
A Simple Architectural Enhancement for Fast
and Flexible Elliptic Curve Cryptography over

Binary Finite Fields GF(2m)

Stefan Tillich and Johann Großschädl
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Abstract. Mobile and wireless devices like cell phones and network-
enhanced PDAs have become increasingly popular in recent years. The
security of data transmitted via these devices is a topic of growing im-
portance and methods of public-key cryptography are able to satisfy this
need. Elliptic curve cryptography (ECC) is especially attractive for de-
vices which have restrictions in terms of computing power and energy
supply. The efficiency of ECC implementations is highly dependent on
the performance of arithmetic operations in the underlying finite field.
This work presents a simple architectural enhancement to a general-
purpose processor core which facilitates arithmetic operations in binary
finite fields GF(2m). A custom instruction for a multiply step for bi-
nary polynomials has been integrated into a SPARC V8 core, which
subsequently served to compare the merits of the enhancement for two
different ECC implementations. One was tailored to the use of GF(2191)
with a fixed reduction polynomial. The tailored implementation was sped
up by 90% and its code size was reduced. The second implementation
worked for arbitrary binary fields with a range of reduction polynomials.
The flexible implementation was accelerated by a factor of nearly 10.

Keywords: Elliptic curve cryptography, application-specific instruction
set extension, binary finite fields, SPARC V8, multiply step instruction.

1 Introduction

Security for mobile and wireless applications requires the involved devices to
perform cryptographic operations. For open systems, the use of public-key cryp-
tography is practically inevitable. There are likely to be two groups of devices
which will participate in secure mobile and wireless environments [17]: end de-
vices and servers. End devices are often constrained regarding computing power,
memory for software code, RAM size and energy supply. Those devices require
fast, memory- and energy-efficient implementations of public-key methods. El-
liptic curve cryptography (ECC) reduces the size of the operands involved in
computation (typically 160–250 bit) compared to the widely used RSA cryp-
tosystem (typically 1024–3072 bit) and is therefore an attractive way to realize
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security on constrained devices. With typical processor word-sizes of 8–64 bit,
public-key cryptosystems call for efficient techniques to handle multiple-precision
operands. Binary finite extension fields GF(2m) allow efficient representation and
computation on a general-purpose processor which does not feature a hardware
multiplier and are therefore well suited to be used as the underlying field of an
elliptic curve cryptosystem.

ECC implementations require several choices of parameters regarding the
underlying finite field (type of the field, representation of its elements, and the
algorithms for the arithmetic operations) as well as the elliptic curve (represen-
tation of points, algorithms for point arithmetic). If some of these parameters are
fixed, e.g. the field type, then implementations can be optimized yielding a con-
siderable performance gain. Such an optimized ECC implementation will mainly
be required by constrained end devices in order to cope with their limited com-
puting power. The National Institute of Standards and Technology (NIST) has
issued recommendations for specific sets of parameters [13]. As research in ECC
advances, new sets of parameters with favorable properties are likely to become
available and recommended. Therefore, not all end devices will use the same set
of parameters. Server machines which must communicate with many different
clients will therefore have a need for flexible and yet fast ECC implementations.

This paper introduces a simple extension to a general-purpose processor to
accelerate the arithmetic operations in binary extension fields GF(2m). Our ap-
proach concentrates on a very important building block of these arithmetic op-
erations; namely the multiplication of binary polynomials, i.e. polynomials with
coefficients in GF(2) = {0, 1}. If this binary polynomial multiplication can be
realized efficiently, then multiplication, squaring and inversion in GF(2m) and
in turn the whole ECC operation is made significantly faster.

Two forms of a multiply step instruction are proposed, which can be im-
plemented and used separately or in combination. These instructions perform
an incremental multiplication of two binary polynomials by processing one or
two bit(s) of one polynomial and accumulating the partial products. A modi-
fied ripple-carry adder is presented which facilitates the accumulation with little
additional hardware cost. The proposed custom instructions have merits for im-
plementations which are optimized for specific binary finite fields with a fixed
reduction polynomial. Also, flexible implementations which can accommodate
fields of arbitrary length with a range of reduction polynomials benefit from
such instructions. Both types of implementations are general enough to support
different elliptic curves and EC point operation algorithms.

The remainder of this paper is organized as follows. Some principles of elliptic
curve cryptography in binary finite fields are given in the next Section. Section 3
outlines important aspects of modular multiplication in GF(2m). A modified
ripple-carry adder which facilitates the implementation of our enhancement is
presented in Section 4. Section 5 describes the proposed custom instructions
in detail and Section 6 gives evaluation results from our implementation on an
FPGA-board. Finally, conclusions are drawn in Section 7.
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2 Elliptic Curve Cryptography

An elliptic curve over a field IK can be formally defined as the set of all solutions
(x, y) ∈ IK× IK to the general (affine) Weierstraß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

with the coefficients ai ∈ IK. If IK is a finite field GF(q), then the set of all
pairs (x, y) satisfying Equation (1) is also finite. A finite field GF(q) is also
called a Galois field. If the finite field is a binary extension field GF(2m), then
Equation (1) can be simplified to

y2 + xy = x3 + ax2 + b with a, b ∈ GF(2m) (2)

The set of all solutions (x, y) ∈ GF(2m)×GF(2m), together with an additional
special point O, which is called the “point at infinity”, forms an Abelian group
whose identity element is O. The group operation is the addition of points, which
can be realized with addition, multiplication, squaring and inversion in GF(2m).
A variety of algorithms for point addition exists, where each requires a different
number of those field operations. If, e.g. the points on the elliptic curve are
represented in projective coordinates [2], then the number of field inversions is
reduced at the expense of additional field multiplications.

All EC cryptosystems are based on an computation of the form Q = k · P ,
with P and Q being points on the elliptic curve and k ∈ IN. This operation is
called point multiplication (or scalar multiplication) and is defined as adding
P exactly k − 1 times to itself: k · P = P + P + · · ·+ P . The execution time of
the scalar multiplication is crucial to the overall performance of EC cryptosys-
tems. Scalar multiplication in an additive group corresponds to exponentiation
in a multiplicative group. The inverse operation, i.e. to recover k given P and
Q = k · P , is denoted as the elliptic curve discrete logarithm problem (ECDLP),
for which no subexponential-time algorithm has been discovered yet. More in-
formation on EC cryptography is available from various sources, e.g. [2,8].

3 Arithmetic in Binary Extension Fields GF(2m)

A common representation for the elements of a binary extension field GF(2m) is
the polynomial basis representation. Each element of GF(2m) can be expressed
as a binary polynomial of degree at most m− 1.

a(t) =
m−1∑
i=0

ai · ti = am−1 · tm−1 + · · ·+ a1 · t + a0 with ai ∈ {0, 1} (3)

A very convenient property of binary extension fields is that the addition of two
elements is done with a simple bitwise XOR, which means that the addition
hardware does not need to deal with carry propagation in contrast to a conven-
tional adder for integers. The instruction set of virtually any general-purpose
processor includes an instruction for the bitwise XOR operation.



Architectural Enhancement for Elliptic Curve Cryptography over GF(2m) 285

Algorithm 1. Multiple-precision multiplication of binary polynomials [5]

Input: Two binary polynomials, a(t) = (ãs−1, . . . , ã1, ã0) and b(t) = (b̃s−1, . . . , b̃1, b̃0),
each represented by an array of s single-precision (i.e. w-bit) words.

Output: Product r(t) = a(t) · b(t) = (r̃2s−1, . . . , r̃1, r̃0).
1: (ũ, ṽ)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i do
4: (ũ, ṽ)← (ũ, ṽ)⊕ (ãj ⊗ b̃i−j)
5: end for
6: r̃i ← ṽ
7: ṽ ← ũ , ũ← 0
8: end for
9: for i from s by 1 to 2s− 2 do

10: for j from i− s + 1 by 1 to s− 1 do
11: (ũ, ṽ)← (ũ, ṽ)⊕ (ãj ⊗ b̃i−j)
12: end for
13: r̃i ← ṽ
14: ṽ ← ũ , ũ← 0
15: end for
16: r̃2s−1 ← ṽ
17: return r(t) = (r̃2s−1, . . . , r̃1, r̃0)

When using a polynomial basis representation, the multiplication in GF(2m)
is performed modulo an irreducible polynomial p(t) of degree exactly m. In gen-
eral, a multiplication in GF(2m) consists of multiplying two binary polynomials
of degree up to m− 1, resulting in a product-polynomial of degree up to 2m− 2,
and then reducing this product modulo the irreducible polynomial p(t) in order
to get the final result. The simplest way to implement the multiplication of two
binary polynomials a(t), b(t) ∈ GF(2m) in software is by means of the so-called
shift-and-xor method [14]. In recent years, several improvements of the classical
shift-and-xor method have been proposed [7]; the most efficient of these is the
left-to-right comb method by López and Dahab [11], which employs a look-up
table to reduce the number of both shift and XOR operations.

A completely different way to realize the multiplication of binary polynomials
in software is based on the MULGF2 operation as proposed by Koç and Acar [9].
The MULGF2 operation performs a word-level multiplication of binary polyno-
mials, similar to the (w × w)-bit MUL operation for integers, whereby w denotes
the word-size of the processor. More precisely, the MULGF2 operation takes two
w-bit words as input, performs a multiplication over GF(2) treating the words as
binary polynomials, and returns a 2w-bit word as result. All standard algorithms
for multiple-precision arithmetic of integers can be applied to binary polynomials
as well, using the MULGF2 operation as a subroutine [5]. Unfortunately, most
general-purpose processors do not support the MULGF2 operation in hardware,
although a dedicated instruction for this operation is simple to implement [12].
It was shown by the second author of this paper [6] that a conventional integer
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multiplier can be easily extended to support the MULGF2 operation, without
significantly increasing the overall hardware cost. On the other hand, Koç and
Acar [9] describe two efficient techniques to “emulate” the MULGF2 operation
when it is not supported by the processor. For small word-sizes (e.g. w = 8),
the MULGF2 operation can be accomplished with help of look-up tables. The
second approach is to emulate MULGF2 using shift and XOR operations (see
[9] for further details).

In the following, we briefly describe an efficient word-level algorithm for mul-
tiple-precision multiplication of binary polynomials with help of the MULGF2
operation. We write any binary polynomial a(t) ∈ GF(2m) as a bit-string of its
m coefficients, e.g. a(t) = (am−1, . . . , a1, a0). Then, we split the bit-string into
s = dm/we words of w bits each, whereby w is the word-size of the target proces-
sor. These words are denoted as ãi (for 0 ≤ i < s), with ãs−1 and ã0 representing
the most and least significant word of a(t), respectively. In this way, we can con-
veniently store a binary polynomial a(t) in an array of s single-precision words
(unsigned integers), i.e. a(t) = (ãs−1, . . . , ã1, ã0). Based on the MULGF2 opera-
tion, a multiple-precision multiplication of binary polynomials can be performed
according to Algorithm 1, which is taken from a previous paper of the second
author [5]. The tuple (ũ, ṽ) represents a double-precision quantity of the form
u(t) · tw + v(t), i.e. a polynomial of degree 2w − 1. The characters ⊗ and ⊕ de-
note the MULGF2 and XOR operation, respectively. In summary, Algorithm 1
requires to carry out s2 MULGF2 operations and 2s2 XOR operations in order
to calculate the product of two s-word polynomials. We refer to the original
paper [5] for a detailed treatment of this algorithm.

Once the product a(t) · b(t) has been formed, it must be reduced modulo the
irreducible polynomial p(t) = tm +

∑m−1
i=0 pi · ti to obtain the final result (i.e. a

binary polynomial of degree up to m− 1). This reduction can be implemented
very efficiently when p(t) is a sparse polynomial, which means that p(t) has few
non-zero coefficients ci. In such case, the modular reduction requires only a few
shift and XOR operations and can be highly optimized for a given irreducible
polynomial [14,7,8]. Most standards for ECC, such as from ANSI [1] and NIST
[13], propose to use sparse irreducible polynomial like trinomials or pentanomials.
On the other hand, an efficient word-level reduction method using the MULGF2
operation was introduced in the previously mentioned paper [5]. The word-level
method also works with irreducible polynomials other than trinomials or pen-
tanomials, but requires that all non-zero coefficients (except of pm) are located
within the least significant word of p(t), i.e. pi = 0 for w ≤ i < m. For example,
we used the trinomial t191 + t9 + 1 for our ECC implementations, which satisfies
this condition for a word-size of w = 32.

4 Modified Ripple-Carry Adder

A previous paper of the second author [6] presents the design of a so-called
unified multiply-accumulate unit that supports the MULGF2 operation. The
efficiency of that design is based on integration of polynomial multiplication
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into the datapath of the integer multiplier. On the other hand, the datapath for
our proposed multiply step instructions can be integrated into the ALU adder
and does not require a multiplier. For SPARC V8 cores, the implementation of
our extension is relatively easy, as those cores already feature a multiply step
instruction for integer arithmetic. In comparison to the previous work [6], the
multiply step instructions offer a tradeoff of hardware cost against speed.

The simplest way to implement adders in general-purpose processors is in
the form of ripple-carry adders. For instance the SPARC V8 LEON-2 processor,
which we have used for our evaluation, employs a such an adder. Principally,
ripple-carry adders consist of a chain of full adder cells, where each cell takes
three input bits (usually labeled a, b and cin) and produces two output bits with
different significance (sum and cout). The cells are connected via their carry
signals, with the cout of one stage serving as cin input for the next higher stage.

A conventional ripple-carry adder takes two n-bit values and a carry-in bit
and produces a n-bit sum and a carry-out bit which can be seen as the (n + 1)-th
bit of the sum. To generate a bit of the sum vector, each full adder cell performs
a logical XOR of its three inputs a, b and cin. This property can be exploited
to perform a bitwise logical XOR of three n-bit vectors with a slightly modified
ripple-carry adder. As explained in Section 3, this XOR conforms to an addition
of the three vectors if they are interpreted as binary polynomials.

The modification consists of the insertion of multiplexors into the carry-chain
of the ripple-carry adder as illustrated in Figure 1. The insert control signal
selects the carry value which is used. If insert is 0, the adder propagates the
carry signal, selecting cpi as ci+1. In this mode the adder performs a conventional
integer addition, setting s and cout accordingly. If insert is 1, the carry is not
propagated, but the cins vector is used to provide the ci inputs for the full adder
cells. The sum vector s is calculated as the bitwise logical XOR of the vectors a, b
and cins. The value of cout is not relevant in this mode. In Figure 1 the bits with
the same significance of the three vectors are grouped together by braces. The
carry input of the rightmost full adder cell acts as cin for integer addition and
as least significant bit of the cins vector for addition of binary polynomials. The
insert signal of the modified adder therefore switches between the functionality
of an integer adder and and a 3:1 compressor for binary polynomials.

Ripple-carry adders have the disadvantage that the delay of carry propaga-
tion can be rather high. Embedded processors normally feature other, longer
combinational paths, so that the carry propagation delay is not the critical path
delay. If however the carry propagation path of the adder constitutes the crit-
ical path and the proposed modifications increase its delay significantly, other
approaches are possible to get the 3:1 compressor functionality for binary poly-
nomials. One solution is to modify a faster adder, e.g. a carry-select adder [3].
Another possibility is the use of dedicated XOR-gates without any modification
of the adder. Both of these options come with an increased hardware cost.
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Fig. 1. A 4-bit modified ripple-carry adder

5 Multiply Step Instruction

Our enhancement is basically the addition of one or two custom instructions
which can be realized with relatively little additional hardware. The basic idea
is to provide a multiply step instruction for multiplication of binary polynomi-
als. With a given word size w of the processor, a multiplication of two w-bit
binary polynomials yielding a 2w-bit result can be implemented efficiently with
the proposed instructions. This word-size multiplication of binary polynomials
corresponds to the MULGF2 operation mentioned in Section 3, which is an
important building block for arithmetic operations in the field GF(2m).

The SPARC V8 Architecture Manual [16] defines a multiply step instruction
for integer multiplication (MULSCC) and our proposed instructions are a modifi-
cation thereof. MULSCC processes one bit of the multiplier and adds the resulting
partial product to an 64-bit accumulator realized by two hardware registers. In
the following, the register naming conventions of SPARC V8 will be used.

In order to perform a complete multiplication of two 32-bit binary polyno-
mials, three registers have to be employed. Two of those registers form a 64-bit
accumulator to hold the intermediate total during multiplication. These registers
will be named %o0 and %y, with %o0 holding the 32 most significant and %y hold-
ing the 32 least significant bits. The register %o1 will be used as the third register.
It contains the multiplicand during the whole course of the multiplication.

5.1 MULGFS instruction

The first proposed instruction is named MULGFS and is only a slight variation of
the MULSCC instruction. It can be used in the following fashion the perform a
word-size polynomial multiplication (MULGF2 operation): At first, the multi-
plicand is loaded into %o1 and the multiplier is loaded into %y. Then the MULGFS
instruction is executed 32 times to process each bit of the multiplier in %y. In
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each execution of the MULGFS instruction the value in the accumulator (%o0 and
%y) is shifted right by one. The bit which is shifted out of the accumulator, i.e.
the least significant unprocessed bit of the multiplier, is examined and a par-
tial product is generated: If the bit is one, it is the value of the multiplicand,
otherwise it is all zero. This partial product is added to the 32 highest bits of
the accumulator, which reside in %o0. After 32 MULGFS instructions, the value
in the accumulator must be shifted right by one to obtain the correct 64-bit
result. Following the SPARC conventions, the MULGFS instruction is written in
the following form in assembly code:

MULGFS %o0, %o1, %o0

The first two registers are the source registers. The first one (%o0) contains
the highest 32 bits of the accumulator while the second one (%o1) holds the mul-
tiplicand. The third register is the destination register (%o0) which is normally
chosen to be the same as the first source register. The register for the 32 lowest
bits of the accumulator (%y) is read and written implicitly for multiplication
instructions in the SPARC architecture. In this case the 64-bit accumulator is
formed by %o0 and %y. On other architectures, different approaches may be fa-
vorable, e.g. on a MIPS architecture the multiplication registers %hi and %lo
could be implicitly used as accumulator. In detail, a single MULGFS instruction
performs the following steps:

1. The value in the first source register (%o0) is shifted right by one. The shifted
value is denoted as C.

2. The least significant unprocessed bit of the multiplier (last bit of %y) is
examined. The partial product (denoted as A) is set to the value of the
multiplicand (%o1), if the bit is one. Otherwise A is set to all zeros.

3. The contents of the %y register is shifted right by one with the least significant
bit of %o0 shifted in from the left. The bit of the multiplier, which has been
processed in the previous step, is therefore shifted out of %y.

4. A bitwise XOR of A and C is performed and the result is stored in the higher
word of the accumulator (%o0).

The MULGFS instruction does not require the insertion of a carry vector for
the adder. It is sufficient if the adder can suppress carry propagation whenever a
specific control signal is set. The changes to the processor for the implementation
of the MULGFS instruction are:

– Modifications to the decode logic to recognize the new opcode, and to gen-
erate an insert control signal for the ALU.

– Multiplexors to select the two operands for the adder and which allow shifting
of the value in the two registers which form the accumulator.

– Gates which prevent carry propagation in the adder if insert is set.
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5.2 MULGFS2 instruction

The second proposed instruction (named MULGFS2) is a variation of the MULGFS
instruction, which processes two bits of the multiplier simultaneously. In this
fashion two partial products are generated and addition to the accumulated
result can be done with a modified ripple-carry adder as specified as in Section 4.

A multiplication of two binary polynomials (MULGF2 operation) is done in
the same way as described in the previous Section with the exception that the
32 subsequent MULGFS instructions are replaced by 16 MULGFS2 instructions. If
only the MULGFS2 instruction is available, the final shift of the accumulator must
be done with conventional bit-test and shift instructions. On the SPARC V8
this requires four instructions. If the MULGFS instruction is available, then the
final shift can be done with a single instruction. The format for the MULGFS2
instruction remains the same as for the MULGFS instruction:

MULGFS2 %o0, %o1, %o0

In detail, the MULGFS2 instruction works by executing these steps:

1. The value in the first source register (%o0) is shifted right by two. The shifted
value is denoted as C.

2. The least significant unprocessed bit of the multiplier (last bit of %y) is
examined. If the bit is one, a partial product (denoted as B) is set to the
value of the multiplicand (%o1) shifted right by one. Otherwise B is all zeros.

3. The second lowest bit of the multiplier (penultimate bit of %y) is examined.
If is is one, the second partial product (denoted as A) is set to the value of
the multiplicand (%o1). Otherwise A is all zeros.

4. The contents of the %y register is shifted right by two with the following
bits set as the new MSBs: The one but highest bit is set to the value of
the least significant bit of %o0. The highest bit results from an XOR of the
second lowest bit of %o0 and the logical and of the least significant bit of the
multiplicand (%o1) and the second lowest bit of %y.

5. A bitwise XOR of A, B and C is performed and the result is stored in in the
higher word of the accumulator (%o0).

The MULGFS2 instruction performs the XOR of the three 32-bit vectors with
a modified ripple-carry adder. The required modifications to the processor are:

– Changed decode logic to recognize MULGFS2 instructions, and to generate an
insert control signal for the modified ripple-carry adder.

– Multiplexors to select the three operands for the adder and which allow
shifting by two of the values in the two registers which form the accumulator.

– A modified ripple-carry adder as described in Section 4 which is controlled
by the insert signal.

The implementation of the MULGFS2 instruction for a SPARC V8 general-
purpose processor can be seen in Figure 2.
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Fig. 2. MULGFS2 instruction implementation for a SPARC V8 processor

6 Experimental Results

Both MULGFS and MULGFS2 instructions have been implemented in the freely
available SPARC V8-compliant LEON-2 processor [4]. The size for both instruc-
tion and data cache have been set to 4 kB. A tick counter register, whose content
is incremented each clock cycle, has also been added to the LEON-2 to facilitate
the measurement of the execution time of software routines. A XSV-800 Virtex
FPGA prototyping board [18] has been used to implement the extended pro-
cessor for verification of the design and for obtaining timing result for different
realizations of ECC operations.

The ECC parameters given in Appendix J.2.1 of the ANSI standard X9.62 [1]
have been used. The elliptic curve is defined over the binary finite field GF(2191)
with the reduction polynomial t191 + t9 + 1. Most of the examined implemen-
tation variants use a multiplication of two binary polynomials (MULGF2 oper-
ation) as a building block for GF(2m) operations where the size of the binary
polynomials equals the word-size w of the LEON-2 processor, namely 32 bit.

Two principal implementations of ECC operations have been employed for
evaluation of the merits of the proposed multiply step instructions. One used the
left-to-right comb method with a look-up table containing 16 entries, as men-
tioned in Section 3, for polynomial multiplication and shift and XOR instructions
for reduction. This implementation was tailored to the use of GF(2191) with the
above reduction polynomial and therefore especially suited for constrained client
devices. The different variants used for evaluation are denoted with the prefix
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OPT in the rest of this text. The second implementation could work in a binary
extension field of arbitrary length with any reduction polynomial, which fulfills
the following requirement: It may only have non-zero coefficients for powers < w.
Such an implementation is favorable for server machines in mobile and wireless
environments. The variants are based on the MULGF2 operation as a building
block for all GF(2m) multiplication, squaring and reduction. They vary only in
the implementation of the MULGF2 operation and are denoted with the pre-
fix FLEX. All OPT and FLEX implementations used the method described by
López and Dahab to perform an elliptic scalar multiplication [10].

6.1 Running Times

Table 1 presents the running times of multiplication and squaring in GF(2191)
and of a complete elliptic scalar multiplication for the three variants of the flexi-
ble implementation. The running time is measured in clock cycles. The first col-
umn (FLEX1) gives the results for the pure software variant, where the MULGF2
operation has been implemented with shift and XOR instructions. The second
and third column list the running times for adapted versions, where the word-
size polynomial multiplication (MULGF2 operation) has been optimized. FLEX2
refers to the variant which made use of the MULGFS instruction as described in
Section 5.1. The results for FLEX3 are for an implementation which utilizes
both MULGFS and MULGFS2 instructions as outlined in Section 5.2. Both FLEX2
and FLEX3 necessitated only minor changes to the code of FLEX1.

Table 1. Execution times of important operations for ECC over GF(2191) for the
FLEX variants in clock cycles

FLEX1 FLEX2 FLEX3
Software MULGFS instr. MULGFS and MULGFS2 instr.

GF(2191) multiplication 15,344 2,306 1,620
GF(2191) squaring 5,335 691 476
EC scalar multiplication 22,485,650 3,260,478 2,319,558

The running times for the EC scalar multiplication from Table 1 are a rep-
resentative measure to compare the overall speed of the three implementations.
The use of the MULGFS instruction alone (FLEX2) yields a speedup factor of
nearly 7 over the pure software version. If both multiply step instructions are
available (FLEX3), the speedup factor is nearly 10. Note that squaring is a linear
operation and therefore performs much faster than multiplication.

The optimized implementation in pure software (OPT1) can be enhanced
with the proposed multiply step instructions. GF(2191) multiplication which uses
the MULGFS and MULGFS2 instructions is faster than the multiplication of the
original software implementation. Table 2 lists the running times of the three
versions, where OPT2 uses just the MULGFS instruction and OPT3 makes use of
both MULGFS and MULGFS2 instructions to speed up GF(2191) multiplication.
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Table 2. Execution times of important operations for ECC over GF(2191) for the OPT
variants in clock cycles

OPT1 OPT2 OPT3
Software MULGFS instr. MULGFS and MULGFS2 instr.

GF(2191) multiplication 3,182 2,076 1,500
GF(2191) squaring 273 273 273
EC scalar multiplication 3,909,690 2,706,560 2,054,282

Note that the running time for the GF(2191) multiplication for OPT2 and
OPT3 are smaller than those of FLEX2 and FLEX3 because the former use a
reduction step which is tailored to the reduction polynomial t191 + t9 + 1. EC
scalar multiplication is sped up by about 45% with the MULGFS instruction and
by 90% through the use of both MULGFS and MULGFS2 instructions. Additionally,
FLEX2 is about 15% faster than OPT1 and FLEX3 is about 40% faster.

6.2 Memory Requirements

Table 3 compares the size of the code and data sections of an SPARC executable
which implements the full EC scalar multiplication for the OPT and FLEX
variants. The executables have been obtained by linking the object files for each
implementation without linking standard library routines. The size of the code
and data sections have subsequently been dumped with the GNU objdump tool.
As the values for OPT2 and OPT3 and those for FLEX2 and FLEX3 are nearly
identical, only one implementation of each group has been listed exemplarily.

Table 3. Memory requirement of the OPT and FLEX variants of elliptic scalar mul-
tiplication in bytes

OPT1 OPT3 FLEX1 FLEX3

Code section size 4,928 2,920 3,904 2,592
Data section size 1,024 1.024 264 264
Total size 5,952 3,944 4,168 2,856

Additional RAM usage 384 none none none

The executables of the FLEX2 and FLEX3 implementations are only half
the size of OPT1. This is mainly because OPT1 uses a hard-coded look-up
table for squaring and also features larger subroutines. OPT2 and OPT3 have
70% smaller code sections and a 50% smaller executable compared to OPT1.
In addition, OPT1 uses an look-up table for GF(2191) multiplication which is
calculated on-the-fly and requires additional space in the RAM. This memory
requirement is eliminated in OPT2, OPT3 and all FLEX variants.

The costs of additional hardware for implementation of both multiply step
instructions have been evaluated by comparing the synthesis results for the dif-
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ferent processor versions. The enhanced version had an increase in size of less
than 1% and is therefore negligible.

The OPT variants are the most likely candidates for usage in devices which
are constrained regarding their energy supply. To compare OPT1 with the en-
hanced versions OPT2 and OPT3, it is important to note that load and store
instructions normally require more energy than other instructions on a common
microprocessor; see e.g. the work of Sinha et al. [15]. Based on that fact it can
be established that OPT2 and OPT3 have a better energy efficiency than OPT1
for two reasons: They have shorter running times and do not use as many load
and store instructions, as they perform no table look-ups for field multiplication.

7 Conclusions

In this paper we presented an extension to general-purpose processors which
speeds up ECC over GF(2m). The use of multiply step instructions accelerates
multiplication of binary polynomials, i.e. the MULGF2 operation, which can
be used to realize arithmetic operations in GF(2m) in an efficient manner. We
have integrated both proposed versions of the multiply step instruction into a
SPARC V8-compliant processor core. Two different ECC implementations have
been accelerated through the use of our instructions. The implementation opti-
mized for GF(2191) and a fixed reduction polynomial has been sped up by 90%
while reducing the size of its executable and its RAM usage. The flexible imple-
mentation, which could cater for different fields lengths m and an important set
of reduction polynomials, was accelerated by an factor of over 10. Additionally,
the enhanced flexible version could outperform the original optimized implemen-
tation by 40%. All enhancements required only minor changes to the software
code of the ECC implementations.

We have discussed the merits of our enhancements for both constrained de-
vices and server machines in a security-enhanced mobile and wireless environ-
ment. The benefits for devices constrained in available die size and memory
seem especially significant, as our multiply step instructions require little ad-
ditional hardware and reduce memory demand regarding both code size and
runtime RAM requirements. Additionally, the implementations which use our
instructions are likely to be more energy efficient on common general-purpose
processors.
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