
PURITY: a Planning-based secURITY testing tool

Josip Bozic∗

Institute for Software Technology
Graz University of Technology

A-8010 Graz, Austria
jbozic@ist.tugraz.at

Franz Wotawa∗∗

Institute for Software Technology
Graz University of Technology

A-8010 Graz, Austria
wotawa@ist.tugraz.at

Abstract—Despite sophisticated defense mechanisms security
testing still plays an important role in software engineering.
Because of their latency, security flaws in web applications
always bear the risk of being exploited sometimes in the future.
In order to avoid potential damage, appropriate prevention
measures should be incorporated in time and in the best case
already during the software development cycle. In this paper,
we contribute to this this goal and present the PURITY tool for
testing web applications. PURITY executes test cases against
a given website. It detects whether the website is vulnerable
against some of the most common vulnerabilities, i.e., SQL
injections and cross-site scripting. The goal is to resemble a
malicious activity by following typical sequences of actions
potentially leading to a vulnerable state. The test execution
proceeds automatically. In contrast to other penetration testing
tools, PURITY relies on planning. Concrete test cases are
obtained from a plan, which in turn is generated from specific
initial values and given actions. The latter are intended to
mimic actions usually performed by an attacker. In addition,
PURITY also allows a tester to configure input parameters and
also tests a website in a manual manner.

Keywords-Testing tool, Model-based testing, security testing,
planning problem.

I. INTRODUCTION

The increasing number of web applications available
today and accessible for more and more people require to
reconsider improving reliability and also security of these
applications. Hence, the need for ensuring secure access
to services and programs becomes greater. In fact, this
demand will become even more important in the future.
With increasing complexity of programs but also because of
the fact that hackers are always a step ahead of software
developers, the sophistication of malicious attacks grows
as well. Hence, there is a strong need of bringing security
testing into regular testing practice. However, the question
is whether testers become more aware of security issues
with the increasing number of web applications? If not, then
the consequence is that the number of insecure programs
becomes greater as well. In addition, and because of the
increasing number of service users once a vulnerability is

* The author is funded in part by the project 3CCar under grant 662192
(EU ECSEL-RIA) and the Austrian Research Promotion Agency (FFG).

** Authors are listed in alphabetical order.

exploited, the consequences to security and privacy issues
are becoming worst.

According to [1], the most common vulnerabilities include
SQL injections (SQLI), cross-site scripting (XSS), among
others. The fact that these known exploits still represent
a major threat for web applications confirm the additional
demand for security counter measures. Because of the de-
scribed dangers, there is a strong need for testing in order to
prevent or at least to minimize potential damage. However,
in order to effectively test an application the tester needs
sufficient experience and know-how, which is not always
ensured especially in case of web applications. An additional
burden is that the testing process is often a manual and
lengthy process with a great need for precision. In order to
support testers in this process, a number of tools have been
developed. Currently several scanners and manual testing
tools are available for XSS detection [2], [3], [4], [5], and
also for testing against SQLI [6] attacks. Nevertheless, these
manual testing tools still bear the burden of demanding a
high amount of time for the application to be tested.

Hence, the main challenge relies in the automation of
the testing process with a minimum number of necessary
user interaction but still providing enough precision and
effectiveness. Until now much work in this direction has
been focused on fuzzing [7], which deals about testing
with (semi-)random values. Other tools rely on evolutionary
algorithms [8]. It should also be mentioned that some manual
tools can be (manually) automated as well, for example by
implementing plug-ins for the corresponding applications
[9]. However, again additional effort is needed for carrying
out the test automation.

In order to make security testing of web application easier,
we propose the penetration testing tool Planning-based
secURITY testing tool (PURITY). It has been developed
for testing of websites to detect potential SQLI as well
as reflected and stored types of XSS security issues in
an either manually or automated fashion (or something in-
between). The tester is asked for a minimum amount of
informations. PURITY also offers the possibility to define
all test parameters if desired. The tool is partly built upon
previously work already presented. It encompasses parts
of a model-based approach that relies on attack patterns

[10], [11], and also on a technique that defines testing
as a planning problem [12]. In fact, PURITY improves
test case generation using a planner and makes use of the
communication implementation and test oracles from the
previously works. The tool presents the obtained test results
in detail after the test execution terminates.

PURITY is a security testing tool that is easy to use but
also provides high configurability and offers extendibility.
We will discuss the last two issues in greater detail further
in this paper. PURITY is a research prototype written in
Java currently available via the authors. In the close future
we plan to release the program as open-source tool.

The paper is structured in the following way: Section II
provides a list of works about model-based testing and gives
an overview about the authors’ previously works. Section III
discusses PURITY in great detail. The subsections encom-
pass a broad description of the individual parts of the tool.
Section IV demonstrates the functionality of the tool on an
example. Finally, Section V concludes the work and provides
further discussion.

II. RELATED WORK

The work that preceded PURITY is based either on
model-based based testing or planning. In general, for the
first case models of the SUT are used in order to generate
test cases. In turn, the test results are compared to expected
values. Works that deal with general issues of model-based
testing include [13] and [14].

As mentioned before, our previously works (among others
[10], [11]) dealt with the notion of attack patterns, i.e.
graphical representations of an attack that represent an
abstract test case. The way the program communicates,
i.e. executes tests against the SUT, and the vulnerability
detection mechanisms were implemented into our tool. We
also applied some methods for data manipulation as well.

However, PURITY puts a greater focus on the tech-
nique proposed in [12]. Although planning is often used
in robotics, we applied this method on security testing. A
planner generates a sequence of abstract actions. On the
contrary, for every action there is a corresponding method
with concrete values. In such way, concrete test cases are
executed accordingly to the abstract plan. The detailed
description is given below in the next section.

Planning has been applied to testing in other works as
well [15], [16], [17]. But in contrast to these works, we
automate the plan generation process for SQLI and XSS in
web applications and offer a manual interface as well.

The authors from [18] propose the Pattern-driven and
Model-based Vulnerability Testing approach (PMVT) for de-
tecting of XSS. The method generates tests for this purpose
by using generic vulnerability test patterns and behavioral
models of a specific web application. On the contrary, our
work does not rely on such models and test purposes but
uses different test case generation techniques.

PURITY	

WWW

PDDL	 Input	
vectors	

SUT	

User	 /	 tester	

Figure 1. PURITY in context with its environment

Works that apply threat representations are [19] and [20].
In the first paper the authors adapt Petri nets in order
to depict formal threat models. These are represented as
Predicate/Transition nets and depict a way how to breach
a security leak inside a SUT. Here test cases are created
automatically from these models by creating code by rely-
ing on the Model-Implementation specification. The second
work deals with test case generation from Threat Trees. In
this approach, valid as well as invalid inputs are created from
threat modeling. Although both approaches share similarities
with the generated attack steps in our tool, we do not rely
on a graphical representation but use PDDL for test case
generation. Also, mapping to concrete test cases is done
separately from the above process.

A detailed overview about SQLI and XSS can be found
in [21] and [22], respectively.

III. PURITY - A PLANNING BASED SECURITY TESTING
TOOL

PURITY is intended to be used for testing web appli-
cations. In Figure 1 we depict PURITY in context with its
surrounding environment. The tool takes input from the user
like the www address of the application, planning definition
files (PDDL), which define the initial state and potential
attack actions, and potential concrete attack vectors used
when testing the application. PURITY generates plans from
which concrete test cases to be submitted to the system under
test (SUT). PURITY analyses the received feedback from
the SUT in order to detect a vulnerable behavior.

PURITY encompasses several elements that interact with
each other as well as with the user, which we later describe
in more detail. It offers additional possibilities for the tester
to define test parameters like the type of attack, the used
attack actions, the test data etc. The tests can be carried

out both manually and automatically. Accordingly to the
implemented test oracle, the program gives a verdict whether
the vector succeeded in triggering a vulnerability. Also, the
corresponding tested element is shown to the tester so he or
she gets a visual expression of the output.

In fact, the tool offers a great deal of configurability
with regards to the implemented technology. The tester can
interact with the program on a minimum scale, i.e. by setting
only the initial configuration like URL address. On the
contrary, a test can be carried out completely manually by
assigning specific values to selected parts of the website.

In the following we briefly describe the underlying tech-
niques and the internal architecture of PURITY.

A. Background Techniques

1) Attack Pattern-Based Testing: The first approach is
discussed in detail in the works mentioned in the related
research. Until now it has been enriched by applying a test
case generation technique from the field of combinatorial
testing [11]. Basically it’s a test case execution technique
that is found upon patterns of attacks like SQLI and XSS. As
is the case with PURITY, the approach is highly configurable
by the user and can be connected to other techniques as well.

The approach executes accordingly to the specified UML
statechart of the attack against the SUT. Such a path through
the model serves as an abstract test case, whereas concrete
methods and variables are implemented in Java and can
be called from the model during execution. It relies on
HttpClient1 for testing and reading of HTTP messages that
carry the malicious vector. After targeting an element of the
website, the attack is executed and the response is parsed
by jsoup2. Finally, the program gives a diagnosis about the
test and resumes the testing process.

2) Planning as a Testing Problem: Although planning
has already been considered for testing, we introduced an
algorithm and technique for its adaptation in security testing
of websites. It should be mentioned that this approach plays
an important part in the PURITY as well.

In fact, testing can be viewed as a sequence of actions that
starts in an initial state and ends after the test verdict. First,
the domain and problem files have to be specified in the stan-
dard Planning Domain Definition Language (PDDL). The
problem is defined by application specific variables or values
while the domain encompasses problem independent action
definitions. Every action is specified by its set of applied
variables and pre- and postconditions. In case those certain
preconditions of an action are satisfied, this action is picked
from the list and its effects are triggered during execution.
Now, the new values may serve as a new precondition for
other actions and so on.

It is the task of the planner to automatize this process
and, if possible, to generate a plan. In fact, a plan resembles

1http://hc.apache.org/httpcomponents-client-ga/
2http://jsoup.org/

GUI	

Control	

Planner	 TC	 Gen	 HTTP	
Client	 Crawler	 Logger	

PDDL	 Input	
vectors	

WWW

PURITY	

Figure 2. PURITY’s internal software architecture

an attack from the abstract point of view. For that case
we rely on the planning system Metric-FF [23]. PURITY
reads the plan. It has corresponding concrete methods and
values for every action from the domain. Then the execution
proceeds accordingly to the plan by dynamically calculating
new effects from the actions’ preconditions. If the concrete
tests follow the abstract ones during execution then we get
a positive test verdict in the end. On the concrete level this
means that an expected output was obtained from the SUT
after submitting some attack vector. Otherwise a new plan
is generated and the process starts again. The whole process
follows our PLAN4SEC algorithm [12], which extended
version is also a part of PURITY.

B. Key Components

PURITY encompasses a variety of different components.
These have been implemented using different Java libraries
as well as other external programs. The most important ones
are the following:
• Metric-FF: A planning system that is based on a

forward chaining planner. It handles PDDL files, thus
producing a plan.

• JavaFF ([24]): A Java implementation of FF [25] that
parses PDDL files and incorporates a planner. However,
PURITY makes only use of the parser in order to
extract components like objects, initial values, actions
etc. from both the problem and domain definitions.

• Crawler4j3: An open source Web crawler that offers
the possibility to define the crawl depth, number of
pages to fetch etc.

• HttpClient: Implements the client side of the HTTP
standard. Used by the program in order to communicate

3https://github.com/yasserg/crawler4j

http://hc.apache.org/httpcomponents-client-ga/
http://jsoup.org/
https://github.com/yasserg/crawler4j

over HTTP with the SUT. Attack vectors are submitted
as parts of the request after which the response is read
from the tested system.

• jsoup: A Java based HTML parser. It is used in order
to parse the HTTP response in search for critical data
after the attack. A test verdict is given according to that
information.

• Test oracles: They are implemented inside PURITY.
Detection mechanisms for both SQLI and XSS are
discussed in detail in the authors’ related works. How-
ever, it is important to understand how SQLI works
in order to know why an expected value is asked for
in PURITY’s GUI. The general fact is that after a
malicious vectors have been submitted, the outcome is
always hard to predict. In this case the tester is asked to
specify a unique value which will be searched for in the
HTTP response after the attack occurs. For example, the
tester might already know (e.g. by social engineering)
the username of a victim. In that case, this could be
specified as an indicator value. On the other hand, the
detection of both types of XSS is handled automatically
without necessary feedback specification.

Figure 2 depicts the internal software architecture of our
tool. All interaction between tester and PURITY proceeds
over the GUI. This represents the front end from where the
entire functionality can be accessed. However, below that
layer the implementation is responsible for the data flow
between the individual components and the user.

A web application is accessed either over the World Wide
Web or locally, wherever it might be deployed. The URL
acts as the starting point once the testing process is started.
The communication between PURITY and SUT is handled
dynamically by HttpClient. It creates and sends HTTP
requests for opening the communication channel in the first
place. However, it also injects attack vectors into parameters
so it acts as the attacker’s very back end. Although it is a
separate entity, HttpClient is used in combination with jsoup
in order to parse HTML data from the response. The most
critical data are user input elements from the website and
incoming messages.

The Web crawler browses the SUT and identifies hyper-
links in websites that are connected to the initial URL. It
takes the submitted URL as a starting seed and eventually
returns all ongoing addresses. It should be mentioned that
the tester can restrict the crawl depth and define a maximum
number of pages to fetch. During test execution, all incoming
data from the crawler is submitted directly to HttpClient.

However, concrete inputs are needed for a test case.
PURITY encompasses two initial test sets, one with SQL
injections and the other containing XSS vectors. New ones
can be obtained externally by attaching them to our tool.
During execution, these TXT files are read line by line and
sent to HttpClient, which puts them inside HTTP requests as
well. If the tester wants to create new input files, he should

take care of the data structure for both SQL and JavaScript.
Otherwise the data will be sent to the SUT anyway; however
no meaningful results would be obtained.

It is very important to note that until now all of the
described components from Figure 2 work as parts of the
Java implementation. This means that concrete test cases
are built automatically from the current URL address, web
component data and attack vectors by the test case generator.

On the other hand however, abstract test cases are created
by the planner. These inputs contain data with almost no
concrete values like the ones mentioned above. Generally
speaking, automated planning and scheduling is based on
propositional and first-order logic. As will be explained
below, the planning language PDDL is used in order to
specify objects, predicates etc. in order to construct entities
with preconditions and effects. These are called actions and
are saved with other data in two PDDL files. Given that
initial values and an initial state are specified in that files, as
well as a goal description, the planner searches for actions
that lead from the initial state to the goal. The resulting
sequence is called a plan.

However, this plan cannot be used for testing purposes
unless there are concrete values that somehow correspond
to abstract values from the planning domain. Therefore we
have implemented action definitions (in fact Java methods)
in PURITY that fulfill this purpose. The test case generator
reads the abstract actions and searches for their concrete
counterpart in the implementation. Once found, it is exe-
cuted. One advantage of this approach is the fact that for
one abstract object from an action we can apply a dozen
of concrete attack vectors. For example, the implementation
picks one attack vector from the input files and applies it to
a variable in the implementation. After the plan is executed
on the concrete level, PURITY reads the next vector and
repeats the plan execution with the new value.

The implementation calls the planner by submitting the
two PDDL files. However, PURITY also generates new files
of this kind. Since every plan is constructed according to a
specific data configuration, a different configuration would
also result in a different plan. Exactly that is what PURITY
focuses on: It creates new problem definitions with somehow
different initial values. Now Metric-FF delivers a new plan
that is parsed by PURITY, which carries out the concrete
execution. The way PURITY creates new PDDL files will
be elaborated further in the paper.

Generally speaking, the implementation generates con-
crete data accordingly to abstract ones. On the other hand,
it also creates abstract data that is meant to be processed
by the planner. The planner produces in turn new abstract
data for the implementation. This is a cyclic process that
continues as long as plans are generated and attack vectors
are available.

Finally, the logger collects all relevant data produced
during the execution. The tester has the choice whether he

wants to log all events during the execution or just critical
messages like exceptions.

C. PLAN4SEC 2.0

Here we discuss the extended algorithm behind the au-
tomated execution in PURITY. PLAN4SEC was already
introduced in [12]. In this paper we extend the approach
in order to cover additional functionality. The improved
PLAN4SEC 2.0 is depicted in Algorithm 1.

As was the case with the initial version of the algorithm,
it relies on data from the PDDL files and concrete values.
It also makes use of the domain specification, attack type
information, HTML method variables and a function that
maps actions from the plan to corresponding Java methods.

The final output is a table with all attack vectors and SUT
parameter values that lead to a vulnerability breach. The
corresponding function res reports FAIL whenever a test
triggers a vulnerability, whereas PASS is thrown otherwise.

The main improvement of PLAN4SEC 2.0 is a dynamic
PDDL generation, crawler consideration and processing of
new outputs during the execution. The last point represents
information that cannot be foreseen before the testing starts.
However, it is applied dynamically into the testing process.

The idea behind this algorithm is the following one. For
every URL address the program parses user input elements
from the website as well as the current initial values from
the problem’s PDDL. Additionally it initializes the crawler,
which in time returns all hyperlinks from the website in
form of URLs. Now the program checks whether HTML
elements have been encountered during the parsing of the
website in step 4 (E). As mentioned before, these are the
input fields where the user is supposed to interact with the
SUT. The goal is to test every of these elements separately
before continuing the execution. Since these values cannot
be known at the beginning, the program has to identify them
for every incoming URL. Now the planner returns the first
sequence of actions from the domain and problem files (step
6). Afterwards the first attack vector is picked from the input
files.

The function Φ takes as arguments the abstract action (a)
from the plan and maps it to its concrete counterpart in Java
(c).

During plan execution, the test case generator assigns the
attack vector (x′) to one of the HTML inputs (e′) from the
website. Afterwards, when the plan execution terminates, the
program still remains in the loop of that vector but assigns
it now to another HTML element in E and repeats the
plan execution again from the beginning (steps 10-20). Now,
generated abstract actions are read one by one from the saved
plan. PURITY traverses through all concrete Java methods
in order to find the corresponding action implementation
(step 12). When encountered, it is executed and eventually
generates new values.

Algorithm 1 PLAN4SEC 2.0 – Improved plan generation
and execution algorithm
Input: Domain D, set of problem files P = {p0, . . . ,pn},
address URL, set of initial values U = {(t,m)|t ∈
T,m ∈ M} with a set of attack types T = {t0, . . . ,tn}
and set of HTTP methods M = {m0, . . . ,mn}, set of
attack vectors X = {x0, . . . ,xn}, set of concrete actions
C = {c0, . . . ,cn} and a function Φ = a 7→ c that maps
abstract actions to concrete ones.
Output: Set of plans PL = {A0, . . . ,An} where
each Ai = {a0, . . . ,an}, set of HTML elements
E = {e0, . . . ,en} and a table with positive test verdicts V .

1: PL = ∅
2: for SELECT URL, X , C, U , p ∈ P , D do
3: while URL.hasNext() do
4: E = parse(URL) . Identify user input fields
5: while U 6= ∅ do
6: A = makePlan(p,D)
7: PL = PL ∪ {A}
8: res(A) = FAIL
9: for x′ ∈ X do

10: for e′ ∈ E do
11: for a ∈ A do . Execute plan
12: a′ = ConcreteAct(a,Φ, x′, e′)
13: if Exec(a′) fails then
14: res(A) = PASS
15: else
16: res(A) = FAIL
17: V = V ∪ res(A)
18: end if
19: end for
20: end for
21: end for
22: p = makePDDL(U, p,D) . New problem
23: P = P ∪ p
24: end while
25: URL = crawler.next() . Pick next URL
26: end while
27: end for
28: Return (V) as result

In such a way a plan is re-run for a certain address
and a certain attack vector several times. Only after testing
of all user input elements, the execution proceeds further.
In case that no input elements are available, the program
switches immediately to the next part. After the tests have
been executed for all input elements, eventually a positive
test verdict is saved into the table (step 17). A concrete
example for this table is given in the case study section.

A major difference to the initial version of the algorithm
is the fact that PURITY generates and executes several

problem definitions. In fact, a new PDDL file is generated
dynamically after all attack vectors have been executed
against one web page. For this case we have to take a look at
the initial values of an individual problem definition. These
specify the starting conditions for further plan generation. A
sample of a few initial values is given below:

(: i n i t
(i n I n i t i a l x)
(Logged no)
(n o t (s t a t u s i n i t two))
(Type s q l i)
(= (s e n t se) 0)
(n o t (Empty u r l))
(GivenSQL s q l i)
(GivenXSS x s s i)
(Method p o s t)
(Response r e s p)
(n o t (Found exp r e s p))
(n o t (F o u n d S c r i p t s c r i p t r e s p))
. . .

)

Initial values description in PDDL

The goal is to generate new problem files with different
initial values so that different plans are generated as well.
With a new sequence of actions the test execution will
also differ from the previously plan. During execution the
problem file is parsed in search for an already set initial
value, which will be replaced by a new one from the
corresponding data set from U . It should be mentioned that
the same set of values is specified twice, once in the PDDL
files and at the concrete level in Java.

For demonstration purposes we explain the change of
two of the initial values, namely Type and Method. Here
Type can have three values, namely sqli, rxss and sxss
whereas Method encompasses only get and post. Both
sets are implemented in the PDDL files as well in Java on the
concrete side. If sqli was the initial value of Type in the
first problem file then another will take its place, e.g. rxss.
The program will keep the implementation of the current
problem (p) but will replace its current value (e.g. sqli)
with a new one (rxss) in step 22. Then, a new PDDL file
is saved (step 23) with this specification and marked as next
in line for procession. The plan generation is invoked again
as well as the attacking sequence.

However, one important attribute of PURITY is that a
method for the generation of initial values is directly invoked
from another method of the same kind. This means that for
every value of Type we obtain several files with different
initials. After all of them have been executed, we generate
new files for a new value of Method. For example, for three
values of Type and two different values of Method we
generate a total of six PDDL files, which results in six plans
and attack executions. Theoretically, by taking the values of
one more initial predicate, e.g. (inInitial x) with 22
possible values for x, a sum of (3× 2× 22 =) 132 problem
files can be generated and so on. It is important to note that

for every abstract value the corresponding concrete values
have to be set as well, e.g. if the method from the plan is
post then the website will be tested only with that method
despite the fact that get might be its default value. But since
there has to be at least one file where (Method get) is
specified, this will be executed as well.

Actually, in this way we hope to trigger unwanted behav-
ior of the SUT and test whether this might lead to a security
breach as well. The more initial values are specified and
manipulated, the more different tests are carried out for this
sake. This PDDL generation process will continue as long
as all combinations of objects from U are executed.

In fact, this principle can be applied to every initial
value so a huge number of test cases are generated. Of
course, the last method would call no other because all value
combinations would have been already executed. However,
it remains the task of the programmer to implement new
generation methods.

The entire testing process will last as long as the crawler
returns new hyperlinks. Afterwards, the execution terminates
permanently.

D. Structure of Inputs in PURITY

As mentioned before in the paper, one of the primary
motivations for this tool was to ease the effort for the tester
to effectively test a program. For this case, the amount of
interaction is kept as small as possible. For instance, it is
completely sufficient just to give the URL address of the
SUT and click a button in order to start the testing process.
The rest will be handled by the program automatically. This
fact increases the usability of the tool while keeping the
execution time relatively low. On the other hand the tester
might want to know the functionality behind PURITY and
interacts with the system. If this is the case, the tool offers
several possibilities to realize that. However, first we have
to describe what types of user inputs are used in PURITY:

Type of attack: Can be either SQLI or XSS. According to
this choice, the program expects different attack vectors but
also applies different test oracles. Since previously works
with attack patterns have proven that reflected and stored
XSS can be detected the same way, we don’t make any dis-
tinction. However if the tool is run completely automatically,
the SUT will be tested for both vulnerabilities.

Attack vectors: A text file is attached to the PURITY and
read line by line. Every row should contain one vector that
resembles either one SQL query or JavaScript code. Since
our tool is meant for testing purposes, a harmful vector for
SQLI can have a structure like:

a’ UNION ALL SELECT 1, @@version;#’

On the other hand, an input for XSS could reflect if it
looks like:

<iframe src="http://www.orf.at"></iframe>

In both cases the vector is assigned to a variable and sent
via request over HTTP to the SUT. The tester can attach
TXT files with attack vectors to PURITY before the testing
process starts. Otherwise the tool will make use of two files
that are already included.

Domain.pddl: This file is already attached to the tool and
it encompasses predicate and function definitions as well as
actions. Once set, the domain file will remain unchanged
during automated test execution, i.e. all further plans will
be constructed according to the same definition.

Problem.pddl: The problem file is part of the tool and
specifies objects and initial values. During execution these
values will be replaced with new ones, thus continuously
creating new problem files. Every generated plan will be
derived from a different problem specification.

In the paper we will use the symbolic names
domain.pddl and problem.pddl for both specifica-
tions regardless of the files’ name.

E. Modes of Use

After starting PURITY, the tester has the choice between
four different test execution modes. Figure 3 depicts the GUI
of the tool.

The minimum requirement for every one of them is to
specify the URL address of the SUT. The initial values for
the crawler are initially set to −1 for both the crawl depth
and number of pages to fetch. These values decide about how
deep the crawler will go into the application by starting from
the original URL and how many pages will be fetched during
that search (−1 stands for unlimited.). In the following we
briefly describe each mode of use PURITY offers.

1) Completely Automatic: This mode is the most exten-
sive one because it performs the execution in a completely
automated manner. It will be picked per default if the
checkbox auto-generate plans is selected.

If he desires, the tester can load his own input files into
the tool before pushing the start button. Since this mode tests
automatically for both SQLI and XSS, he can use test sets
for both vulnerabilities. The user can edit the initial domain
specification and delete actions in a simple editor if desired.
In such way fewer actions are taken into consideration by
Metric-FF so the plans will get simpler as well. From now
on the reduced domain file will remain unchanged during
the entire testing process.

When the execution starts, PURITY submits the initial
PDDL files to Metric-FF that in turn generates the first
abstract test case. If no plan could be generated, the user will
be notified. From now on the procedure follows PLAN4SEC
2.0 as long as attack vectors are available and plans are gen-
erated. An example of this type of execution is demonstrated
in Section IV.

Of all modes, this one covers most of the functionality
of PURITY and demonstrates the adaptation of planning in
testing at its best.

Figure 3. PURITY’S GUI

2) Partly Automatic: This selection relies on testing as
well but to a much lesser extent. In this case the tester
generates just one plan, which actions are displayed in
a separate window. Additionally, all available actions are
parsed from domain.pddl and displayed as well. Now the
tester can make experiments by deleting and adding actions
or changing the order of their appearance.

The new list will be sent to the test case generator and car-
ried out automatically as would be the usual case. However,
the difference to the completely automated approach lies in
the fact that this time a plan is executed only once. To be
precise, only one execution is carried out per attack vector.
Figure 4 depicts the section that contains the generated plan.
As can be seen, plan actions can be either removed or added
from the menu.

Actually this mode is meant for the tester to manipulate
planning related data and to check the corresponding effects.

Figure 4. Section for partly automated testing

3) Completely Manual: With this choice the tester can
test a single website by manually writing values for all
its user input fields. HttpClient parses the page from the
specified URL and displays all HTML elements that could
be tested. Now the user can add or remove parameters
if he wishes. For example, sometimes it is proven to be
useful to submit one parameter twice in a request, e.g. by
submitting username=Ben&username=[malicious
script]. This configuration can be defined manually in
the table. In order to realize this, the tester adds a row in
the elements table and writes the name of the parameter and
its value. Afterwards he might initialize the testing process.
However, there will be no result table displayed since the
user has a clear insight what parts of the SUT are tested
with a known attack vector. Since no planning and crawler
are used and no test files are attached, only one test case
will be executed per attack. Figure 5 shows the manual
testing section. All extracted HTML elements are shown in
the table and concrete values are added in the cells from the
corresponding column.

In fact, this functionality and the following one define
PURITY as a manual testing tool as well.

4) Partly Manual: If user input fields are encountered
during parsing of a website in the completely manual mode,
the tester is also offered the possibility to test one specific
element against a list of vectors in an automated manner.
In order to accomplish this, a button is located in the table
beside the field that is wished to be tested. This opens a
file chooser where one or more vector files can be selected.
After the desired vulnerability is checked as well, the testing
process can be started. Now the desired website’s input
element will be tested automatically against all vectors from
the input file(s).

Figure 5. Menu for manual testing

IV. CASE STUDY

We demonstrate the functionality of PURITY by testing
one of the SUT’s from [12] by choosing the automated
mode.

As can be seen, the user is asked to specify an URL,
the input data sets, PDDL files and the specifications for
the crawler. In order to select the completely automated
mode, the tester has to select the corresponding checkbox.
Otherwise the program chooses the partly automated mode.
The tester can edit the domain specification if he wishes or
add several test input files.

Once the specification is selected, testing can be started.
In this example the URL represents the local address where
the SUT has been deployed. First, the planner is called
with the selected PDDL’s and the corresponding output is
read. As explained above, the planning system will return a
plan to the implementation which will start immediately the
concrete test execution. First the initial values of the current
problem.pddl are parsed in search for critical objects,
like type or method. The configuration is saved and the
execution continues by fetching the first vector from the
TXT file as explained in the PLAN4SEC section. Since it
may be hard to predict what hyperlinks are connected to the
initial URL, we can expect to encounter sites with no input
fields at all. In this case the current test run is terminated
and the next one starts.

After all tests have been executed for the initial URL,
the crawler fetches the next ongoing address. For exam-
ple, in the above demonstration the new address would
be http://localhost:8080/bodgeit/home.jsp.
The concrete test execution will now continue by parsing a
new problem definition after which the vector files will be
read from the beginning and so on.

Figure 6. Output table

After execution, all positive test verdicts are displayed in
the table. Figure 6 depicts such a table where every row
contains the type of triggered vulnerability, the responsive
attack vector, name of the vulnerable HTML element and
the corresponding URL address. The table can be exported
as an Excel sheet. Besides that, the diagnosis window also
shows some statistical data like the generation and execution
time for all tests, the number of generated plans and actions
etc. Also, the total amount of successful tests for both SQLI
and XSS is shown. The reasons behind the high number
of XSS vectors lies in the fact that HTML input elements
were very vulnerable for the tested SUT. This means that a
high number of submitted vectors were able to exploit the
security leaks. A more detailed explanation for such results
when testing for XSS is given in the evaluation in [11].

On the other side, not a single SQLI leak was detected.
The reason for this is either that the expected value hasn’t
been the right choice or that software intern filtering mech-
anisms were efficient enough to escape the malicious code
in the first place. Another reason for a failure is usually the
fact that a website does not use a database or no user input
fields are available.

In [12] we have evaluated our initial planning based test-
ing approach against some web applications. The obtained
results have proven that the new concept could be built on
further. In this work we added several new features and made
a unique planning based testing framework. In the future
research section we discuss further possibilities that could
be realized in the future.

V. CONCLUSION AND FUTURE WORK

In this paper we presented our planning-based security
testing tool PURITY. Its main purpose is to test web ap-
plications for SQL injections and cross-site scripting. The
tester can use it on black- or white-box basis. PURITY
encompasses a novel test case generation technique that is
based on automated plan generation. On the other hand, the
tester is also offered the possibility to execute the tool in a
manual manner. He can set test parameters by himself and
see how the SUT reacts on different inputs. The test results
are represented in form of a table that provides a visual
impression of where the vulnerability has occurred.

Although a research prototype, PURITY succeeded in
testing of several web applications. It offers a high degree of
compatibility, which is demonstrated in the tool description
above. However, we still want to improve it further by
including additional features, e.g. adding more actions into
the domain specification and increasing the configurability
by allowing more manual intervention.

PURITY can be experimented with so even new test
scenarios can be adapted. Although it does not represent
a demand, the tester can add his own attack vectors or
manipulate existing ones. As was demonstrated in [12],
the execution time is relatively low when applying the
plan generation testing technique. In the future we plan to
include some of the mentioned possibilities into PURITY
and improve the already existing functionality.

ACKNOWLEDGEMENT

The research presented in the paper has been funded in
part by the Austrian Research Promotion Agency (FFG)
under grant 832185 (MOdel-Based SEcurity Testing In
Practice).

REFERENCES

[1] “Owasp top ten project,” http://owasp.com/index.php/
Category:OWASP Top Ten Project, accessed: 2015-02-10.

[2] “Webscarab,” https://www.owasp.org/index.php/Webscarab,
accessed: 2015-02-10.

[3] “Burp suite,” http://portswigger.net/burp/, accessed: 2014-01-
28.

[4] “Zed attack proxy (zap),” https://www.owasp.org/index.php/
OWASP Zed Attack Proxy Project, accessed: 2015-02-10.

[5] “Xsser,” http://xsser.sourceforge.net/, accessed: 2015-02-10.

[6] “sqlmap,” http://sqlmap.org/, accessed: 2015-02-10.

[7] “Defensics,” http://www.codenomicon.com/products/
defensics/, accessed: 2015-02-10.

[8] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleon-
Fuzz: Evolutionary Fuzzing for Black-Box XSS Detection,”
in CODASPY. ACM, 2014, pp. 37–48.

http://owasp.com/index.php/Category:OWASP_Top_Ten_Project
http://owasp.com/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Webscarab
http://portswigger.net/burp/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://xsser.sourceforge.net/
http://sqlmap.org/
http://www.codenomicon.com/products/defensics/
http://www.codenomicon.com/products/defensics/

[9] B. Garn, I. Kapsalis, D. E. Simos, and S. Winkler, “On
the applicability of combinatorial testing to web application
security testing: A case study,” in Proceedings of the 2nd
International Workshop on Joining AcadeMiA and Industry
Contributions to Testing Automation (JAMAICA’14). ACM,
2014.

[10] J. Bozic and F. Wotawa, “Security testing based on attack
patterns,” in Proceedings of the 5th International Workshop
on Security Testing (SECTEST’14), 2014.

[11] J. Bozic, D. E. Simos, and F. Wotawa, “Attack pattern-based
combinatorial testing,” in Proceedings of the 9th International
Workshop on Automation of Software Test (AST’14), 2014.

[12] J. Bozic and F. Wotawa, “Plan it! automated security testing
based on planning,” in Proceedings of the 26th IFIP WG 6.1
International Conference (ICTSS’14), September 2014, pp.
48–62.

[13] M. Utting and B. Legeard, Practical Model-Based Testing -
A Tools Approach. Morgan Kaufmann Publishers Inc., 2006.

[14] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-
based security testing,” in Proceedings of the Model-Based
Testing Workshop at ETAPS 2012. EPTCS, 2012, pp. 1–12.

[15] A. Leitner and R. Bloem, “Automatic testing through plan-
ning,” Technische Universität Graz, Institute for Software
Technology, Tech. Rep., 2005.

[16] S. J. Galler, C. Zehentner, and F. Wotawa, “Aiana: An ai
planning system for test data generation,” in 1st Workshop on
Testing Object-Oriented Software Systems, 2010, pp. 30–37.

[17] M. Schnelte and B. Gldali, “Test case generation for visual
contracts using ai planning,” in INFORMATIK 2010, Beitr.ge
der 40. Jahrestagung der Gesellschaft fr Informatik e.V. (GI),
2010, pp. 369–374.

[18] A. Vernotte, F. Dadeau, F. Lebeau, B. Legeard, F. Peureux,
and F. Piat, “Efficient detection of multi-step cross-site script-
ing vulnerabilities,” in Proceedings of the 10th International
Conference on Information System Security (ICISS’14), 2014,
pp. 358–377.

[19] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and
W. Xu, “Automated security test generation with formal threat
models,” in IEEE Transactions on Dependable and Secure
Computing 9 (4), 2012, pp. 526–540.

[20] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu,
“Security test generation using threat trees,” in Proceedings of
the ICSE Workshop on Automation of Software Test (AST’09),
2009, pp. 62–69.

[21] J. Clarke, K. Fowler, E. Oftedal, R. M. Alvarez, D. Hartley,
A. Kornbrust, G. O’Leary-Steele, A. Revelli, S. Siddharth,
and M. Slaviero, SQL Injection Attacks and Defense, Second
Edition. Syngress, 2012.

[22] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov,
XSS Attacks: Cross Site Scripting Exploits and Defense.
Syngress, 2007.

[23] “Metric-ff,” http://fai.cs.uni-saarland.de/hoffmann/metric-ff.
html, accessed: 2015-02-10.

[24] “Javaff,” http://www.inf.kcl.ac.uk/staff/andrew/JavaFF/, ac-
cessed: 2014-01-28.

[25] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan
generation through heuristic search,” in Journal of Artificial
Intelligence Research 14, 2001, pp. 253–302.

http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
http://www.inf.kcl.ac.uk/staff/andrew/JavaFF/

	Introduction
	Related Work
	PURITY - A Planning Based Security Testing Tool
	Background Techniques
	Attack Pattern-Based Testing
	Planning as a Testing Problem

	Key Components
	PLAN4SEC 2.0
	Structure of Inputs in PURITY
	Modes of Use
	Completely Automatic
	Partly Automatic
	Completely Manual
	Partly Manual

	Case Study
	Conclusion and Future Work
	References

