require
external hardware. Thus, it can be used to analyze the basic
software. Furthermore, the component development team can
test the reliability characteristics of each software component.
After software integration, also the control engineering team
can use the VFI framework to analyze the resilience of
the overall control algorithm regarding hardware faults. To
exemplify the VFI integration, we present below an extension
of an existing component test framework.

B. Integration of VFI in Component Testing

The existing industrial partner test framework allows to
remotely test components and is based on techniques described
in [21]. The framework consists of two main components: the
development host and the embedded target. The development
host is realized as an Eclipse plugin that allows to define
the component under assessment, input stimuli, and expected
output. Then, to represent the embedded target, the given
component is executed remotely with QEMU in isolation.
This means that each component can be assessed individually
without the need for integration. Each component is available
as a binary that executes functions processing input stimuli
provided by the execution context. This context corresponds
to a simple middleware or container that implements the
lifecycle management for a single software component. To
communicate with the rest of the framework, it exposes the
interfaces of the component as a webservice.

The development host shows a graphical comparison of the
resulting and expected output values as exemplified in Fig. 4.
The expected outputs are generated with a golden model in
Matlab. Frequently, the outputs of the embedded system are
slightly different due to limited precision. Thus, an accepted
deviation from the ideal output curve can be defined. The
framework highlights violations regarding this specification.

We extended this test framework with VFI (see Fig. 5).
The victim hardware components, number of faults, and
fault types can be defined in the Eclipse framework. Then,
this information is forwarded to the platform simulating the
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embedded target. For the simulation of the embedded target
under faulty conditions, the VFI framework executes the four
steps described above. Finally, the results of the FI campaign
are graphically represented on the development host. The
proportion of faults causing crashes, and silent corruptions
causing outputs beyond the defined value range is shown. To
support the component developer in analyzing the behavior
of the components under faulty conditions, critical erroneous
results can be inspected by analyzing the corresponding output
curve graphically.

VI. CONCLUSION

In order to create highly reliable systems with low develop-
ment cost overhead, we propose a tool that allows to introduce
reliability-awareness in multiple stages of software develop-
ment. Software developers need to understand the impact of
hardware faults on their software modules. This raises the need
for a FI tool that can be easily integrated into existing tool
chains without requiring extra hardware equipment. The trend
to use OTS hard- and software components further limits the

number of applicable FI techniques.

In this paper, we presented a VFI framework that can be
applied during various development stages. Furthermore, we
proposed the integration of this tool in a typical software
development process and illustrated the practicability of the
approach with an industrial use case. In the future, we plan to
provide the presented framework as open source.
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