
Energy-Efficient Implementation of ECDH
Key Exchange for Wireless Sensor Networks

Christian Lederer1, Roland Mader2,3, Manuel Koschuch4, Johann Großschädl5,
Alexander Szekely6, and Stefan Tillich6

1 University of Klagenfurt, Austria
christian.lederer@uni-klu.ac.at

2 ITI, Graz University of Technology, Austria
roland.mader@tugraz.at

3 AVL List GmbH, Austria
roland.mader@avl.com

4 FH Campus Wien – University of Applied Sciences, Austria
manuel.koschuch@fh-campuswien.ac.at
5 University of Bristol, United Kingdom
johann.groszschaedl@cs.bris.ac.uk

6 IAIK, Graz University of Technology, Austria
{aszekely,stillich}@iaik.tugraz.at

Abstract. Wireless Sensor Networks (WSNs) are playing a vital role
in an ever-growing number of applications ranging from environmental
surveillance over medical monitoring to home automation. Since WSNs
are often deployed in unattended or even hostile environments, they can
be subject to various malicious attacks, including the manipulation and
capture of nodes. The establishment of a shared secret key between two
or more individual nodes is one of the most important security services
needed to guarantee the proper functioning of a sensor network. Despite
some recent advances in this field, the efficient implementation of cryp-
tographic key establishment for WSNs remains a challenge due to the
resource constraints of small sensor nodes such as the MICAz mote. In
this paper we present a lightweight implementation of the elliptic curve
Diffie-Hellman (ECDH) key exchange for ZigBee-compliant sensor nodes
equipped with an ATmega128 processor running the TinyOS operating
system. Our implementation uses a 192-bit prime field specified by the
NIST as underlying algebraic structure and requires only 5.20 · 106 clock
cycles to compute a scalar multiplication if the base point is fixed and
known a priori. A scalar multiplication using a random base point takes
about 12.33 ·106 cycles. Our results show that a full ECDH key exchange
between two MICAz motes consumes an energy of 57.33 mJ (including
radio communication), which is significantly better than most previously
reported ECDH implementations on comparable platforms.

1 Introduction

A Wireless Sensor Network (WSN) is a network consisting of a (potentially very
large) number of autonomous devices, so-called motes, which are deployed in

O. Markowitch et al. (Eds.): WISTP 2009, LNCS 5746, pp. 112–127, 2009.
c© IFIP International Federation for Information Processing 2009

mailto:christian.lederer@uni-klu.ac.at
mailto:roland.mader@tugraz.at
mailto:roland.mader@avl.com
mailto:manuel.koschuch@fh-campuswien.ac.at
mailto:johann.groszschaedl@cs.bris.ac.uk
mailto:aszekely@iaik.tugraz.at?cc=stillich@iaik.tugraz.at

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 113

the environment to cooperatively monitor physical conditions like temperature
[37]. The sensor nodes are equipped with radio transceivers, enabling them to
communicate with other nodes and centralized resources (e.g. a base station) or
to connect to the Internet. In fact, WSNs are a prime example of what is often
referred to by such buzz phrases as “pervasive computing,” “smart dust,” or the
“internet of things” [10]. The February 2003 issue of the magazine Technology
Review listed WSNs among 10 emerging technologies that will change the world
[6]. Today, WSNs play a vital role in a multitude of applications ranging from
environmental surveillance over medical monitoring to home automation [37]. A
recent study [32] predicts that the WSN market for smart homes will grow from
$470 million in 2007 to up to $2.8 billion in 2012, with a potential market size
of 6 billion cumulative sensor nodes worldwide.

Security and privacy issues pose a big challenge for the widespread adoption
of WSN technology in certain application domains such as health care, traffic
control, or disaster detection [7,28]. Unfortunately, WSNs are easier to attack
(and harder to protect) than other types of network like, for example, corporate
intranets. There are basically three reasons why unprotected WSNs are an easy
target for malicious attacks. First, the wireless communication between nodes
via radio signals makes eavesdropping quite easy and facilitates a slew of active
attacks ranging from message injection to denial of service [12]. Second, the
deployment of WSNs in unattended areas gives an attacker direct access to the
sensor nodes and enables him to conduct all kinds of physical attacks including
node capture [3]. Third, the vast majority of sensor nodes on the market today
are battery-operated and, hence, severely restricted in terms of computational
power, which makes the implementation of cryptographic schemes and security
protocols rather difficult. To save energy, WSN designers often refrain from an
attempt to secure the network or implement “futile” security measures like the
encryption of node-to-node communication using a single network-wide key.

1.1 Key Establishment in WSNs

The establishment of a secret key shared between two (or more) sensor nodes is
undoubtedly one of the most important security services needed to ensure the
integrity and well functioning of a WSN. Various key establishment techniques
taking the special characteristics and adversary models of sensor networks into
account have been proposed [27,42]. A simple yet effective approach to obtain
shared secret keys in a WSN is random key pre-distribution, first introduced by
Eschenauer and Gligor in [16]. The idea is to load a set of keys randomly chosen
from a large key pool onto each node prior to deployment such that two nodes
will share (at least) one key with a certain probability. While this basic scheme
is easy to implement and entails only little overhead since no costly key agree-
ment must be carried out, it has some disadvantages in terms of scalability and
resilience to node capture. Several improvements of Eschenauer’s probabilistic
key pre-distribution scheme have been published, including a variant where two
sensor nodes must share q > 1 common keys instead of just a single one [9]. The
benefit of this increased amount of key overlap is better resilience against node

114 Christian Lederer et al.

capture. Another variant described in [9] supports node-to-node authentication
by assigning a unique secret key to each pair of nodes. Liu and Ning proposed
in [26,27] a polynomial pool-based key pre-distribution scheme which combines
probabilistic key pre-distribution and polynomial-based key generation to obtain
a shared secret. In this scheme, the key pool is replaced by a pool of randomly
generated bivariate polynomials over a finite field, and each node is pre-loaded
with a set of polynomial shares (i.e. partially evaluated polynomials). Two nodes
possessing polynomial shares of the same bivariate polynomial can establish a
secret key following the polynomial-based key distribution protocol described in
[5]. A very similar key establishment technique was published in [15] along with
an in-depth theoretical analysis of its security properties. The polynomial pool-
based scheme features low communication overhead and is substantially more
resilient against node capture than the basic Eschenauer-Gligor scheme and the
q-composite scheme from [9] as long as the number of compromised nodes does
not exceed a certain threshold. Zhu et al presented in [44] a scalable protocol for
key establishment based on the ideas of probabilistic key sharing and threshold
secret sharing. The resilience of this protocol remains intact under a collusion
attack by up to a certain number of compromised nodes, similar to the Liu-Ning
scheme. Another common feature of the schemes in [26,15] and [44] is that they
enable a pair of nodes to set up a unique secret key exclusively known by these
two nodes. Therefore, compromised nodes will not leak information about the
secret keys shared among non-compromised nodes7.

A completely different approach for key establishment in WSNs is to use a
trusted third party (e.g. the base station) that acts as a key distribution center
(KDC) and generates, upon request, a unique secret key for two nodes wishing
to communicate securely with each other. The KDC sends this key in encrypted
form to the two sensor nodes, similar to the Needham-Schroeder protocol [31]
or Kerberos [24]. Kerberos was originally designed to authenticate entities on a
network; the establishment of a secret key is a “side effect.” Each node of the
network shares a long-term secret key with the KDC, which enables the nodes
to verify that messages from the KDC are authentic. Similarly, knowledge of the
long-term key also serves to prove a node’s identity to the KDC. To set up a
link key shared between node A and node B, the KDC generates a secret key
and securely sends it to A and B encrypted under the long-term key it shares
with A and with B, respectively. Extraction of the link key is only possible for
the legitimate node which possesses the corresponding long-term key. Thus, by
trusting the KDC, the nodes can authenticate each other (i.e. prove their true
identity) and establish a secret key. The long-term key that each sensor node

7 Per definition, a pair-wise key establishment scheme assigns a unique secret key to
each pair of nodes. The polynomial pool-based key pre-distribution scheme [26,15]
can fulfill this property, provided that no polynomial of degree t is used more than
t+1 times. Zhu et al’s scheme [44] is strictly speaking not pair-wise, but guarantees
with an overwhelming probability that a secret key is exclusively known to a pair
of nodes. On the other hand, the basic Eschenauer-Gligor scheme is not a pair-wise
scheme since one and the same key may be used by several node pairs.

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 115

shares with the KDC is pre-deployed, but, contrary to approaches with a single
network-wide key, each node has a unique key. Therefore, compromised nodes
do not jeopardize the security of the rest of the WSN, which makes Kerberos-
like protocols very robust against node capture. However, they suffer from high
communication cost, especially in large networks in which the base station may
be located far away from the two nodes wishing to set up a link key. A second
drawback of protocols using a central KDC is their non-uniform communication
pattern: Nodes located in the vicinity of the KDC have to forward all requests
for link keys from the rest of the WSN, which drains the batteries of these nodes
at a high rate. The concentration of network traffic near the KDC clearly limits
the scalability of Kerberos. To alleviate these disadvantages, Chan and Perrig
[8] introduce PIKE, a key establishment protocol that uses “ordinary” nodes as
trusted intermediaries for the generation of link keys. Both the communication
cost and memory overhead of PIKE scale with O(

√
n), where n represents the

number of nodes in the network. Perrig et al describe in [33] a Kerberos-like key
establishment technique implemented on top of the Secure Network Encryption
Protocol (SNEP).

Key establishment in WSNs can also be performed with protocols that use
public-key cryptography to generate a secret key shared between two nodes. The
most important key exchange protocol was proposed by Diffie and Hellman [14]
in 1976 and is usually implemented in the multiplicative group of a finite field
of prime order. Alternatively, it is also possible to embed the Diffie-Hellman key
exchange into an additive group like the group of points on an elliptic curve
defined over a finite field. The efficient implementation of elliptic curve cryptog-
raphy (ECC) for WSN has been an active area of research in recent years, in
particular since Gura et al [21] demonstrated that Elliptic Curve Diffie-Hellman
(ECDH) key exchange is feasible for resource-restricted sensor nodes. The main
advantages of using ECDH key exchange in WSNs are perfect resilience to node
capture, excellent scalability, and low memory as well as communication over-
head. However, the big drawback of ECDH is the highly computation-intensive
nature of its underlying cryptographic operations, causing long execution times
and high energy consumption. Energy is the most precious resource of wireless
motes, and this will remain so for the next future since dramatic improvements
in battery technology are not foreseen. Therefore, approaches for reducing the
energy cost of ECDH key exchange are eagerly sought.

1.2 Our Contributions

In this paper we present a highly-optimized software implementation of ECDH
key exchange for ZigBee-compliant sensor nodes running the TinyOS operating
system, in particular the MICAz motes [11]. Contrary to previous work, where
in most cases an elliptic curve over a 160-bit prime field was used as underlying
algebraic structure, we base our implementation on a cryptographically much
stronger curve over a 192-bit field that is compliant with all major standards for
ECC, including the NIST recommendations [30]. We integrated our ECC code
into an experimental TinyOS program for key exchange between two MICAz

116 Christian Lederer et al.

motes, which allowed us to conduct a detailed performance and energy analysis
of both the cryptographic operations and the radio communication. Our work
advances the state-of-the-art in efficient ECDH implementation in the following
ways: First, we present an improved version of Gura et al’s [21] hybrid method
for multi-precision multiplication that requires fewer single-precision additions
(i.e. add and adc instructions on an ATmega128L processor [2]). Our variant is
similar (but not identical) to the hybrid multiplication methods introduced in
[35] and [40]. Second, our implementation uses fast algorithms for elliptic curve
scalar multiplication (window method, comb method) to reduce the execution
time of ECDH key exchange at the expense of a slight increase in memory re-
quirements. However, we show that despite the additional memory demand, the
window and comb methods are perfectly feasible for MICAz motes. Third, we
aimed to secure our ECDH implementation against side-channel attacks. Thanks
to the window and comb methods, the performance degradation caused by the
integration of side-channel countermeasures is relatively small.

2 Elliptic Curve Cryptography

An elliptic curve E over a prime field Fp can be defined as the set of all tuples
(x, y) ∈ Fp × Fp satisfying an equation of the form

y2 = x3 + ax + b with a, b ∈ Fp (1)

These tuples are called points with x and y referred to as coordinates. The set
of points together with a special point O (the so-called point at infinity) allows
one to form a commutative group with O being the identity element. The group
operation is the addition of points, which can be performed through arithmetic
operations (addition, subtraction, multiplication, squaring, and inversion) in the
underlying field Fp according to well-defined formulae (see e.g. [22]). Adding a
point P = (x, y) to itself is referred to as point doubling and can also be done
through a well-defined sequence of operations in Fp. In general, point doubling
requires fewer field operations than the addition of two points.

The order of an elliptic curve group E(Fp) is the number of Fp-rational points
on the curve E, plus one for the point at infinity. It is well known from Hasse’s
theorem that #E(Fp) has the following bounds:

p + 1− 2
√

p ≤ #E(Fp) ≤ p + 1 + 2
√

p (2)

For cryptographic applications, #E(Fp) should have a large prime factor; in the
ideal case it is a prime. Before ECDH key exchange (or any other elliptic curve
scheme) can be carried out, the involved parties have to agree upon a common
set of so-called domain parameters, which specify the finite field Fp, the elliptic
curve E (i.e. the coefficients a, b ∈ Fp defining E according to Equation (1)), a
base point P ∈ E(Fp) generating a cyclic subgroup of large order, the order n
of this subgroup, and the co-factor h = #E(Fp)/n. Consequently, elliptic curve
domain parameters over Fp are simply a sextuple D = (p, a, b, P, n, h) [22]. In

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 117

elliptic curve cryptography, a private key is an integer k chosen randomly from
the interval [1, n − 1]. The corresponding public key is the point Q = k · P on
the curve. Given k and P , the point Q = k · P can be obtained by means of an
operation called scalar multiplication [22]. Numerous algorithms for scalar mul-
tiplication have been proposed; the simplest way to compute k ·P is to perform
a sequence of point additions and doublings, similar to the square-and-multiply
algorithm for modular exponentiation.

While a scalar multiplication of the form Q = k · P can be calculated quite
efficiently, the inverse operation, i.e. finding k when P and Q are given, is a hard
mathematical problem known as the Elliptic Curve Discrete Logarithm Problem
(ECDLP). To date, the best algorithm known for solving the ECDLP requires
fully exponential time if the domain parameters were chosen with care [22]. In
contrast, the best algorithm for solving the Discrete Logarithm Problem (DLP)
in Z∗p or the Integer Factorization Problem (IFP) has a sub-exponential running
time. As a consequence, elliptic curve cryptosystems can use much shorter keys
compared to their “classical” counterparts based on the DLP or IFP. A common
rule of thumb states that a properly designed 160-bit ECC scheme is about as
secure as 1024-bit RSA. However, the U.S. National Institute of Standards and
Technology (NIST) recommends using 1024-bit RSA and 160-bit ECC only until
2010. Therefore, we opted to embed our implementation of the ECDH protocol
into a much stronger 192-bit elliptic curve group.

2.1 Elliptic Curve Diffie-Hellman (ECDH) Key Exchange

ECDH key exchange is the elliptic curve analogue of the classical Diffie-Hellman
key exchange operating in Z∗p [14]. As its classical counterpart, the ECDH pro-
tocol can be used to establish a shared secret key between two entities using an
insecure communication channel. In the following, we describe in detail the steps
that two communicating parties, usually called Alice and Bob, have to perform
in order to obtain a shared secret. We assume that Alice and Bob use the same
set of domain parameters D = (p, a, b, P, n, h) for their computations.

– Alice generates an ephemeral key pair (kA, QA), i.e. she generates a random
number kA in the interval [1, n−1] and then performs a scalar multiplication
to get the corresponding public key QA = kA · P . She sends QA to Bob.

– Bob generates an ephemeral key pair (kB , QB) with QB = kB ·P in the same
way as described above and sends the public key QB to Alice.

– After Alice receives Bob’s ephemeral public key QB , she performs a scalar
multiplication to obtain the shared secret S = kA ·QB .

– After Bob receives the ephemeral public key QA from Alice, he obtains the
shared secret through computation of S = kB ·QA.

Now Alice and Bob possess the same secret S since kA · QB = kA · kB · P and
kB ·QA = kB · kA · P , i.e. both parties arrived at the same value for S because
E(Fp) is a commutative group. Each run of the ECDH protocol requires Alice
and Bob to send two messages (to exchange the ephemeral public keys) and to

118 Christian Lederer et al.

perform four scalar multiplications altogether. The first two could be computed
simultaneously by Alice and Bob; the other two scalar multiplications must be
carried out thereafter. It is also possible to precalculate a pair of ephemeral keys
when the parties are idling to speed up subsequent protocol runs.

An attacker might intercept the public keys QA and QB , but he will not be
able to derive the private keys kA and kB from QA, QB , P unless he solves the
ECDLP. The security of the ECDH protocol relies on the intractability of the
(computational) Elliptic Curve Diffie-Hellman Problem (ECDHP); that is, given
an elliptic curve E, a base point P ∈ E(Fp), and two points QA = kA · P and
QB = kB · P , find the point S = kA · kB · P without knowledge of kA, kB . It is
clear that an algorithm for solving a generic ECDLP instance would allow one
to solve the ECDHP as well.

A straightforward implementation of ECDH key exchange is vulnerable to
a man-in-the-middle attack [22]. To prevent this attack, the ECDH protocol as
described above must be extended in such a way that the communicating parties
are authenticated to each other. Nonetheless, the classical ECDH key exchange
serves as a good benchmark for the feasibility of public-key cryptography on
resource-constrained sensor nodes. Key exchange in WSNs using an advanced
protocol incorporating authentication, such as Signed ECDH or ECMQV, has
been studied in [13] and [20], respectively.

2.2 Scalar Multiplication

The computationally expensive part of virtually all elliptic curve cryptosystems
is scalar multiplication, an operation of the form k ·P where k is an integer and
P is a point on the curve. A scalar multiplication can be performed by means
of repeated point additions and point doublings, both of which, in turn, involve
a sequence of arithmetic operations (i.e. addition, multiplication, squaring, and
inversion) in the underlying finite field. Inversion is by far the most expensive
operation in prime fields [22]. However, it is possible to add points on an elliptic
curve without the need to perform costly inversions, e.g. by representing the
points in projective coordinates [22]. In Section 2 we described the conventional
(i.e. affine) coordinate system in which a point P is associated with an x and a
y coordinate, i.e. a tuple (x, y) ∈ Fp × Fp. By contrast, in projective coordinate
systems, a point is represented by a triplet (X, Y, Z), which corresponds to the
affine coordinates (X/Zu, Y/Zv) when Z 6= 0 (u and v depend on the specific
coordinate system chosen). For example, the projective point P = (X, Y, Z) in
Jacobian coordinates corresponds to the affine point P = (X/Z2, Y/Z3). It is
also possible to add two points when one is given in projective coordinates and
the other in affine coordinates [22]. In fact, such mixed coordinates often lead to
very efficient point addition formulae. For example, adding a point in Jacobian
coordinates to an affine point requires eight multiplications and three squarings
in Fp (but no inversion). Doubling a point given in Jacobian coordinates takes
four multiplications and four squarings.

The double-and-add algorithm performs a scalar multiplication via repeated
point additions and doublings, analogous to the multiply-and-square algorithm

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 119

for modular exponentiation. It uses the binary expansion of the integer k and
computes k ·P as follows: For each bit ki of k, the current intermediate result is
doubled, and the base point P is added if bit ki = 1 (no addition is performed
when ki = 0). Given an l-bit scalar k, the double-and-add algorithm executes
exactly l point doublings, whereas the number of point additions depends on
the Hamming weight of k. In the average case l/2 additions are carried out; the
worst-case number of additions is l. The conventional double-and-add method
can be easily improved by using a signed-digit representation of k. One option is
the non-adjacent form (NAF), which reduces the number of additions (of either
P or −P) to l/3 in the average case and l/2 in the worst case [22]. However, the
number of point doublings remains the same.

The average number of point additions can be further reduced if some RAM
is available for storing multiples of the base point P . A window method with a
window size of w uses a radix-2w representation of the scalar k and requires to
pre-compute the points 2P, 3P, . . . , (2w − 1)P . These 2w − 2 points are stored
in a look-up table, typically in affine representation to save RAM and to allow
one using mixed coordinates for point addition. The window method works in a
similar fashion as the double-and-add method, except that in each step w bits
of k are considered with the corresponding table-entry being added to the inter-
mediate result. A window size of w reduces the total number of point additions to
roughly l/w, but does not change the number of doublings. Results from previous
work show that w = 4 represents a good compromise between performance and
memory requirements.

If the base point is fixed an known a priori, which is the case when generating
an ephemeral key pair for ECDH key exchange, the number of both additions
and doublings can be reduced by using a so-called comb method [22]. The idea
is to pre-compute the points Pi = 2wi ·P for 0 ≤ i ≤ l/w− 1 and to perform the
scalar multiplication in an interleaved fashion (similar to Shamir’s trick), which
yields a total of l/w doublings and roughly the same number of additions. As
the base point P is fixed, it is possible to do the pre-computation off-line and
store a look-up table holding the 2w − 2 points in Flash memory or ROM. The
window method and the comb method have in common that the average-case
and the worst-case execution time are almost the same.

3 Prime-Field Arithmetic on the ATmega128

In this section we describe the implementation and optimization of prime-field
arithmetic on MICAz motes from Crossbow Technologies [11]. The MICAz is a
low-power sensor node equipped with an 8-bit ATmega128L processor clocked
at 7.3728 MHz, 4 kB RAM, and 128 kB Flash memory. It also features an IEEE
802.15.4 (“ZigBee”) compliant RF transceiver, which allows for communication
with other nodes and the base station. The ATmega128 is a simple 8-bit RISC
processor [2] based on the AVR instruction set [1], i.e. the usual arithmetic and
logical instructions are supported, including a fast integer-multiply instruction
with a 2-cycle latency. A total of 32 general-purpose registers are available.

120 Christian Lederer et al.

Our implementation of the ECDH protocol uses a NIST-recommended elliptic
curve over a 192-bit prime field as basic building block. The field is defined by
the generalized-Mersenne prime p = 2192−264−1 [30]. All arithmetic operations
described in this section are performed on (and optimized for) 192-bit operands
(i.e. 192-bit integers). It is common practice in multiple-precision arithmetic to
store the operands in arrays of single-precision words, e.g. arrays of unsigned
m-bit integers with m denoting the processor’s word size. However, the ANSI C
standard specifies the size of the basic integer type to be at least 16 bits, even
on 8-bit platforms. Therefore, we decided to use a 16-bit representation, i.e. a
192-bit field element is stored in an array of s = 12 words, each accommodating
16 bits. All software routines were designed and implemented with 16-bit words
as the “smallest unit” of data, which means they operate on two bytes of the
operand(s) at a time. Another important characteristic of our implementation
is that we tolerate incompletely reduced results, provided that their length does
not exceed 192 bits. In other words, an operand does not necessarily need to be
in the interval [0, p − 1], but it must be smaller than 2192 so that it fits into a
12-word array.

3.1 Addition and Subtraction

The addition of two field elements a, b is implemented via a loop that iterates
through the words of the operands, starting with the least significant word. In
each iteration, a word (i.e. two bytes) of operand a and a word of b are loaded
from memory and added up using the add (resp. adc) instruction. After addition
of the most significant word, the prime p must be subtracted if the sum exceeds
192 bits, which can be easily checked via the carry flag. Note that we tolerate an
incompletely reduced result; thus it is not necessary to do an exact comparison
between the sum and p. The field subtraction is implemented as conventional
subtraction, followed by an addition of p if the result was negative.

3.2 Multiplication and Squaring

The overall execution time of a scalar multiplication depends significantly on the
efficiency of the multiplication and squaring operations. A field multiplication is
composed of a “conventional” multiplication of two 192-bit operands, yielding a
384-bit product, followed by a reduction of the product modulo the prime p. In
this subsection we focus on multiplication and squaring; the modular reduction
operation is subject of the next subsection.

There are two basic algorithms for multi-precision multiplication: one is the
operand-scanning method (also called row-wise multiplication) and the other is
the product-scanning method (column-wise multiplication) [18,21]. Both require
the same number of single-precision multiplications (i.e. mul instructions on an
ATmega128), namely 576 in our case of 192-bit operands, but they differ in the
number of memory accesses and single-precision additions. We first describe the
original operand and product scanning methods, which operate on 8-bit words
(i.e. bytes) when implemented on an ATmega processor. Later in this section we

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 121

a0 · b0

a0 · b1

a0 · b2

a0 · b3

a1 · b0

a1 · b1

a1 · b2

a1 · b3

a2 · b0

a2 · b1

a2 · b2

a2 · b3

a3 · b0

a3 · b1

a3 · b2

a3 · b3

r0r1r2

Column-Wise Multiplication

a0 · b0

a0 · b1

a3 · b0

a1 · b2

a1 · b0

a2 · b0

a0 · b2

a2 · b2

a1 · b1

a3 · b1

a1 · b3

a2 · b3

a2 · b1

a0 · b3

a3 · b2

a3 · b3

r0r1r2r3r4

a0 · b0

a0 · b1

a3 · b0

a1 · b2

a1 · b0

a2 · b0

a0 · b2

a2 · b2

a1 · b1

a3 · b1

a1 · b3

a2 · b3

a2 · b1

a0 · b3

a3 · b2

a3 · b3

r0r1r2r3r4

Hybrid Multiplication (d = 2) Our Hybrid Multiplication

accumulator accumulator accumulator

Fig. 1. Comparison between the conventional product-scanning method (left), Gura’s
hybrid multiplication (middle), and our variant of hybrid multiplication (right).

introduce our optimized version that uses 16-bit words as smallest unit of data
it operates on. The operand-scanning method has a nested-loop structure with
a relatively simple inner loop. Each iteration executes an operation of the form
a · b + c + d with a, b, c, d denoting 8-bit words (i.e. bytes). On an ATmega this
operation requires one mul instruction to produce the partial product a · b, and
a total of four add (resp. adc) instructions to add the two bytes c and d to the
16-bit quantity a · b. Furthermore, two load (ld) instructions and a store (st)
are executed in each iteration. On the other hand, the product-scanning method
performs a multiply-accumulate operation in its inner loop, i.e. two bytes are
multiplied and the 16-bit partial product is added to a cumulative sum held in
three registers, as illustrated on the left side of Figure 1. The product-scanning
method also executes two ld instructions per iteration, but no store [18].

The execution time of the conventional product-scanning method can be sig-
nificantly improved if the processor features a large number of general-purpose
registers, which is the case with the ATmega128 [2]. The hybrid multiplication
method, introduced by Gura et al in [21], works similar as the product-scanning
technique, but operates on words consisting of d ≥ 2 bytes, which reduces the
number of required loop iterations by a factor of d. Figure 1 shows an example
for 32-bit operands and d = 2. In each iteration of the inner loop a 16-bit word
(i.e. two bytes) of operand a and a 16-bit word of operand b are loaded from
memory. These two 16-bit words are multiplied using the mul instruction, and
the product is added to a cumulative sum held in five registers. The rectangles
in Figure 1 represent 16-bit products as obtained by the multiplication of two
bytes. The four mul instructions needed for a multiplication of two 16-bit words
are actually executed in row-wise order. Gura et al state in [21] that the hybrid

122 Christian Lederer et al.

method employs the product-scanning strategy as the “outer algorithm” and the
operand-scanning strategy as the “inner algorithm” (i.e. for the (8× 8)-bit mul
instructions within a (d×d)-byte multiplication). When multiplying two 192-bit
operands, the hybrid method with d = 2 executes 576 ld instructions, which
represents a 50% improvement over the standard product-scanning technique
[21]. The number of mul instructions remains the same.

Our implementation of the hybrid multiplication aims at reducing the num-
ber of add (resp. adc) instructions compared to Gura et al’s method. To achieve
this, we employ the product-scanning strategy as the “inner algorithm,” but
schedule the mul instructions in a non-conventional order such that the addition
to the cumulative sum (including carry propagation) can be performed in “one
pass” for several 16-bit partial products. For example, let us have a look at the
multiplication of the 16-bit word (a1, a0) by the 16-bit word (b1, b0), depicted in
the top right of Figure 1. We first multiply a0 by b0 and add the 16-bit partial
product a0 · b0 to the least significant 16 bits of the cumulative sum held in the
register pair r1, r0. The second mul instruction produces the partial product
a1 · b1, which is added to the content of registers r4, r3, r2. Hence, the addition
of the two partial products a0 · b0, a1 · b1 to the cumulative sum requires only
five add (resp. adc) instructions altogether. Our method can be easily applied
for hybrid multiplication with d = 4; in this case 51 add/adc instructions are
executed per iteration of the inner loop. Unfortunately, when implemented on
the ATmega, our method requires to perform a number of movw instructions to
copy the results of the mul instructions to pairs of temporary registers, which is
necessary since mul overwrites the carry flag. Scott and Szczechowiak describe
in [35] a similar hybrid method using so-called “carry-catcher” registers.

The square a2 of a multiple-precision integer a can be computed significantly
faster than the product a ·b of two distinct integers. Due to a “symmetry” in the
squaring operation, most partial products appear twice. However, they need only
be computed once and then left-shifted in order to be doubled. Our optimized
squaring routine executes just 300 mul instructions for a 192-bit operand.

3.3 Modular Reduction

Each 384-bit product (or square) needs to be reduced modulo p = 2192− 264− 1
to get the final result. This modular reduction operation can be implemented
very efficiently since p is a generalized-Mersenne prime. In fact, the reduction
requires only three 192-bit additions, followed by a few conditional subtractions
of p to get a reduced result that is at most 192 bits long (see [22] for a detailed
treatment). We implemented the reduction operation as described in [19].

4 Experimental Results and Discussion

We developed a simple TinyOS program for ECDH key exchange and executed
it on a MICAz mote, which allowed us to analyze the running time and energy
consumption of the protocol. Each key exchange requires the mote to perform

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 123

Table 1. Runtime comparison of different implementations of scalar multiplication.

Implementation Finite field Fixed P. Rand. P. Notes

Blaß and Zitterbart [4] GF(2m), 113 bit 6.74 s 17.28 s comb, dbl-and-add

Malan et al. [29] GF(2m), 163 bit 34.17 s 34.17 s double-and-add

Yan and Shi [43] GF(2m), 163 bit 13.9 s 13.9 s affine coordinates

Seo et al. [36] GF(2m), 163 bit 1.14 s 1.14 s Koblitz curve

Kargl et al. [23] GF(2m), 167 bit 0.763 s 0.763 s Montgomery ladder

Wang and Li [41] GF(p), 160 bit 1.24 s 1.35 s sld. window, NAF

Szczechowiak et al. [38] GF(p), 160 bit 1.27 s 1.27 s comb method

Ugus et al. [39] GF(p), 160 bit 0.57 s 1.03 s comb, window

Liu and Ning [25] GF(p), 192 bit 2.99 s 2.99 s sliding window

Gura et al. [21] GF(p), 192 bit 1.35 s 1.35 s NAF

Fürbass et al. [17] GF(p), 192 bit 0.068 s 0.068 s hardware impl.

Our implementation GF(p), 192 bit 0.71 s 1.67 s comb, window

two point multiplications, one with a fixed point (to generate an ephemeral key
pair), and the second with a random point (to obtain the shared secret). The
former uses a fixed-base comb method with 14 pre-computed points and can be
carried out in 5.20 · 106 clock cycles (0.71 sec), while the latter is implemented
using a window method with a window size of 4 (i.e. 14 pre-computed points)
and executes in 12.33 · 106 cycles (1.67 sec). Based on the energy characteristics
of the MICAz mote [34,13], these timings translate into an energy consumption
of 17.04 mJ and 40.08 mJ, respectively. The energy cost of transmitting one
protocol message is 0.205 mJ, which means that the total energy consumption
of our ECDH key exchange is approximately 57.33 mJ per node. Taking again
the energy model from [34] as reference, we can perform 117,750 key exchanges
before the battery voltage drops below the value needed by the ATmega128.

Our evaluation shows that the overall energy cost of ECDH key exchange is
primarily determined by the computation of the two scalar multiplications on
each node; the energy needed for radio communication is almost negligible. We
also conducted experiments with point compression [22], a technique that allows
to represent a point using the minimum possible number of bits so as to reduce
the energy cost of radio communication in ECDH key exchange. However, on
the MICAz mote, point compression did not yield any savings in energy.

A comparison with related work (see Table 1) shows that our implementation
is significantly faster than most previously-reported 192-bit implementations on
8-bit AVR processors and outperforms even some 160-bit implementations. This
performance gain is primarily due to the efficient implementation of the field
arithmetic (in particular the field multiplication) and the use of the window and
comb methods with a window size of 4 for scalar multiplication. The additional
memory demand of these methods is small enough to let our TinyOS program
for ECDH key exchange fit into the 4 kB RAM of the MICAz mote. Despite all
resource constraints, our software implementation of the comb method is only
by a factor of 10 slower than the hardware implementation reported in [17].

124 Christian Lederer et al.

Protection Against Side-Channel Attacks. Side-channel attacks belong to
the genre of implementation attacks and use information leaking from a device
while it executes a cryptographic algorithm (e.g. power consumption, execution
time) to reveal the secret key [22]. Fortunately, ECDH key exchange is not vul-
nerable to DPA and timing attacks as the scalar multiplications are performed
with new random numbers in each run of the protocol. However, an SPA attack
on the scalar multiplication is possible, and if successful, provides the attacker
with the random number k that is part of the ephemeral key pair generated in
each run of the protocol (see Section 2.1), which enables him to eavesdrop on
the communication between the nodes.

In order to foil SPA attacks, the scalar multiplication should be implemented
in such a way that always the same sequence of operations (i.e. point additions
and doublings) is executed, independent of the scalar. Of course, this requires
an SPA-resistant implementation of the field arithmetic too. For example, small
irregularities in the modular addition or modular reduction (e.g. conditional
subtractions of the prime p) typically lead to differences in execution time and
power consumption, which can be exploited to mount an SPA attack [22]. It is
particularly important to prevent conditional subtractions in the fast reduction
operation; we achieved this by following the approach from [19].

As described in Subsection 2.2, we use a window method with a window size
of 4 to implement the scalar multiplication by an arbitrary base point P , and
a fixed-base comb method if P is known a-priori. Both methods can be made
SPA-resistant by converting the scalar k into a radix-24 representation with a
digit-set that does not contain 0. Such conversions are easy to implement and
have only little impact on performance (about 5% in our implementation).

5 Conclusions

We presented an optimized implementation of ECDH key exchange for MICAz
motes. Our implementation utilizes a NIST-recommended elliptic curve over a
192-bit prime field as underlying algebraic structure and executes a full scalar
multiplication in 0.71 sec (5.20 · 106 cycles) when the base point is fixed and
known a priori. A scalar multiplication by an arbitrary base point takes 1.67 sec
(12.33 · 106 cycles). The total amount of energy required to perform an ECDH
key exchange is approximately 57 mJ per node, which means that each node can
carry out over 117,000 key exchanges before running out of battery.

Our ECDH key exchange is significantly faster and more energy-efficient than
previously-reported 192-bit implementations on comparable 8-bit platforms. The
higher performance is mainly due to the use of the window and comb methods
for scalar multiplication instead of the simple double-and-add technique. The
additional memory demand when using a window method with a window size
of 4 is relatively small (1080 bytes) and fits easily into the motes’ 4 kB RAM. In
addition, the window method can be made SPA-resistant without much loss in
performance. Putting it all together, our results confirm that high performance
and side-channel resistivity can be achieved on resource-constrained motes.

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 125

Acknowledgements. The research described in this paper has been supported
by the EPSRC under grant EP/E001556/1, the Austrian ministry BM:VIT in
the FIT-IT program line “Trust in IT Systems” under grant 816151 (project
POWER-TRUST), and the European Commission under grant FP6-IST-033563
(project SMEPP) and, in part, through the ICT Programme under contract
ICT-2007-216676 ECRYPT II. The information in this document reflects only
the authors’ views, is provided as is, and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

References

1. Atmel Corporation. 8-bit ARVR© Instruction Set. User Guide, available for down-
load at http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf,
July 2008.

2. Atmel Corporation. 8-bit ARVR© Microcontroller with 128K Bytes In-System Pro-
grammable Flash: ATmega128, ATmega128L. Datasheet, available for download
at http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf, June
2008.

3. A. Becher, Z. Benenson, and M. Dornseif. Tampering with motes: Real-world
physical attacks on wireless sensor networks. In Security in Pervasive Computing
— SPC 2006, vol. 3984 of Lecture Notes in Computer Science, pp. 104–118. Sprin-
ger Verlag, 2006.

4. E.-O. Blaß and M. Zitterbart. Efficient implementation of elliptic curve cryp-
tography for wireless sensor networks. Technical Report TM-2005-1, Institute of
Telematics, University of Karlsruhe, Karlsruhe, Germany, Mar. 2005. Available for
download at http://doc.tm.uka.de/2005/tm-2005-1.pdf.

5. C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Per-
fectly-secure key distribution for dynamic conferences. In Advances in Cryptology
— CRYPTO ’92, vol. 740 of Lecture Notes in Computer Science, pp. 471–486.
Springer Verlag, 1993.

6. H. Brody. 10 emerging technologies that will change the world. Technology Review,
106(1):33–49, Feb. 2003.

7. H. Chan and A. Perrig. Security and privacy in sensor networks. Computer,
36(10):103–105, Oct. 2003.

8. H. Chan and A. Perrig. PIKE: Peer intermediaries for key establishment in sensor
networks. In Proceedings of the 24th IEEE International Conference on Computer
Communications (INFOCOM 2005), vol. 1, pp. 524–535. IEEE, 2005.

9. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor
networks. In Proceedings of the 24th IEEE Symposium on Security and Privacy
(S&P 2003), pp. 197–213. IEEE Computer Society Press, 2003.

10. J. P. Conti. The Internet of things. IET Communications Engineer, 4(6):20–25,
Dec./Jan. 2006/2007.

11. Crossbow Technology, Inc. MICAz Wireless Measurement System. Data sheet,
available for download at http://www.xbow.com/Products/Product_pdf_files/

Wireless_pdf/MICAz_Datasheet.pdf, 2006.
12. S. K. Das, A. Agah, and K. Basu. Security in wireless mobile and sensor net-

works. In Wireless Communications Systems and Networks, chapter 18, pp. 531–
557. Springer Verlag, 2004.

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://doc.tm.uka.de/2005/tm-2005-1.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf

126 Christian Lederer et al.

13. G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira. On the energy cost
of communication and cryptography in wireless sensor networks. In Proceedings
of the 4th IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WIMOB 2008), pp. 580–585. IEEE Computer
Society Press, 2008.

14. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, Nov. 1976.

15. W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A pairwise key pre-distribution
scheme for wireless sensor networks. In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS 2003), pp. 62–72. ACM Press,
2003.

16. L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security (CCS 2002), pp. 41–47. ACM Press, 2002.

17. F. Fürbass and J. Wolkerstorfer. ECC processor with low die size for RFID ap-
plications. In Proceedings of the 40th IEEE International Symposium on Circuits
and Systems (ISCAS 2007), pp. 1835–1838. IEEE, 2007.

18. J. Großschädl, R. M. Avanzi, E. Savaş, and S. Tillich. Energy-efficient software
implementation of long integer modular arithmetic. In Cryptographic Hardware
and Embedded Systems — CHES 2005, vol. 3659 of Lecture Notes in Computer
Science, pp. 75–90. Springer Verlag, 2005.

19. J. Großschädl and E. Savaş. Instruction set extensions for fast arithmetic in finite
fields GF(p) and GF(2m). In Cryptographic Hardware and Embedded Systems —
CHES 2004, vol. 3156 of Lecture Notes in Computer Science, pp. 133–147. Springer
Verlag, 2004.

20. J. Großschädl, A. Szekely, and S. Tillich. The energy cost of cryptographic key
establishment in wireless sensor networks. In Proceedings of the 2nd ACM Sympo-
sium on Information, Computer and Communications Security (ASIACCS 2007),
pp. 380–382. ACM Press, 2007.

21. N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz. Comparing
elliptic curve cryptography and RSA on 8-bit CPUs. In Cryptographic Hardware
and Embedded Systems — CHES 2004, vol. 3156 of Lecture Notes in Computer
Science, pp. 119–132. Springer Verlag, 2004.

22. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

23. A. Kargl, S. Pyka, and H. Seuschek. Fast arithmetic on ATmega128 for elliptic
curve cryptography. Cryptology ePrint Archive, Report 2008/442, 2008.

24. J. T. Kohl and B. C. Neuman. The Kerberos Network Authentication Service
(Version 5). Internet Engineering Task Force, Network Working Group, RFC 1510,
Sept. 1993.

25. A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve cryptogra-
phy in wireless sensor networks. In Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN 2008), pp. 245–256. IEEE
Computer Society Press, 2008.

26. D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks.
In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS 2003), pp. 52–61. ACM Press, 2003.

27. D. Liu and P. Ning. Security for Wireless Sensor Networks, vol. 28 of Advances in
Information Security. Springer Verlag, 2006.

28. J. Lopez and J. Zhou. Wireless Sensor Network Security, vol. 1 of Cryptology and
Information Security Series. IOS Press, 2008.

Energy-Efficient ECDH Key Exchange for Wireless Sensor Networks 127

29. D. J. Malan, M. Welsh, and M. D. Smith. A public-key infrastructure for key
distribution in TinyOS based on elliptic curve cryptography. In Proceedings of the
1st IEEE Communications Society Conference on Sensor and Ad Hoc Communi-
cations and Networks (SECON 2004), pp. 71–80. IEEE, 2004.

30. National Institute of Standards and Technology (NIST). Recommended Elliptic
Curves for Federal Government Use. White paper, available for download at http:
//csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf, July 1999.

31. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, Dec. 1978.

32. ON World, Inc. WSN for smart homes. Market Dynamics Report, Feb. 2008.
33. A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D. Tygar. SPINS: Security

protocols for sensor networks. In Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking (MOBICOM 2001), pp. 189–
199. ACM Press, 2001.

34. K. Piotrowski, P. Langendörfer, and S. Peter. How public key cryptography influ-
ences wireless sensor node lifetime. In Proceedings of the 4th ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN 2006), pp. 169–176. ACM Press,
2006.

35. M. Scott and P. Szczechowiak. Optimizing multiprecision multiplication for public
key cryptography. Cryptology ePrint Archive, Report 2007/299, 2007.

36. S. C. Seo, D.-G. Han, H. C. Kim, and S. Hong. TinyECCK: Efficient elliptic
curve cryptography implementation over GF(2m) on 8-bit Micaz mote. IEICE
Transactions on Information and Systems, E91-D(5):1338–1347, May 2008.

37. A. Swami, Q. Zhao, Y.-W. Hong, and L. Tong. Wireless Sensor Networks: Signal
Processing and Communications Perspectives. John Wiley and Sons Ltd, 2007.

38. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks. In Wireless
Sensor Networks — EWSN 2008, vol. 4913 of Lecture Notes in Computer Science,
pp. 305–320. Springer Verlag, 2008.

39. O. Ugus, D. Westhoff, R. Laue, A. Shoufan, and S. A. Huss. Optimized implemen-
tation of elliptic curve based additive homomorphic encryption for wireless sensor
networks. In Proceedings of the 2nd Workshop on Embedded Systems Security
(WESS 2007), pp. 11–16, 2007.

40. L. Uhsadel, A. Poschmann, and C. Paar. Enabling full-size public-key algorithms
on 8-bit sensor nodes. In Security and Privacy in Ad-hoc and Sensor Networks —
SASN 2007, vol. 4572 of Lecture Notes in Computer Science, pp. 73–86. Springer
Verlag, 2007.

41. H. Wang and Q. Li. Efficient implementation of public key cryptosystems on mote
sensors. In Information and Communications Security — ICICS 2006, vol. 4307
of Lecture Notes in Computer Science, pp. 519–528. Springer Verlag, 2006.

42. Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway. A survey of key
management schemes in wireless sensor networks. Computer Communications,
30(11–12):2314–2341, Sept. 2007.

43. H. Yan and Z. J. Shi. Studying software implementations of elliptic curve cryptog-
raphy. In Proceedings of the 3rd International Conference on Information Tech-
nology: New Generations (ITNG 2006), pp. 78–83. IEEE Computer Society Press,
2006.

44. S. Zhu, S. Xu, S. Setia, and S. Jajodia. Establishing pairwise keys for secure
communication in ad hoc networks: A probabilistic approach. In Proceedings of
the 11th IEEE International Conference on Network Protocols (ICNP 2003), pp.
326–335. IEEE Computer Society Press, 2003.

http://csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf
http://csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf

	Introduction
	Key Establishment in WSNs
	Our Contributions

	Elliptic Curve Cryptography
	Elliptic Curve Diffie-Hellman (ECDH) Key Exchange
	Scalar Multiplication

	Prime-Field Arithmetic on the ATmega128
	Addition and Subtraction
	Multiplication and Squaring
	Modular Reduction

	Experimental Results and Discussion
	Conclusions

