
A General Framework for Redactable
Signatures and New Constructions

David Derler1,‡, Henrich C. Pöhls2,‡,§, Kai Samelin3,‖, Daniel Slamanig1,‡

1 IAIK, Graz University of Technology, Austria
{david.derler|daniel.slamanig}@tugraz.at

2 Institute of IT-Security and Security Law & Chair of IT-Security,
University of Passau, Germany

hp@sec.uni-passau.de
3 IBM Research – Zurich, Switzerland & TU Darmstadt, Germany

ksa@zurich.ibm.com

Abstract. A redactable signature scheme (RSS) allows removing parts of
a signed message by any party without invalidating the respective signa-
ture. State-of-the-art constructions thereby focus on messages represented
by one specific data-structure, e.g., lists, sets or trees, and adjust the secu-
rity model accordingly. To overcome the necessity for this myriad of models,
we present a general framework covering arbitrary data-structures and even
more sophisticated possibilities. For example, we cover fixed elements which
must not be redactable and dependencies between elements. Moreover, we
introduce the notion of designated redactors, i.e., the signer can give some
extra information to selected entities which become redactors. In practice,
this often allows to obtain more efficient schemes. We then present two
RSSs; one for sets and one for lists, both constructed from any EUF-CMA
secure signature scheme and indistinguishable cryptographic accumulators
in a black-box way and show how the concept of designated redactors can
be used to increase the efficiency of these schemes. Finally, we present a
black-box construction of a designated redactor RSS by combining an RSS
for sets with non-interactive zero-knowledge proof systems. All the three
constructions presented in this paper provide transparency, which is an im-
portant property, but quite hard to achieve, as we also conceal the length
of the original message and the positions of the redactions.

1 Introduction

A redactable signature scheme (RSS) allows any party to remove parts of a signed
message such that the corresponding signature σ can be updated without the
signers’ secret key sk. The so derived signature σ′ then still verifies under the
signer’s public key pk. Hence, RSSs partially solve the “digital message sanitiza-
tion problem” [MSI+03]. This separates RSSs from standard digital signatures,
which prohibit any alteration of signed messages. Such a primitive comes in handy

This is the full version of a paper to appear at ICISC 2015.
‡Supported by EU H2020 project Prismacloud, grant agreement n◦644962.
§Supported by EU FP7 project Rerum, grant agreement n◦609094.
‖Supported by EU FP7 project FutureID, grant agreement n◦318424.

1

mailto:david.derler@tugraz.at
mailto:daniel.slamanig@tugraz.at
mailto:hp@sec.uni-passau.de
mailto:ksa@zurich.ibm.com

in use-cases where only parts of the signed data are required, but initial ori-
gin authentication must still hold and re-signing is not possible or too expen-
sive. One real-world application scenario is privacy-preserving handling of patient
data [BBM09, BB12, SR10, WHT+10]. For instance, identifying information in a
patient’s record can be redacted for processing during accounting.

State-of-the-Art. RSSs have been introduced in [JMSD02, SB01]. Their ideas
have been extended to address special data-structures such as trees [BBD+10,
SPB+12a] and graphs [KB13]. While the initial idea was that redactions are pub-
lic, the notion of accountable RSSs appeared recently [PS15]. Here, the redactor
becomes a designated party which can be held accountable for redactions. Further,
RSSs with dependencies between elements have been introduced and discussed
in [BBM09]. Unfortunately, their work neither introduces a formal security model
nor provides a security analysis for their construction. Consecutive redaction con-
trol allows intermediate redactors to prohibit further redactions by subsequent
ones [MHI06, MIM+05, SPB+12b].

Much more work on RSSs exists. However, they do not use a common security
model and most of the presented schemes do not provide the important security
property denoted as transparency [BBD+10]. As an example, [HHH+08, KB13,
WHT+10] are not transparent in our model. In such non-transparent constructions,
a third party can potentially deduce statements about the original message from
a redacted message-signature pair. In particular, their schemes allow to see where
a redaction took place. Hence, they contradict the very intention of RSSs being a
tool to increase or keep data privacy [BBD+10].

Ahn et al. [ABC+12] introduced the notion of statistically unlinkable RSSs as a
stronger privacy notion. Their scheme only allows for quoting instead of arbitrary
redactions, i.e., redactions are limited to the beginning and the end of an ordered
list. Moreover, [ABC+12] only achieves the weaker and less common notion of se-
lective unforgeability. Lately, even stronger privacy notions have been proposed
in [ALP12, ALP13] in the context of the framework of P-homomorphic signatures.
There also exists a huge amount of related yet different signature primitives, where
we refer the reader to [DDH+15] for a comprehensive overview of the state-of-the-
art.

Motivation. RSSs have many applications. In particular, minimizing signed data
before passing it to other parties makes RSSs an easy to comprehend privacy en-
hancing tool. However, the need for different security models and different data
structures prohibits an easy integration into applications that require such pri-
vacy features, as RSSs do not offer a flexible, widely applicable framework. While
the model of RSSs for sets (e.g. [MHI06]) can protect unstructured data such as
votes, it is, e.g., unclear if it can be used for multi-sets. For ordered lists (such
as a text) this already becomes more difficult: should one only allow quoting (i.e.,
redactions at the beginning and/or the end of a text) or general redactions? For
trees (such as data-bases, XML or JSON), we have even more possibilities: only
allow leaf-redactions [BBD+10], or leaves and inner nodes [KB13], or even allow
to alter the structure [PSdMP12]. Furthermore, over the years more sophisticated
features such as dependencies, fixed elements and redactable structure appeared.
They complicate the specialized models even more.

We want to abandon the necessity to invent specialized security models tai-
lored to specific use-cases and data-structures. Namely, we aim for a framework

2

that generalizes away details and covers existing approaches. Thereby, we want to
keep the model compact, understandable and rigid. We aim at RSSs to become
generally applicable to the whole spectrum of existing use-cases. In addition, we
explicitly want to support the trend to allow the signer to limit the power of redac-
tors [KL06, CJ10, DS15]. To prove the applicability of our framework, we present
three new constructions which hide the length of the original message, the positions
of redactions, and the fact that a redaction has even happened.

Contribution. Our contribution is manifold. (1) Existing work focuses on mes-
sages representations in only a specific data-structure, whereas our model is gen-
erally applicable (even for data-structures not yet considered for RSSs in the lit-
erature). Our general framework also captures more sophisticated redaction possi-
bilities such as dependencies between redactable parts, fixed parts and consecutive
redaction control. (2) We introduce the notion of designated redactors. While this
concept might seem similar to the concept of accountable RSSs [PS15], we are
not interested in accountability, but only want to allow to hand an extra piece of
information to the redactor(s). This often allows to increase the efficiency of the re-
spective scheme. (3) We present two RSSs, one for sets and one for lists, constructed
in a black-box way from digital signatures and indistinguishable cryptographic ac-
cumulators. We show that existing constructions of RSSs are instantiations of our
generic constructions but tailored to specific instantiations of accumulators (often
this allows to optimize some of the parameters of the schemes). (4) We present a
black-box construction of RSSs with designated redactors for lists from RSSs for
sets and non-interactive zero-knowledge proof systems. We stress that all three
proposed constructions provide transparency, which is an important property, but
quite hard to achieve.

Notation. We use λ ∈ N to denote a security parameter and assume that all
algorithms implicitly take 1λ as an input. We write y ← A(x) to denote the as-
signment of the output of algorithm A on input x to y. If we want to emphasize
that A receives explicit random coins r, we write y ← A(x; r). If S is a finite set,
then s←R S means that s is assigned a value chosen uniformly at random from S.
We call an algorithm efficient, if it runs in probabilistic polynomial time (PPT) in
the size of its input. Unless stated otherwise, all algorithms are PPT and return
a special error symbol ⊥ /∈ {0, 1}∗ during an exception. A function ε : N → R≥0
is negligible, if it vanishes faster than every inverse polynomial. That is, for every
k ∈ N there exists a n0 ∈ N such that ε(n) ≤ n−k for all n > n0. If the message
M is a list, i.e., M = (m1,m2, . . . ,m|M |), where mi ∈ {0, 1}∗, we call mi a block.
|M | ∈ N then denotes the number of blocks in the message M .

2 Generic Formalization of Redactable Signatures

This section presents our generalized definitions for RSSs.

2.1 The Generalized Framework

We use the formalization by Brzuska et al. [BBD+10] as a starting point. In contrast
to their model, however, ours is not specifically tailored to trees, but is generally
applicable to all kinds of data. The resulting model is rigid, i.e., it is more restrictive

3

than the ones introduced in the original works [JMSD02, SB01], while it is not as
restrictive as [ABC+12, ALP12, ALP13, BFLS10, BPS13, CDHK15]. We think that
the security model introduced in [BBD+10] is sufficient for most use cases, while
the ones introduced in [ABC+12, ALP12, ALP13, BFLS10, BPS13, CDHK15] seem
to be overly strong for real world applications. Namely, we require an RSS to be
correct, unforgeable, private, and transparent. We explicitly do not require unlink-
ability and its derivatives (constituting even stronger privacy notations), as almost
all messages (documents) occurring in real world applications contain data usable
to link them, e.g., unique identifiers.1 Moreover, we do not formalize accountabil-
ity, as this notion can easily be achieved by applying the generic transformation
presented in [PS15] to constructions being secure in our model.2

In the following, we assume that a message M is some arbitrarily structured
piece of data and for the general framework we use the following notation. ADM
is an abstract data structure which describes the admissible redactions and may
contain descriptions of dependencies, fixed elements or relations between elements.
MOD is used to actually describe how a message M is redacted. Next, we define how
ADM, MOD and the message M are tangled, for which we introduce the following
notation: MOD �

ADM
M means that MOD is a valid redaction description with respect

to ADM and M . ADM �M denotes that ADM matches M , i.e., ADM is valid with
respect to M . By M ′ ←−MOD M , we denote the derivation of M ′ from M with respect
to MOD. Clearly, how MOD, ADM, �

ADM
, ←−MOD and � are implemented depends

on the data structure in question and on the features of the concrete RSS. Let
us give a simple example for sets without using dependencies or other advanced
features: then, MOD and ADM, as well as M , are sets. A redaction M ′ ←−MOD M
simply would be M ′ ← M \ MOD. This further means that MOD �

ADM
M holds if

MOD ⊆ ADM ⊆ M , while ADM � M holds if ADM ⊆ M . We want to stress that
the definitions of these operators also define how a redaction is actually performed,
e.g., if a redacted block leaves a visible special symbol ⊥ or not.

Now, we formally define an RSS within our general framework.

Definition 1. An RSS is a tuple of four efficient algorithms (KeyGen,Sign,Verify,
Redact), which are defined as follows:

KeyGen(1λ) : On input of a security parameter λ, this probabilistic algorithm out-
puts a keypair (sk, pk).

Sign(sk,M,ADM) : On input of a secret key sk, a message M and ADM, this (prob-
abilistic) algorithm outputs a message-signature pair (M,σ) together with some
auxiliary redaction information red.3

Verify(pk, σ,M) : On input of a public key pk, a signature σ and a message M , this
deterministic algorithm outputs a bit b ∈ {0, 1}.

Redact(pk, σ,M,MOD, red) : This (probabilistic) algorithm takes a public key pk, a
valid signature σ for a message M , modification instructions MOD and auxil-
iary redaction information red as input. It returns a redacted message-signature
pair (M ′, σ′) and an updated auxiliary redaction information red′.4

1However, we stress that our model can be extended in a straightforward way.
2Our model could also be extended to cover accountability in a straightforward way.
3We assume that ADM can always be correctly and unambiguously derived from any

valid message-signature pair. Also note that ADM may change after a redaction.
4Note that this algorithm may either explicitly or implicitly alter ADM in an unam-

biguous way.

4

We also require that Sign returns ⊥, if ADM � M , while Redact also returns ⊥,

if MOD �
ADM
M . We will omit this explicit check in our constructions. Note that red

can also be ∅ if no auxiliary redaction information is required.

2.2 Security Properties

The security properties for RSSs have already been formally treated for tree data-
structures in [BBD+10]. We adapt them to our general framework.

Correctness. Correctness requires that all honestly computed/redacted signa-
tures verify correctly. More formally this means that ∀ λ ∈ N, ∀ n ∈ N, ∀ M,
∀ ADM � M,∀ (sk, pk) ← KeyGen(1λ), ∀ ((M0, σ0), red0) ← Sign(sk,M,ADM),
[∀ MODi �

ADM
Mi, ∀ ((Mi+1, σi+1), redi+1) ← Redact(pk, σi,Mi,MODi, redi)]0≤i<n it

holds that for 0 ≤ i ≤ n : Verify(pk, σi,Mi) = 1, where [Si]0≤i<n is shorthand for
S0, . . . , Sn−1.

Unforgeability. Unforgeability requires that without a signing key sk, it should
be infeasible to compute a valid signature σ on a message M , which is not a valid
redaction of any message obtained by adaptive signature queries.

Definition 2 (Unforgeability). An RSS is unforgeable, if for all PPT adver-
saries A there exists a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1λ), (M∗, σ∗)← AOSign(sk,·,·)(pk) :
Verify(pk,M∗, σ∗) = 1 ∧ M∗ /∈ QSign

]
≤ ε(λ)

holds. OSign denotes a signing oracle and we define QSign ←
⋃q
i=1{M ′ | M ′ ←−

MODj

Mi ∀ MODj �
ADMiMi}. Here, q ∈ N is the number of signing queries and Mi and

ADMi denote the respective input to OSign.

Note that an adversary can perform redactions on its own (also transitively).

Privacy. For anyone except the involved signers and redactors, it should be in-
feasible to derive information on redacted message parts when given a redacted
message-signature pair.

Definition 3 (Privacy). An RSS is private, if for all PPT adversaries A there
exists a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1λ), b←R {0, 1},O ← {OSign(sk, ·, ·),
OLoRRedact((sk, pk), ·, ·, ·, ·, ·, ·, b)}, b∗ ← AO(pk) : b = b∗

]
≤ 1

2
+ ε(λ)

holds. OSign is defined as before and OLoRRedact is defined as follows:

OLoRRedact((sk, pk),M0,MOD0,M1,MOD1,ADM0,ADM1, b):
1: Compute ((Mc, σc), redc)← Sign(sk,Mc,ADMc) for c ∈ {0, 1}.
2: Let ((M ′c, σ

′
c), red

′
c)← Redact(pk, σc,Mc,MODc, redc) for c ∈ {0, 1}.

3: If M ′0 6= M ′1, return ⊥.
4: Return (M ′b, σ

′
b).

Note that the oracle returns ⊥ if any of the algorithms returns ⊥.

5

In our privacy definition, we allow the adversary to provide distinct values for
ADM0 and ADM1 to the signing oracle. While this guarantees the required flexi-
bility to support arbitrary data structures, it yields a rather strong definition of
privacy. There is existing work, which introduces an additional abort condition in
OLoRRedact [PSdMP12] (it is easy to see that security in our model implies security
in their model). While such a notion is sufficient for certain implementations of
RSSs (such as the one in [PSdMP12]), we believe that our definition is required for
a general model as we propose it.

Transparency. It should be infeasible to decide whether a signature directly comes
from the signer (i.e., is a fresh signature) or has been generated using the Redact
algorithm, for anyone except the signer and the possibly involved redactor(s). More
formally, this means:

Definition 4 (Transparency). An RSS is transparent, if for all PPT adversaries
A there exists a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1λ), b←R {0, 1},O ← {OSign(sk, ·, ·),
OSign/Redact((sk, pk), ·, ·, ·, b)}, b∗ ← AO(pk) : b = b∗

]
≤ 1

2
+ ε(λ)

holds. Here OSign is as in Definition 2 and OSign/Redact is defined as follows:

OSign/Redact((sk, pk),M,MOD,ADM, b):
1: Compute ((M,σ), red)← Sign(sk,M,ADM).
2: Compute ((M ′, σ0), red′)← Redact(pk, σ,M,MOD, red).
3: Compute ((M ′, σ1), red′′)← Sign(sk,M ′,ADM′)
4: Return (M ′, σb).

Note, ADM′ is extracted from (M ′, σ0) and the oracle returns ⊥ if any of the
algorithms returns ⊥.

We call an RSS secure, if it is correct, unforgeable, private, and transparent.
We want to emphasize that additionally returning auxiliary redaction infor-

mation red in Sign and Redact does not contradict transparency or privacy, as the
“final” verifier never sees any red (which is why the privacy and transparency games
do not return red for the challenge message-signature pair). Intuitively, only if an
intermediate redactor exists, red is given away by the signer to selected designated
entities that become redactors.5

Relations between Security Properties. The relations between the different
security properties do not change compared to the work done in [BBD+10]. Namely,
transparency implies privacy, while privacy does not imply transparency. Further-
more, unforgeability is independent of privacy and transparency. We prove these
statements in Appendix B.

Notes on Our Model. In a nutshell, our generalized framework leaves the con-
crete data-structure—and, thus, also the definition of ADM, MOD, and red—open
to the instantiation. For clarity, let us match our framework to already existing def-
initions. In particular, consider the model of [BBD+10]. It does not explicitly define

5This also distinguishes designated redactors from accountable redactable signa-
tures [PS15]. Namely, the additional information red can be given to any redactor, while
the redactor is a fixed entity in accountable RSSs. Hence, in our notion, the redactors can
even form a chain, and can be pinpointed in an ad-hoc manner.

6

ADM, but implicitly assumes that only leaves of a given tree are redactable, i.e.,
MOD may only contain changes which are possible with recursive leaf-redaction.
Pöhls et al. [PSdMP12] explicitly define ADM as the edges between different nodes
in their model for RSS for trees, while allowing arbitrary redactions, i.e., MOD may
contain any set of nodes in the tree (including the tree’s root), as well as edges.

Finally, we note that our model also covers consecutive redaction control [MHI06,
MIM+05, SPB+12b] via ADM. Recall that ADM is contained in all signatures and
Redact may also change ADM.

3 Building Blocks

In this section we provide the definitions of the required building blocks.

Digital Signature Schemes. We start by defining digital signatures.

Definition 5 (Digital Signatures). A digital signature scheme DSS is a triple
(DKeyGen, DSign,DVerify) of PPT algorithms:

DKeyGen(1λ) : This probabilistic algorithm takes a security parameter λ as input
and outputs a secret (signing) key sk and a public (verification) key pk with
associated message space M.6

DSign(sk,m) : This (probabilistic) algorithm takes a message m ∈M and a secret
key sk as input, and outputs a signature σ.

DVerify(pk,m, σ) : This deterministic algorithm takes a signature σ, a message m ∈
M and a public key pk as input, and outputs a bit b ∈ {0, 1}.

A DSS is secure, if it is correct and EUF-CMA secure. The formal security defini-
tions are provided in Appendix A.1.

Cryptographic Accumulators. Cryptographic accumulators [BdM93] represent
a finite set X as a single succinct value accX and for each x ∈ X one can com-
pute a witness witx, certifying membership of x in X . We use the formal model
from [DHS15] which assumes a trusted setup, i.e., a TTP generates the accumulator
keypair (skacc, pkacc) and discards skacc. We, however, note that in some construc-
tions skacc improves efficiency, which is a useful feature if the party maintaining
the accumulator is trusted (as it is the case in our schemes).7

In the formal model below, we omit some additional features of accumulators
as they are not required here (cf. [DHS15]).

Definition 6 (Accumulator). An accumulator Acc is a tuple of algorithms (AGen,
AEval,AWitCreate,AVerify) which are defined as follows:

AGen(1λ, t) : This probabilistic algorithm takes a security parameter λ and a pa-
rameter t as input. If t 6= ∞, then t is an upper bound for the number of
accumulated elements. It returns a key pair (skacc, pkacc), where skacc = ∅ if no
trapdoor exists.

6We usually omit to mention the message space M and assume that it is implicit in
the public key.

7Such a trapdoor skacc, when used, does not influence the output distributions of the
algorithms, but improves efficiency of some algorithms.

7

AEval((sk∼acc, pkacc),X) : This (probabilistic) algorithm takes a key pair (sk∼acc, pkacc)
and a set X to be accumulated as input and returns an accumulator accX to-
gether with some auxiliary information aux.

AWitCreate((sk∼acc, pkacc), accX , aux, x) : This (probabilistic) algorithm takes a key
pair (sk∼acc, pkacc), an accumulator accX , auxiliary information aux and a value
x as input. It returns ⊥, if x /∈ X , and a witness witx for x otherwise.

AVerify(pkacc, accX ,witx, x) : This deterministic algorithm takes a public key pkacc,
an accumulator accX , a witness witx and a value x as input and outputs a bit
b ∈ {0, 1}.

An accumulator Acc is secure if it is correct, collision free, and indistinguishable.
We recall the formal security definitions of these properties in Appendix A.2 and
refer to [DHS15] for an overview of concrete instantiations. Henceforth, we use
Dom(acc) to denote the accumulation domain.

Non-Interactive Commitments. We also require non-interactive commitment
schemes, which we define below.

Definition 7 (Non-Interactive Commitment). A non-interactive commitment
scheme Com is a tuple of PPT algorithms (Gen,Commit,Open), which are defined
as follows:

Gen(1λ) : This probabilistic algorithm takes as input a security parameter λ and
outputs the public parameters pp (subsequently, we omit pp for the ease of
notation and assume that it is implicit input to all algorithms).

Commit(m) : This (probabilistic) algorithm takes as input a message m and out-
puts a commitment C together with a corresponding opening information O
including the randomness r used by Commit.

Open(C,O) : This deterministic algorithm takes as input a commitment C with
corresponding opening information O and outputs message m′ ∈ m ∪ ⊥.

A non-interactive commitment scheme Com is secure, if it is correct, (computation-
ally) binding and (computationally) hiding. We provide a formal definition of the
security properties in Appendix A.3. We call a commitment scheme homomorphic
if for any m,m′ we have Commit(m ⊕m′) = Commit(m) ⊗ Commit(m′) for some
binary operations ⊕ and ⊗. We emphasize that any perfectly correct IND-CPA
secure public key encryption schemes yields perfectly binding commitments, e.g.,
ElGamal [Gam84], which is also homomorphic.

Non-Interactive Proof Systems. Now, we introduce non-interactive proofs for
an NP-language with witness relation R : LR = {x | ∃ w : R(x,w) = 1}.

Definition 8 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π is a tuple of algorithms (Gencrs, Proof, Verify), which are defined as follows:

Gencrs(1
λ) : This probabilistic algorithm takes a security parameter λ as input, and

outputs a common reference string crs.
Proof(crs, x, w) : This probabilistic algorithm takes a common reference string crs,

a statement x, and a witness w as input, and outputs a proof π.
Verify(crs, x, π) : This deterministic algorithm takes a common reference string crs,

a statement x, and a proof π as input, and outputs 1 if π is valid and 0 other-
wise.

8

In our context, a non-interactive proof system Π is secure, if it is complete, sound,
and adaptively zero-knowledge. We provide a formal security definitions in Ap-
pendix A.4. Concrete instantiations of non-interactive proof systems, tailored to
our requirements, are given in Section 5.

4 Redactable Signatures for Sets

For our RSS for sets (cf. Scheme 1), we compute an accumulator representing the
set to be signed and then sign the accumulator using any digital signature scheme.
For verification, one simply provides witnesses for each element in the set and it is
verified whether the digital signature on the accumulator as well as the witnesses
are valid. Redaction amounts to simply throwing away witnesses corresponding
to redacted elements. To maintain transparency, while still allowing the signer to
determine which blocks (i.e., elements) of the message (i.e., the set) are redactable,
we model ADM as a set containing all blocks which must not be redacted. We also
parametrize the scheme by an operator ord(·), which allows to uniquely encode
ADM as a sequence. MOD is modeled as a set containing all blocks of the message
to be redacted. We note that one can straightforwardly extend Scheme 1 to support

KeyGen(1λ) : This algorithm fixes a standard digital signature scheme DSS and an in-
distinguishable accumulator scheme Acc = {AGen,AEval,AWitCreate,AVerify}, runs
(skDSS, pkDSS) ← DKeyGen(1λ), (skacc, pkacc) ← AGen(1λ,∞) and returns (sk, pk) ←
((skDSS, skacc, pkacc), (pkDSS, pkacc)).

Sign(sk,M,ADM): This algorithm computes (accM , aux) ← AEval((skacc, pkacc),M), and
for all mi ∈ M : witmi ← AWitCreate((skacc, pkacc), accM , aux,mi). Finally, it com-
putes σDSS ← DSign(skDSS, accM || ord(ADM)) and returns (M,σ) and red, where
σ ← (σDSS, accM , {witmi}mi∈M ,ADM) and red← ∅.

Verify(pk, σ,M): This algorithms checks whether DVerify(pkDSS, accM || ord(ADM),
σDSS) = 1, and for all mi ∈ M : AVerify(pkacc, accM ,witmi ,mi) = 1. Furthermore, it
checks whether ADM ∩M = ADM. It returns 1 if all checks hold and 0 otherwise.

Redact(pk, σ,M,MOD, red): This algorithm parses σ as (σDSS, accM ,WIT,ADM), com-
putes M ′ ← M \ MOD, sets WIT′ ← WIT \ {witmi}mi∈MOD and returns (M ′, σ′)
and red′, where σ′ ← (σDSS, accM ,WIT′,ADM) and red′ ← ∅.

ord(ADM): This operator takes a set ADM, applies some unique ordering (e.g., lexico-
graphic) to the elements in ADM and returns the corresponding sequence.

Scheme 1: A RSS for Sets

multi-sets by concatenating a unique identifier to each set element. In Appendix C.1
we prove the following:

Theorem 1. If Acc and DSS are secure, then Scheme 1 is secure.

4.1 Observations and Optimizations

Depending on the properties of the used accumulator scheme, one can reduce the
signature size from O(n) to O(1). The required properties are as follows:

9

(1) The accumulator scheme needs to support batch-membership verification. For-
mally, this means that there are two additional algorithms AWitCreateB and
AVerifyB, which are defined as follows:
AWitCreateB((sk∼acc, pkacc), accX , aux,Y) is an deterministic algorithm that takes

a key pair (sk∼acc, pkacc), an accumulator accX , auxiliary information aux and
a set Y. It returns ⊥, if Y 6⊆ X , and a witness witY for Y otherwise.

AVerifyB(pkacc, accX ,witY ,Y) is a deterministic algorithm that takes a public
key pkacc, an accumulator accX , a witness witY and a set Y. It returns true
if witY is a witness for Y ⊆ X and false otherwise.

(2) The accumulator scheme fulfills the quasi-commutativity property, i.e., with ρ
being a fixed randomness it holds that

∀ (sk∼acc, pkacc)← AGen(1λ),∀ X ,∀ x ∈ X ,∀ Y ⊂ X
(accX , aux)← AEval((sk∼acc, pkacc),X ; ρ) :
AEval((sk∼acc, pkacc),X \ Y; ρ) = AWitCreateB((sk∼acc, pkacc), accX , aux,Y).

(3) It is possible to publicly add values to an accumulator.

Refer to [DHS15, Table 1] for a list of accumulators providing the required prop-
erties. From (1), (2), and (3) it is straightforward to derive the following corollary:

Corollary 1. For schemes fulfilling (1), (2), and (3), it holds that ∀{x, y} ⊆ X ,
one can use wit{x}∪{y} and accX to attest that x is a member of accX\{y}. Further-
more, one can efficiently compute wit{x}∪{y} from wit{x} and y.

Then, only a single witness needs to be stored and verification is performed with
respect to this witness. Redaction is performed by publicly updating the witness
(can be interpreted as removing elements from the accumulator). Such a scheme
generalizes the RSS for sets from [PSPdM12], which builds upon the RSA accu-
mulator. For accumulator schemes where (3) does not hold, one can still obtain
constant size signatures by setting red← aux. Upon Redact, red is not updated.

Our construction may look similar to the one in [PS14]. However, in contrast
to our construction, they require a rather specific definition of accumulators, which
they call trapdoor accumulators. Trapdoor accumulators differ from conventional
accumulators regarding their features and security properties. In particular, they
need to support updates of the accumulated set without modifying the accumulator
itself. Further, they require a non-standard property denoted as strong collision re-
sistance, which can be seen as a combination of conventional collision resistance and
indistinguishability. Clearly, such a specific accumulator model limits the general
applicability.

5 Redactable Signatures for Linear Documents

We build our RSS for linear documents upon the RSS for sets presented in the pre-
vious section. From an abstract point of view, moving from sets to linear documents
means to move from an unordered message to an ordered one. A naive approach
to assign an ordering to the message blocks would be to concatenate each message
block with its position in the message and insert these extended tuples into the
accumulator. However, such an approach trivially contradicts transparency, since

10

the positions of the messages would reveal if redactions have taken place. Thus, in-
spired by [CLX09], we choose some indistinguishable accumulator scheme and use
accumulators to encode the positions. More precisely, with n being the number of
message blocks, we draw a sequence of n uniformly random numbers (rj)

n
j=1 from

the accumulation domain. Then, for each message block mi, 1 ≤ i ≤ n, an accumu-
lator acci containing (rj)

i
j=1 is computed (i.e., acci contains i randomizers). Finally,

for each mi, one appends acci||ri and signs the so obtained set
⋃n
j=1{(mi||acci||ri)}

using the RSS for sets. Upon verification, one simply verifies the signature on the
set and checks for each i whether one can provide i valid witnesses for (rj)

i
j=1 with

respect to acci. Redaction again amounts to throwing away witnesses corresponding
to redacted message blocks.

Here, M = (mi)
n
i=1 is a sequence of message blocks mi, ADM is the correspond-

ing sequence of fixed message blocks, and the operator ord(·) for the underlying RSS
for sets simply returns ADM without modification. All possible valid redactions,
forming the transitive closure of a message M , with respect to Redact, are denoted
as span`(M), following [CLX09] and [SPB+12b]. Note that for ADM it must hold
that ADM ∈ span`(M). MOD is modeled as a sequence of message blocks to be
redacted and we assume an encoding that allows to uniquely match message block
with its corresponding message block in the original message.

KeyGen(1λ) : This algorithm fixes a redactable signature scheme RS(ord) =
{KeyGen,Sign,Verify,Redact} for sets (with ord(·) as defined below) and an
indistinguishable accumulator scheme Acc = {AGen,AEval,AWitCreate,AVerify}, runs
(skacc, pkacc) ← AGen(1λ,∞), (sk,pk) ← KeyGen(1λ) and returns (sk, pk) ← ((sk,
skacc, pkacc), (pk, pkacc)).

Sign(sk,M,ADM): This algorithm chooses (ri)
|M|
i=1 ←

R
Dom(acc)|M|, sets M ′ ← ∅ and com-

putes for all ri:

(acci, aux)← AEval((skacc, pkacc),∪ij=1{rj}),WITi ← (witij)ij=1, where
witij ← AWitCreate((skacc, pkacc), acci, aux, rj).

Then it computes σ̂ ← Sign(sk,
⋃|M|
i=1{(mi||acci||ri)},ADM). Finally, it returns

(M,σ) and red, where σ ← (σ̂, (acci)
|M|
i=1, (WITi)

|M|
i=1, (ri)

|M|
i=1) and red← ∅.

Verify(pk, σ,M): This algorithm checks whether Verify(pk,
⋃|M|
i=1{(mi||acci||ri)}, σ̂) = 1.

Furthermore, it verifies for all 1 ≤ i ≤ |M | whether (AVerify(pkacc, acci,witij , rj) =

1)ij=1. Finally it checks whether ADM ∈ span`(M). If all checks hold it returns 1 and
0 otherwise.

Redact(pk, σ,M,MOD, red): This algorithm sets MOD′ ← ∅ and for all mi ∈
MOD : MOD′ ← MOD′ ∪ {(mi||acci||ri)} runs (·, σ̂′) ← Redact(pk, σ̂,⋃|M|
i=1{(mi||acci||ri)},MOD′). Then for all mi ∈ MOD it removes the cor-

responding entries from M , (acci)
|M|
i=1, (WITi)

|M|
i=1 and (ri)

|M|
i=1 and obtains M ′,

(acci)
|M′|
i=1 , (WITi)

|M′|
i=1 and (ri)

|M′|
i=1 . Finally, it returns (M ′, σ′) and red′, where σ′ ←

(σ̂′, (acci)
|M′|
i=1 , (WITi)

|M′|
i=1 , (ri)

|M′|
i=1) and red′ ← ∅.

ord(ADM): This operator returns ADM.

Scheme 2: A RSS for Linear Documents

11

Theorem 2. If Acc and RS are secure, then Scheme 2 is secure.

We prove Theorem 2 in Appendix C.2.

5.1 Observations and Optimizations

Depending on the used accumulator scheme, it is possible to reduce the signature
size from O(n2) to O(n).Let us assume that (1), (2), and (3) from Section 4.1 hold,
which means that also Corollary 1 holds. Then, due to (1), one only needs to store
one witness wit⋃i

k=1{rk}
per message block, where i is the position of the block

in the message. Furthermore, upon redaction of message block i with correspond-
ing randomizer ri, one can update the witnesses wit⋃j

k=1{rj}
for all i > j ≤ |M | by

computing wit′rj ← wit⋃j
k=1{rj}∪{ri}

and removing witness wit⋃i
k=1{ri}

and random-

izer ri from the signature, which boils down to removing ri from all accumulators.
The so-obtained construction then essentially generalizes the approach of [CLX09],
which make (white-box) use of the RSA accumulator. If (3) does not hold, one can
use a similar strategy as in Section 4.1.

5.2 RSS for Linear Documents with Designated Redactors

The signature size and computational complexity of RSSs can often be improved
by explicitly considering the possibility to allow red to be non-empty. In Scheme 3
we follow this approach and present such a generic construction of RSSs for lin-
ear documents. Basically, the idea is to compute commitments to the positions of
the messages blocks and concatenate them to the respective message blocks. Then,
one signs the so obtained set of concatenated messages and commitments using
an RSS for sets. Additionally, one includes a non-interactive zero-knowledge proof
of an order relation on the committed positions for attesting the correct order of
the message blocks. The information red then represents the randomness used to
compute the single commitments. Redacting message blocks then simply amounts
to removing the single blocks from the signature of the RSS for sets and recomput-
ing a non-interactive proof for the ordering on the remaining commitments. Since
redaction control via ADM can straightforwardly be achieved as in Scheme 2, we
omit it here for simplicity, i.e., we assume ADM =∞. Also note that without ADM
the operator ord(·) is not required. MOD is defined as in Scheme 2. We empha-
size that one can easily obtain constant size red by pseudorandomly generating the

randomizers (ri)
|M |
i=1 and storing the seed for the PRG in red instead of the actual

randomizers.
Instantiating proof system Π for Rord can be done straightforwardly by using

zero-knowledge set membership proofs. Below, we briefly discuss the efficiency of
the instantiations of Scheme 3, when based on three common techniques. We note
that the below Σ-protocols can all easily be made non-interactive (having all the
required properties) using the Fiat-Shamir transform.

Square Decomposition. An efficient building block for range proofs in hidden
order groups is a proof that a secret integer x is positive [Bou00, Lip03], which
is sufficient for our instantiation. Technically, therefore we need an homomorphic
integer commitment scheme and Rord for Π is as follows:

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧ x ≥ 0.

12

KeyGen(1λ) : This algorithm fixes a redactable signature scheme for sets
RS = {KeyGen,Sign,Verify,Redact}, a commitment scheme Com = (Gen,
Commit,Open) as well as a non-interactive zero-knowledge proof system
Π = (Gencrs,Proof,Verify) for the following NP-relation Rord with Oi = (xi, ri):

((C1, C2), (O1, O2)) ∈ Rord ⇐⇒ C1 = Commit(x1; r1) ∧
C2 = Commit(x2; r2) ∧ x1 ≤ x2.

It runs (sk,pk) ← KeyGen(1λ), pp ← Gen(1λ), crs ← Gencrs(1
λ), sets (sk, pk) ←

((sk, pp, crs), (pk, pp, crs)) and returns (sk, pk).
Sign(sk,M,ADM) : If ADM 6= ∞, this algorithm returns ⊥. Otherwise, it sets D ← ∅

and computes for 1 ≤ i ≤ |M |: (Ci, Oi) ← Commit(pp, i), D ← D ∪ {(Ci||mi)}
and for 1 ≤ i < |M | : πi ← Proof(crs, (Ci, Ci+1), (Oi, Oi+1)). Then, it computes

σ̂ ← Sign(sk, D,∞) and returns (M,σ), where σ ← (σ̂, (Ci)
|M|
i=1, (πi)

|M|−1
i=1) as the

signature and red← (Oi)
|M|
i=1 as private information for the redactor.a

Verify(pk, σ,M) : This algorithms sets D ← ∅ and for all mi ∈M : D ← D ∪ {(Ci||mi)}.
It checks whether Verify(pk, D, σ̂) = 1. Furthermore, for 1 ≤ i < |M | it checks
whether Verify(crs, (Ci, Ci+1), πi) = 1. If any of the checks fails it returns 0 and
1 otherwise.

Redact(pk, σ,M,MOD, red) : This algorithm sets MOD′ ← ∅ and for all mi ∈
MOD : MOD′ ← MOD′ ∪ {(Ci||mi)}. Then it runs (·, σ̂′) ← Redact(pk, σ̂,⋃|M|
i=1{(Ci||mi)},MOD′). Then for all mi ∈ MOD it removes the corresponding en-

tries from M , (Ci)
|M|
i=1 and (Oi)

|M|
i=1 to obtain M ′, (Ci)

|M′|
i=1 and (Oi)

|M′|
i=1 . In the

end, it computes for 1 ≤ i < |M ′| : πi ← Proof(crs, (Ci, Ci+1), (Oi, Oi+1)), sets

σ′ ← (σ̂′, (Ci)
|M′|
i=1 , (πi)

|M′|−1
i=1), red′ ← (Oi)

|M′|
i=1 and returns (M ′, σ′) and red′.

a
We note that we set red← (Oi)

|M|
i=1 = (mi, ri)

|M|
i=1 for notational convenience, while one would only

require red← (ri)
|M|
i=1 .

Scheme 3: A Designated Redactor RSS for Linear Documents

This approach yields O(n) signature generation cost, signature size and verification
cost and has a constant size public key. It, however, only works in a hidden order
group setting.

For the subsequent two approaches we need to introduce an upper bound k on
the number of message blocks which will be a parameter of Scheme 3.

Multi-Base Decomposition. This technique for range proofs works by decom-
posing the secret integer x =

∑n
i=1Gi · bi with bi ∈ [0, u − 1] into a (multi)-

base representation and then proving that every bi belongs to the respective small
set ([LAN02], cf. [CCJT13] for an overview). It also works in the prime order group
setting. Here, the relation Rord for Π is as follows:

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧ 0 ≤ x < k.

This approach yields O(n log k) signature generation costs, signature size and ver-
ification costs and a constant size public key.

Signature-Based Approach. This technique [CCS08] pursues the idea of sign-
ing every element in the interval8 using a suitable signature scheme (DKeyGen,

8Actually, [CCS08] also propose a combination of this approach with a (multi)-base
decomposition, which we do not consider here for brevity.

13

DSign,DVerify). In our application let the interval be [0, k[and let us denote the
corresponding public signatures by σ = (σ0, σ1, . . . , σk−1). Now, proving member-
ship of x in [0, k[amounts to the relation Rord under crs being σ and the respective
public key pkσ (public parameters):

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧
∃ i ∈ [0, k[: DVerify(pkσ, x, σi) = 1.

This approach yields O(n) signature generation cost, signature size and verifi-
cation cost. The crs representing the public signatures and the verification key may
be included into the public key of RS, yielding a public key of size O(k).

Finally, we prove Theorem 3 in Appendix C.3.

Theorem 3. If Com, Π, and RS are secure, then Scheme 3 is secure.

References

[ABC+12] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.
Computing on Authenticated Data. In TCC, pages 1–20, 2012.

[ALP12] N. Attrapadung, B. Libert, and T. Peters. Computing on authenticated data:
New privacy definitions and constructions. In ASIACRYPT, pages 367–385,
2012.

[ALP13] N. Attrapadung, B. Libert, and T. Peters. Efficient completely context-hiding
quotable and linearly homomorphic signatures. In PKC, pages 386–404, 2013.

[BB12] J. Brown and D. M. Blough. Verifiable and redactable medical documents.
In AMIA, 2012.

[BBD+10] C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser,
M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable
Signatures for Tree-Structured Data: Definitions and Constructions. In ACNS,
pages 87–104, 2010.

[BBM09] D. Bauer, D. M. Blough, and A. Mohan. Redactable signatures on data with
dependencies and their application to personal health records. In WPES,
pages 91–100, 2009.

[BdM93] J. Benaloh and M. de Mare. One-way accumulators: a decentralized alterna-
tive to digital signatures. In EUROCRYPT, pages 274–285, 1993.

[BFF+09] C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page, J. Schelbert,
D. Schröder, and F. Volk. Security of Sanitizable Signatures Revisited. In
PKC, pages 317–336. Springer, 2009.

[BFLS10] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Unlinkability of
Sanitizable Signatures. In PKC, pages 444–461, 2010.

[BGI14] E. Boyle, S. Goldwasser, and I. Ivan. Functional Signatures and Pseudoran-
dom Functions. In PKC, pages 501–519, 2014.

[Bou00] F. Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In
EUROCRYPT, pages 431–444, 2000.

[BPS13] C. Brzuska, H. C. Pöhls, and K. Samelin. Efficient and perfectly unlinkable
sanitizable signatures without group signatures. In EuroPKI, pages 12–30,
2013.

[CCJT13] S. Canard, I. Coisel, A. Jambert, and J. Traoré. New results for the practical
use of range proofs. In EuroPKI, pages 47–64, 2013.

[CCS08] J. Camenisch, R. Chaabouni, and A. Shelat. Efficient Protocols for Set Mem-
bership and Range Proofs. In ASIACRYPT, pages 234–252, 2008.

14

[CDHK15] J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss. Com-
posable & modular anonymous credentials: Definitions and practical construc-
tions. IACR Cryptology ePrint Archive, 2015:580, 2015.

[CJ10] S. Canard and A. Jambert. On extended sanitizable signature schemes. In
CT-RSA, pages 179–194, 2010.

[CLX09] E.-C. Chang, C. L. Lim, and J. Xu. Short redactable signatures using random
trees. In CT-RSA, pages 133–147, 2009.

[DDH+15] D. Demirel, D. Derler, C. Hanser, H. C. Pöhls, D. Slamanig, and G. Traverso.
PRISMACLOUD D4.4: Overview of Functional and Malleable Signature
Schemes. Technical report, H2020 Prismacloud, www.prismacloud.eu, 2015.

[DHS15] D. Derler, C. Hanser, and D. Slamanig. Revisiting cryptographic accumu-
lators, additional properties and relations to other primitives. In CT-RSA,
pages 127–144, 2015.

[DS15] D. Derler and D. Slamanig. Rethinking Privacy for Extended Sanitizable
Signatures and a Black-Box Construction of Strongly Private Schemes. In
ProvSec, 2015. Full Version: IACR Cryptology ePrint Report 2015/843.

[Gam84] T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In CRYPTO, pages 10–18, 1984.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM JoC, 17(2):281–308, 1988.

[HHH+08] S. Haber, Y. Hatano, Y. Honda, W. G. Horne, K. Miyazaki, T. Sander,
S. Tezoku, and D. Yao. Efficient signature schemes supporting redaction,
pseudonymization, and data deidentification. In ASIACCS, pages 353–362,
2008.

[JMSD02] R. Johnson, D. Molnar, D. Song, and D.Wagner. Homomorphic signature
schemes. In CT-RSA, pages 244–262, 2002.

[KB13] A. Kundu and E. Bertino. Privacy-preserving authentication of trees and
graphs. Int. J. Inf. Sec., 12(6):467–494, 2013.

[KL06] M. Klonowski and A. Lauks. Extended Sanitizable Signatures. In ICISC,
pages 343–355, 2006.

[LAN02] H. Lipmaa, N. Asokan, and V. Niemi. Secure Vickrey Auctions without
Threshold Trust. In Financial Cryptography, pages 87–101, 2002.

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge argu-
ments. In ASIACRYPT, pages 398–415, 2003.

[MHI06] K. Miyazaki, G. Hanaoka, and H. Imai. Digitally signed document sanitizing
scheme based on bilinear maps. In ASIACCS, pages 343–354, 2006.

[MIM+05] K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshiura, S. Tezuka,
and H. Imai. Digitally signed document sanitizing scheme with disclosure
condition control. IEICE Transactions, 88-A(1):239–246, 2005.

[MSI+03] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, and
H. Yoshiura. Digital documents sanitizing problem. IEICE Technical Re-
port, ISEC2003-20, 2003.

[PS14] H. C. Pöhls and K. Samelin. On updatable redactable signatures. In ACNS,
pages 457–475, 2014.

[PS15] H. C. Pöhls and K. Samelin. Accountable redactable signatures. In ARES,
pages 60–69, 2015.

[PSdMP12] H. C. Pöhls, K. Samelin, H. de Meer, and J. Posegga. Flexible redactable
signature schemes for trees - extended security model and construction. In
SECRYPT 2012, pages 113–125, 2012.

[PSPdM12] H. C. Pöhls, K. Samelin, J. Posegga, and H. de Meer. Length-hiding
redactable signatures from one-way accumulators in O(n). Technical report,
2012.

[SB01] R. Steinfeld and L. Bull. Content extraction signatures. In ICISC, pages
285–304, 2001.

15

www.prismacloud.eu

[SPB+12a] K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. On
Structural Signatures for Tree Data Structures. In ACNS, volume 7341 of
LNCS, pages 171–187. Springer, 2012.

[SPB+12b] K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. Redactable
signatures for independent removal of structure and content. In ISPEC, pages
17–33, 2012.

[SR10] D. Slamanig and S. Rass. Generalizations and extensions of redactable sig-
natures with applications to electronic healthcare. In CMS, pages 201–213,
2010.

[WHT+10] Z.-Y. Wu, C.-W. Hsueh, C.-Y. Tsai, F. Lai, H.-C. Lee, and Y. Chung.
Redactable Signatures for Signed CDA Documents. Journal of Medical Sys-
tems, pages 1–14, 2010.

A Security Models

A.1 Digital Signatures

A digital signature scheme DSS is required to be correct, i.e., for all security pa-
rameters λ ∈ N, all (sk, pk) generated by DKeyGen and all m ∈ M one requires
DVerify(pk,m,DSign(sk,m)) = 1. Furthermore, we require existential unforgeabil-
ity under adaptively chosen-message attacks (EUF-CMA security) [GMR88].

Definition 9 (EUF-CMA). A DSS is EUF-CMA secure, if for all PPT adversaries
A there is a negligible function ε(·) such that[

(sk, pk)← DKeyGen(1λ), (m∗, σ∗)← AODSign(sk,·)
(pk) :

DVerify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ QDSign

]
≤ ε(λ) ,

where A has access to an oracle ODSign that allows to execute the DSign algorithm
and the environment keeps track of all message queried to ODSign via QDSign.

A.2 Indistinguishable Accumulators

While correctness is omitted because it is straightforward, we recall the definition
for collision freeness and indistinguishability from [DHS15] below.

Definition 10 (Collision Freeness). An accumulator is collision-free, if for all
PPT adversaries A and all t there is a negligible function ε(·) such that:

Pr

 (skacc, pkacc)← AGen(1λ, t), O ← {OE(·,·,·),OW(·,·,·,·)},
(wit∗x, x

∗,X ∗, ρ∗)← AO(pkacc) :
AVerify(pkacc, acc

∗,wit∗x, x
∗) = 1 ∧ x∗ /∈ X ∗

 ≤ ε(λ),

where acc∗ ← AEval((skacc, pkacc),X ∗; ρ∗). Here, OE and OW represent the ora-
cles for the algorithms AEval and AWitCreate, respectively. In case of randomized
accumulators, the adversary also outputs the used randomness ρ∗. Likewise, the
adversary can control the randomness r used by OE for randomized accumulators.

16

Definition 11 (Indistinguishability). An accumulator is indistinguishable, if
for all PPT adversaries A and all t there is a negligible function ε(·) such that:

Pr

(skacc, pkacc)← AGen(1λ, t), b←R {0, 1}, (X0,X1,

state)← A(pkacc), (accXb
, aux)← AEval((sk∼acc, pkacc),Xb),

O ← {OE(·,·,·),OW(·,·,aux,·)}, b∗ ← AO(pkacc, accXb
, state) :

b = b∗

 ≤ 1

2
+ ε(λ),

where X0 and X1 are two distinct subsets of the accumulation domain. Here, OE

is defined as before, whereas OW is restricted to queries for values x ∈ X0 ∩ X1.
Furthermore, the input parameter aux for OW is kept up to date and is provided by
the environment, since A could trivially distinguish using aux.

A.3 Non-Interactive Commitments

While correctness is straightforward and therefore omitted, the remaining security
properties of non-interactive commitments are defined as follows.

Definition 12 (Binding). A non-interactive commitment scheme is binding, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
pp← Gen(1λ), (C∗, O∗, O′∗)← A(pp),m← Open(C∗, O∗),
m′ ← Open(C∗, O′∗) : m 6= m′ ∧ m 6= ⊥ ∧ m′ 6= ⊥

]
≤ ε(λ).

If ε = 0, a commitment scheme is called perfectly binding.

Definition 13 (Hiding). A non-interactive commitment scheme is hiding, if for
all PPT adversaries A there is a negligible function ε(·) such that

Pr

pp← Gen(1λ), (m0,m1, state)← A(pp), b←R {0, 1},
(C,O)← Commit(mb), b

∗ ← A(pp, C, state) :
b = b∗

 ≤ 1

2
+ ε(λ).

A.4 Non-Interactive Proof Systems

Subsequently, we present the security properties for non-interactive proof systems
which are required in our context (adapted from [BGI14]). Therefore, let LR be an
NP-language with witness relation R : LR = {x | ∃ w : R(x,w) = 1}.
Definition 14 (Completeness). A non-interactive proof system (Gencrs, Proof,
Verify) is complete, if for every adversary A it holds that

Pr
[
crs← Gencrs(1

λ), (x,w)← A(crs), π ← Proof(crs, x, w) :

Verify(crs, x, π) = 1 ∧ (x,w) ∈ R
]

= 1.

Definition 15 (Soundness). A non-interactive proof system (Gencrs, Proof, Ver-
ify) is sound, if for every PPT adversary A there is a negligible function ε(·) such
that

Pr
[
crs← Gencrs(1

λ), (x, π)← A(crs) : Verify(crs, x, π) = 1 ∧ x /∈ LR
]
≤ ε(λ).

(Gencrs,Proof,Verify) is perfectly sound, if ε = 0.

17

Definition 16 (Adaptive Zero-Knowledge). A non-interactive proof system
(Gencrs, Proof, Verify) is adaptively zero-knowledge, if there exists a simulator S =
(S1, S2) such that for every PPT adversary A there is a negligible function ε(·) such
that∣∣∣Pr

[
crs← Gencrs(1

λ) : AP(crs,·,·)(crs) = 1
]
− Pr

[
(crs, τs)← S1(1λ) :

AS(crs,τs,·,·)(crs) = 1
]∣∣∣ ≤ ε(λ),

where, τs denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R
or π ← Proof(crs, x, w) and π ← S2(crs, τs, x), respectively, otherwise. (Gencrs,Pr-
oof,Verify) is perfect adaptively zero-knowledge, if ε = 0.

B Relations between Security Properties

The following relations were already given by Brzuska et al. [BBD+10].

Proposition 1 (Transparency =⇒ Privacy). Every transparent RSS is also
private.

Proposition 2 (Privacy 6=⇒ Transparency). Not every private RSS is also
transparent.

Proposition 3 (Unforgeability is Independent). Not every unforgeable RSS
is private.

We now prove Propositions 1-3. Our proofs are essentially the same as given
in [BBD+10] resp. in [BFF+09], but adjusted to our framework.

Proof (of Proposition 1). Assume an efficient adversary Apriv that wins the privacy
game with probability 1/2 + ε(λ), where ε(·) is non-negligible. We construct an
efficient adversary Atran which wins the transparency game with probability 1/2 +
ε(λ)/2. Subsequently, we describe an efficient reduction Rtran that interacts with a
transparency challenger Ctran, such that (Rtran,Apriv) form Atran.
Rtran receives the public key pk from Ctran and is given oracle access to OSign and

OSign/Redact. Rtran tosses a coin b′←R {0, 1} and initializes Apriv with pk. It is easy
to see that Rtran can answer each signing query of Apriv by using the signing oracle
provided by Ctran. For each query (M0,MOD0,M1,MOD1,ADM0,ADM1) of Apriv to
OLoRRedact, Rtran checks whether M ′0 = M ′1, where M ′0 ←−

MOD0 M0 and M ′1 ←−
MOD1 M1.

If so, it forwards (Mb,MODb,ADMb) to OSign/Redact of Ctran and returns the result.
Otherwise, it returns ⊥. At some point, Apriv outputs its guess b∗. Rtran returns 0,
if b∗ = b′, and 1 otherwise.

If b = 0, then OSign/Redact always redacts. Hence, the view of of Apriv is the
same as in the privacy game. If, however, b = 1, then each signature is fresh and
the output of Apriv does not help to win the transparency game. It follows that
Pr[Rtran = b] = 1/2(1/2 + ε(λ)) + 1/2 · 1/2 = 1/2 + ε(λ)/2. ut

Proof (of Proposition 2). Assume an unforgeable, private, and transparent RSS =
(KeyGen,Sign,Verify,Redact). We modify it in the following way to obtain
RSS′ = (KeyGen,Sign,Verify,Redact).

18

KeyGen(1λ) : Return KeyGen(1λ).
Sign(sk,M,ADM) : Run ((M ′, σ), red)← Sign(sk,M,ADM) and return ((M ′, σ‖0),

red).
Verify(pk, σ,M) : Parse σ as σ′‖b, b ∈ {0, 1} and return Verify(pk, σ′,M).
Redact(pk, σ,M,MOD, red) : Parse σ as σ′‖b, b ∈ {0, 1}, run ((M ′, σ′′), red′) ←

Redact(pk, σ′,M,MOD, red) and return ((M ′, σ′′‖1), red′).

It is easy to see that privacy and unforgeability of RSS carry over to RSS′, while
transparency trivially does not hold anymore. ut

Proof (of Proposition 3). Assume an unforgeable, private, and transparent RSS =
(KeyGen,Sign,Verify,Redact). We modify it in the following way to obtain
RSS′ = (KeyGen,Sign,Verify,Redact).

KeyGen(1λ) : Return KeyGen(1λ).
Sign(sk,M,ADM) : Return Sign(sk,M,ADM)
Verify(pk, σ,M) : Return 1.
Redact(pk, σ,M,MOD, red) : Return Redact(pk, σ,M,MOD, red).

The contrived scheme is still transparent and therefore private, while producing a
forgery is trivial.

For the other direction, we modify RSS as follows and obtain RSS′′ = (KeyGen,
Sign,Verify,Redact).

KeyGen(1λ) : Return KeyGen(1λ).
Sign(sk,M,ADM) : Run ((M ′, σ), red) ← Sign(sk,M,ADM) and return ((M ′, σ||

M), red).
Verify(pk, σ,M) : Parse σ as σ′||M and return Verify(pk, σ′,M).
Redact(pk, σ,M,MOD, red) : Parse σ as σ′||M ′, run ((M ′′, σ′′), red′)← Redact(pk,

σ′,M,MOD, red) and return ((M ′′, σ′′||M ′), red′).

Clearly, unforgeability is still given, while the scheme is obviously not private (and,
thus, not transparent) due to the original M being available. ut

C Security Proofs

C.1 Proof of Theorem 1

We show that Theorem 1 holds by proving Lemma 1-3 and deriving Corollary 2.

Lemma 1. If Acc is correct and DSS is correct, the construction in Scheme 1 is
correct.

The lemma above follows from inspection.

Lemma 2. If Acc is collision free and DSS is existentially unforgeable under chosen-
message attacks, the construction in Scheme 1 is unforgeable.

Proof. Assume an efficient adversary Auf against unforgeability. We show how Auf

can be used to construct (1) an efficient adversary Acf against the collision freeness
of the accumulator or (2) an efficient adversary Aeuf-cma against the EUF-CMA
security of the signature scheme. To do so, we describe efficient reductions Rcf and
Reuf-cma, respectively.

19

1. Here, Rcf obtains the accumulator public key pkacc from the challenger Ccf of
the collision freeness game of the used accumulator scheme and completes the
setup by running (skDSS, pkDSS) ← DKeyGen(1λ) and handing (pkDSS, pkacc)
to Auf . It is easy to see that Rcf can simulate all oracles for Auf by for-
warding the respective calls to OE and OW provided by Ccf . Furthermore,
Rcf can choose the randomness used in the calls to OE and keeps a map-
ping of accumulators and corresponding randomizers. Eventually, Auf outputs
a tuple (M∗, σ∗), where σ∗ = (σ∗DSS, accM∗ , {witmi

}mi∈M∗ ,ADM
∗) such that

@(M,ADM∗) ∈ QSign @MOD �
ADM∗

M : M∗ ←−MOD M . If accM∗ || ord(ADM∗) was
never signed using DSS, it aborts. Otherwise, we have at least one mi with a
corresponding witness witmi

such that AVerify(pkacc, accM∗ ,witmi
,mi) = 1 but

mi /∈ M∗. Consequently, Rcf can look up the randomness ρ used to compute
accM∗ and output (witmi

,mi,M
∗, ρ) as a collision for the accumulator.

2. Here, Reuf-cma obtains the DSS public key pkDSS from the challenger Ceuf-cma

of the EUF-CMA game of the used signature scheme and completes the setup
by running (skacc, pkacc) ← AGen(1λ) and handing (pkDSS, pkacc) to Auf . It is
easy to see that Rcf can simulate all oracles for Auf by forwarding the re-
spective calls to Sign to the DSign oracle provided by Ceuf-cma. Eventually, Auf

outputs a tuple (M∗, σ∗), where σ∗ = (σ∗DSS, acc
∗
M , {witmi}mi∈M∗ ,ADM

∗) such

that @(M,ADM∗) ∈ QSign @MOD �
ADM∗

M : M∗ ←−MOD M . If accM∗ || ord(ADM∗) was
signed using the signing oracle provided by Ceuf-cma it aborts. Otherwise, we can
output (σ∗DSS, accM∗ || ord(ADM∗)) as a forgery. ut

Lemma 3. If Acc is indistinguishable, the construction in Scheme 1 is transparent.

Proof. We will bound the probability to win the transparency game by using a
sequence of games. Thereby, we denote the event that the adversary wins Game i
by Si.

Game 0: The original transparency game.

Game 1: As the original game, but all calls to AEval in OSign/Redact are performed
with respect to the originally submitted message M .

Transition Game 0 → Game 1: By the indistinguishability property of the accu-
mulator, the adversary will only detect the game change with negligible probability
k · εind(λ), where k is the number of accumulators.9

In Game 1, the value of the accumulator is independent of the bit b. The remaining
signature components are identically distributed. This means that Pr[S1] = 1

2 , and,
in further consequence, Pr[S0] ≤ 1

2 + k · εind(λ). ut

The implication of privacy by transparency allows to derive the following corollary.

Corollary 2. The construction in Scheme 1 is private.

C.2 Proof of Theorem 2

We show that Theorem 2 holds by proving Lemma 4-6 and deriving Corollary 3.

9For compactness, we collapse the exchange of the accumulators to one single game
change, which can straightforwardly be unrolled to k game changes.

20

Lemma 4. If Acc is correct and RS is correct, the construction in Scheme 2 is
correct as well.

The lemma above follows from inspection.

Lemma 5. If Acc is collision free and RS is unforgeable, the construction in
Scheme 2 is unforgeable.

Proof. Assume an efficient adversary Auf against unforgeability. We show how Auf

can be used to construct (1) an efficient adversary Acf against the collision freeness
of the accumulator or (2) an efficient adversary Auf against the unforgeability of
the underlying RSS for sets RS. To do so, we describe efficient reductions Rcf and
Ruf , respectively.

1. Here, Rcf obtains the accumulator public key pkacc from the challenger Ccf of
the collision freeness game of the used accumulator scheme and completes the
setup by running (sk,pk) ← KeyGen(1λ) and handing (pk, pkacc) to Auf .
It is easy to see that Rcf can simulate all oracles for Auf by forwarding the
respective calls to OE and OW provided by Ccf . Furthermore,Rcf can choose the
randomness used in the calls to OE and keeps a mapping of accumulators and
corresponding randomizers. Eventually, Auf outputs a tuple (M∗, σ∗), where

σ∗ = (σ̂∗, (acci)
|M∗|
i=1 , (WITi)

|M∗|
i=1 , (ri)

|M∗|
i=1) and σ̂∗ contains ADM∗ such that

@(M,ADM∗) ∈ QSign @MOD �
ADM∗

M : M∗ ←−MOD M . If there was no signing query

for a superset of
⋃|M∗|
i=1 {(mi||acci||ri) and ADM∗, it aborts. Otherwise, we have

at least one accumulator acci, corresponding set Ri = {rj}ij=1, witness witrk
and randomizer rk such that rk /∈ Ri but AVerify(pkacc, acci,witrk , rk) = 1.
Then, Rcf can look up the randomizer ρ corresponding to acci and output
(witrk , rk, Ri, ρ) as a collision for the accumulator.

2. Here, Ruf obtains the RSS public key pk from the challenger Cuf of the unforge-
ability game of the used redactable signature scheme for sets and completes the
setup by running (skacc, pkacc) ← AGen(1λ) and handing (pkDSS, pkacc) to Auf .
It is easy to see that Rcf can simulate all oracles for Auf by forwarding the
respective calls to Sign to the oracles provided by Cuf . Eventually, Auf out-

puts a tuple (M∗, σ∗), where σ∗ = (σ̂∗, (acci)
|M∗|
i=1 , (WITi)

|M∗|
i=1 , (ri)

|M∗|
i=1) and σ̂∗

contains ADM∗ such that @(M,ADM∗) ∈ QSign @MOD �
ADM∗

M : M∗ ←−MOD M . If a

superset of
⋃|M∗|
i=1 {(mi||acci||ri)} and ADM∗ was signed using the oracle pro-

vided by Cuf it aborts. Otherwise, it outputs the tuple (σ̂∗,
⋃|M∗|
i=1 {(mi||acci||ri))

as a forgery for the underlying RSS for sets. ut

Lemma 6. If Acc is indistinguishable and RS is transparent, the construction in
Scheme 2 is transparent.

Proof. We will bound the probability to win the transparency game by using a
sequence of games. Thereby, we denote the event that the adversary wins Game i
by Si.

Game 0: The original transparency game.

Game 1: As the original game, but all accumulators acci in OSign/Redact are com-

puted with respect to the initial set of randomizers {ri}|M |i=1.

Transition Game 0 → Game 1: By the indistinguishability property of the accu-
mulator, the adversary will only detect the game change with negligible probability

21

k · εind(λ), where k is the number of accumulators.10

In Game 1, the accumulators acci are independent of the bit b. In this game the
adversary can only win the game by breaking the transparency of the underlying
RSS, i.e., Pr[S1] ≤ 1

2 +εRSS(λ). All in all, we have that |Pr[S0]−Pr[S1]| ≤ k ·εind(λ),
meaning that the probability to win the transparency game is Pr[S0] ≤ 1

2+εRSS(λ)+
k · εind(λ), which is negligible. ut

The implication of privacy by transparency allows to derive the following corollary.

Corollary 3. The construction in Scheme 2 is private.

C.3 Proof of Theorem 3

We show that Theorem 3 holds by proving Lemma 7-9 and deriving Corollary 4.

Lemma 7. If RS is correct, Com is correct, and Π is complete, the construction
in Scheme 3 is correct.

The lemma above follows from inspection.

Lemma 8. If RS is unforgeable, Com is perfectly binding, and Π is sound, the
construction in Scheme 3 is unforgeable.

Proof. To prove unforgeability, we show how an efficient adversary against un-
forgeability Auf can be used to construct (1) an efficient adversary Auf against the
unforgeability of the underlying RSS for sets RS or (2) an efficient adversary Aso

against the soundness of the underlying proof system. Subsequently, we describe
efficient reductions Ruf and Rso, respectively.

1. Ruf obtains the RSS public key pk from the challenger Cuf of the unforge-
ability game of the used redactable signature scheme for sets and completes
the setup by running pp ← Gen(1λ), crs ← Gencrs(1

λ), setting (sk, pk) ←
((sk, pp, crs), (pk, pp, crs)) and handing pk to Auf . It is easy to see that Rcf can
simulate all oracles for Auf by forwarding the respective calls to Sign to the
oracles provided by Cuf . Eventually, Auf outputs a valid tuple (M∗, σ∗), where

σ∗ = (σ̂∗, (Ci)
|M∗|
i=1 , (πi)

|M∗|−1
i=1) such that @(M,∞) ∈ QSign : M∗ ∈ span`(M).

If a superset of
⋃|M∗|
i=1 {(Ci||mi)} was signed using the oracle provided by Cuf it

aborts. Otherwise, it outputs (σ̂∗,
⋃|M |
i=1{(Ci||mi)}) as a forgery for the RSS for

sets.
2. Rso obtains crs from the challenger Cso of the soundness game of the underlying

non-interactive proof system and completes the setup by running (sk,pk) ←
KeyGen(1λ), pp← Gen(1λ), setting (sk, pk)← ((sk, pp, crs), (pk, pp, crs)) and
handing pk to Auf . It is easy to see that the reduction can simulate all oracles
as in the real game. Eventually, Abd outputs a valid tuple (M∗, σ∗), where

σ∗ = (σ̂∗, (C∗i)
|M∗|
i=1 , (π

∗
i)
|M∗|−1
i=1) such that @(M,∞) ∈ QSign : M∗ ∈ span`(M).

If no superset of
⋃|M∗|
i=1 {(Ci||mi)} was ever signed using the oracle provided

by Cuf it aborts. Otherwise, there is at least one i for 1 ≤ i < |M∗| such that

10As in the proof of Lemma 3, we collapse the exchange of the accumulators to one
single game change for compactness.

22

Verify(crs, (C∗i , C
∗
i+1), πi) = 1 but (C∗i , C

∗
i+1) /∈ LRord

, which means that Rso can
output ((C∗i , C

∗
i+1), πi) to win the soundness game of the non-interactive proof

system. ut

Lemma 9. If RS is transparent, Com is hiding, and Π is adaptively zero-knowledge,
the construction in Scheme 3 is transparent.

Proof. We will bound the probability to win the transparency game by using a
sequence of games. Thereby, we denote the event that the adversary wins Game i
by Si.

Game 0: The original transparency game.

Game 1: As the original game, but the environment sets up the crs for the non-
interactive proof system using the simulator S1, i.e., (crs, τs)← S1(1λ) and follow-
ingly simulates all proofs using S2(crs, τs, ·, ·).
Transition Game 0 → Game 1: A distinguisher between Game 0 and Game 1 is
a distinguisher for the adaptive zero-knowledge property of the underlying non-
interactive proof system, i.e., the distinguishing probability |Pr[S0] − Pr[S1]| is
bounded by εzk(λ).

Game 2: As Game 1, but all commitments inside OSign/Redact are replaced by com-
mitments to 0.

Transition Game 1 → Game 2: A distinguisher between Game 1 and Game 2 is a
distinguisher for the hiding game of the underlying commitment scheme, i.e., the
distinguishing probability |Pr[S1]− Pr[S2]| is bounded by |M ′| · εhd(λ).11

In Game 2, all values except σ̂ are independent of the bit b, meaning that the
adversary has the same advantage as in the privacy game of the underlying RSS
for sets, i.e., Pr[S1] = 1/2 + εRSS(λ). Taking all together, we have Pr[S0] ≤ 1/2 +
εRSS(λ) + εzk(λ) + |M ′| · εhd(λ), which is negligible. ut

The implication of privacy from transparency allows to derive the following corol-
lary.

Corollary 4. The construction in Scheme 3 is private.

11For compactness, we combine the exchange of the commitments in one game change
and note that it is straightforward to unroll the exchange of the commitments in |M ′|
game changes.

23

	A General Framework for RedactableSignatures and New Constructions

