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Abstract

Security services in embedded systems and contactless de-
vices (smart cards, RFID tags) get more and more impor-
tant. In this paper we investigate the design and implemen-
tation of a 16-bit general-purpose microprocessor called
Neptun. The purpose of this design is to have a platform for
the evaluation of the Elliptic Curve Digital Signature Al-
gorithm (ECDSA) using the NIST P-192 parameters. The
processor efficiently uses the available chip area and per-
forms an ECDSA signature generation, using only 1405K
clock cycles. For a signature verification 2675k clock cy-
cles are required. This fast computation time is possible
through the use of a Harvard architecture, a self-designed
CPU core and a self-designed instruction set. With the 5K
program memory and a clock frequency of 55.5 MHz, the
design can also be used as a security-extension for arbitrary
devices. In addition to a working prototype chip, we have
a full tool chain that includes an instruction-set simulator
and an assembler for producing executables.

1 Introduction

The two technologies of RFID tags and smart cards are
on the brink of conversion. Whereas RFID tags have very
serious power constraints, smart cards make use of power-
ful processors to calculate cryptographic algorithms. In the
course of the ’Internet of things’, those technologies ought
to be combined to bring strong cryptography to RFID tags.
An algorithm such as the Elliptic Curve Digital Signature
Algorithm (ECDSA) is perfectly suited for such small im-
plementations. Most importantly it requires a smaller data
memory than an algorithm such as the Digital Signature
Algorithm (DSA). ECDSA is used to sign a message or
challenge using its private key. This signature can be used
in the course of entity authentication. The central element
within ECDSA is an elliptic curve point multiplication. For
that efficient multiplication methods are required.

Instead of designing another cryptography-coprocessor,
as it has been done by [3, 4, 6, 10, 11, 12], we decided
to create a dedicated microprocessors. But what is the use
of another processor platform, when there are already so
many different architectures and designs out there? Our
processor is specially designed to perform an ECDSA us-
ing an underlying prime field. This means that any reg-

isters, logic elements and memory entries that are not re-
quired for the calculation of ECDSA are left out. The re-
sult is a very small, area-optimized processor which has
been published in [13]. With this paper, we want to show
that our processor can be used as a general purpose pro-
cessor and also be used for other algorithms and protocols.
This new design, which we named Neptun!, uses the same
CPU as the area-reduced design, but now it is improved and
more re-usable. It has been extended with additional data
memory, a re-programmable program memory and several
peripheral units. Nevertheless we kept the original low-
area requirement in mind and as a result, the processor still
fits within one square millimeter.

The idea behind Neptun has been to make a platform
which can be used to evaluate various algorithm imple-
mentations concerning their simple and differential power
analysis resistance. Because Neptun comes with several
I/0O interfaces, it can be used to handle wireless communi-
cation protocols such as ISO-14443 or ISO-15693 [8, 9].
Neptun can also be used to efficiently add cryptography to
arbitrary devices. To implement and verify complex algo-
rithms such as ECDSA or the previously mentioned pro-
tocols, Neptun comes with a very advanced development
environment written in Java. This software combines the
functionality of a simulator and an assembler. Using those
tools, the development time of programs for Neptun can be
reduced significantly.

This paper is composed to present the used hardware
architecture and the applicable tools. Section 2 gives a top-
level view of Neptun. The Subsections 2.1, 2.2 and 2.3
explain how the CPU, the ALU and the instruction set are
designed in order to achieve a very low runtime and keep
the required chip area low. The tools for the efficient de-
velopment of algorithms are presented in Section 3. Re-
sults concerning Neptun are shown in Section 4. Finally,
conclusions are drawn in Section 5.

2 Hardware Architecture

Our processor has been primarily optimized for a small
area requirement and secondly for performance. The secu-
rity concerns are addressed on the algorithm level. The low
area is achieved by using a small set of registers and a 16-

INeptun is not an acronym. It simply is the planet with the fewest hits
at google.com.
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Figure 1. Top-level processor implementation.
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bit word size. The efficient runtime is due to the optimized
memory access and the used algorithms.

The processor design as it is shown in Figure 1 uses a
modified Harvard architecture with a separated data and
program memory.

The data memory is split into a data RAM, a constant
RAM, some memory mapped I/O and a memory mapped
program RAM. The data RAM is used for general purpose
data. Such data can be the heap or the stack. The constant
RAM is used to store parameters that are known at compile
time. For memory-intensive algorithms, such as ECDSA,
it is of advantage to have those constant parameters stored
via a memory-mapped interface. We use a RAM macro
because neither a Flash nor an EEPROM are available in
the UMC-L180 target technology.

For the reusable processor design, the program memory
has been split into a bootloader and a program RAM. The
bootloader is implemented as a synthesized 16-bit look-up
table. After power-up the bootloader initializes the pro-
gram RAM with an executable, received via a serial or SPI
interface (SPI Flash). For that purpose the program mem-
ory is also mapped within the data memory. It is impor-
tant to mention that the program RAM can only be written
during the execution of the bootloader. Like the constant
RAM, program RAM is implemented as a RAM macro.
Those RAM macros are much more area efficient than syn-
thesized RAM blocks.

The central element used for calculation is the CPU. It
contains the program counter which is used as an index for
the program memory. The result of the program memory,
also known as the program word is then decoded to serve
as a control input vector for the CPU and the data mem-
ory. It is important to note that the bootloader uses the
current value of the program counter as index, whereas the
synchronous program RAM uses the next value (the input
of the program counter register) as address input. We do
not need to care about branch prediction because the de-
sign does not make use of a pipeline and branching is done
within one cycle.

2.1 CPU

The important interfaces of the central processing unit
(CPU) in Figure 2 are the two program counter states (cur-
rent PCxDP and next PCxDN) and the memory interface.
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Figure 2. Design of the CPU. Two registers are selected
with the two multiplexers and handled within the ALU.
The result is then stored in the RAM or a register.

This consists of a data input and output and an address out-
put. The chip select and write enable signals are directly
encoded within the control vector and simply forwarded to
the data memory module.

Contrary to AVR processors that have many general pur-
pose registers, we tried to keep the number of the needed
registers as small as possible. The focus has been on having
as few registers as possible and all of those registers should
have a special purpose. This design directive should con-
tribute to the small area requirement. Storing data in the
RAM instead of in registers has no disadvantage because
memory access is also done within one clock cycle.

The two major parts of the CPU are the ALU and the set
of registers. Those registers are described in the following:

Program counter. The program counter (PC) marks the
current position of the currently executed instruction.
Usually the PC is always incremented by one. There
are a few operations (Jump, Call, Branch, ...) that can
modify the PC differently. For such operations the
ALU is used to manipulate of the PC in order to avoid
any necessary additional hardware.

Stack pointer. During the execution of functions a stack
can be used to store return addresses, function ar-
guments or temporary values. Essentially the stack
pointer is identical to the base registers with the dif-
ference of a special label.

Base pointer. Because elliptic curve field additions and
multiplications need two source addresses and a desti-
nation parameter, three base pointer registers (BaseA
- BaseC) are needed for memory-address generation.

Accumulator. A very important part for the multiplication
of big integers is the multiply accumulate unit embed-
ded within the ALU. The result of a multiplication has
32 bits. So in order to add some products, three 16-bit
registers are required.

State. In this register, all the status flags of the processor
are stored. These status flags are: Carry, Zero, Over-
flow and Negative.



Work registers. Unlike all the previously described reg-
isters, the work registers have no special purpose.
In the course of an investigation of the requirement
for ECDSA, four general purpose registers (Work0-3)
have been defined. Those are the only registers that
can be used as ALU operand A and B.

A way to reduce the required area is to use small multi-
plexer to select the two operands for the ALU. This is why
the multiplexer of operand B can only select the work reg-
isters, a constant from the control vector and data from the
previous memory access. Operand A on the other hand can
access all registers and thus keeps the CPU flexible.

A very important part of the whole design is the way the
signal MemDataOutxD is handled. This signal represents
the data that has been read during a previous memory ac-
cess. This data can be accessed and processed directly by
the ALU and does not need to be stored in a register before-
hand. This scheme reduces the time needed for a memory
operation from two cycles to one cycle and makes our de-
sign special compared to other solutions.

Another modification concerning the optimized memory
access is in connection with the result of the ALU. This
data can be directly stored as a new result to the data mem-
ory. For memory-intensive algorithms such as the ECDSA,
such an optimization speeds up certain operations like field
multiplications and additions. Additionally it reduces the
number of required temporary registers.

22 ALU

The most important part of the arithmetic logic unit
(ALU), as it is shown in Figure 3, is the multiply-
accumulate unit. Because of its size it is specially con-
sidered for power optimization. We simply use a method
called operand isolation on the two input factors. This
method should reduce the total energy requirement signif-
icantly. The 32-bit result of the multiplier can be used di-
rectly or added to the accumulator. The investigation of
the NIST P-256 elliptic-curve parameters show the need to
add/subtract values to/from the accumulator unit. The logic
XOR is used to invert OperandAxD. As a result Operan-
dAxD can be added or subtracted without the use of any
extra major logic elements.

The other functionality of the ALU is similar to the
functionality provided by most embedded processors cur-
rently available. The two major inputs of the ALU are
the operands A & B, which has already been discussed
in the previous section. In every cycle, they are added,
ORed, XORed, ANDed and shifted. Because those logic
blocks are fairly small they have not (yet) been considered
for power optimizations. Only one of the intermediate re-
sults is selected and passed on to ResultxDO. By definition
the subtrahend is always OperandBxDI. So only operand B
needs to be invertible. The implementation of the ECDSA
showed that this extra constraint on the operand selection
is hardly noticeable.

The method for the update of the status flags is neglected
for the focus of this paper. Nevertheless the implementa-
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Figure 3. The ALU is capable of adding, subtracting,
multiplying, accumulating, logic functions and branch-
ing.

tion of the branching logic is worth some deeper investiga-
tion.

Figure 4 shows a very efficient implementation of a
branching logic. Operand A is the program counter.
Operand B provides a relative jump address. The result
is a new value for the program counter.

There are two possible cases to consider:

The branch condition is false. In this case operand B is
forced to zero and the result is PC' + 1. The one is
added by setting the increment input of the adder to
one.

The branch condition is true. Operand B is represented
as a two’s complement number. As a result PC +
OperandB + 1 can result into a jump to a lower and
higher program address.

The efficiency of this implementation is that the condi-
tional jump is always executed in exactly one cycle. This
can only be achieved because there is no pipeline used
within the whole design. In general, every instruction
except load immediate (LDI), which requires two cycles,
needs one clock cycle only.

2.3 Instruction Set

Designing an instruction set requires a balancing act be-
tween performance, reusability and a small word size. On
the one hand side, the instructions should be as flexible as
possible, so they can be used efficiently for as many use
cases as possible. This would suggest to use a big instruc-
tion word. On the other hand using a big instruction word
means that a larger program RAM is required and this is
contradicting the low-area design requirement.

We have used the well established Thumb [1] and
AVR [2] instruction sets as reference because both of them
use very efficient 16-bit instruction words. A 16-bit in-
struction word fits nicely to the 16-bit word size of our
processor. Unfortunately, neither of the two instructions
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Figure 4. Dependent on the branch logic, either 1 or
OperandB + 1 is added to the program counter.

sets fit the ECDSA algorithm perfectly. Our focus is on ef-
ficiently implementing ECDSA, so we introduced several
optimizations for our instruction set:

* Prime field operations make heavy use of arithmetic
instructions (additions, subtractions, multiplications).
So for these instructions our instruction set is focused
on flexibility.

e Several arithmetic instructions have been combined
with data memory read and store instructions. Those
instructions have a lot of operands (base register, im-
mediate offset, two source registers) and as a result the
flexibility of those instructions needs to be limited.

* Logic operations are mostly needed for the perfor-
mance irrelevant calculation of the SHA-1 hash func-
tion, which is a small part of the ECDSA calculation.
In order to have more entries in the instruction table
available for the parallelized arithmetic instructions
their operands are very limited.

2.4 Design for Test

For every chip which is going to be mass produced, it is
important to think about testing. Our chip test is split into
two phases. During the first phase, the RAMs are isolated
using a method called block isolation which is shown in
Figure 5. In this phase all registers are interconnected to
a scan-chain which is used to test the registers and com-
binatory logic. The signal TestModexTI is set to one. As a
result, all inputs of the block isolated RAM can be read and
the output can be set via the scan chain. Because the boot-
loader is a synthesized look-up table it is also tested during
the scan-chain tests. The bootloader is then used in the sec-
ond phase to test the three RAM macros. Testing the RAM
macros using the scan-chain would be very inefficient. The
test time would increase significantly.

Using a scan-chain in a security related product is very
critical. For the final product the scan chain must be dis-
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Figure 5. Block-isolation of a one-bit RAM.

abled using some (one time writable) flags or completely
avoided using a build-in self test for the security-critical
parts.

3 Design Environment

In order to use an embedded processor efficiently, it is
always important to have adequate and powerful tools. For
our designed processor we wrote our own instruction-set
simulator and assembler using Java:

Verification. This simulator is capable of debugging and
simulating all the registers and memories as well as
the memory mapped peripheral interfaces. So at an
early stage of the design flow the program and the con-
sistency between the simulator and the VHDL model
can be verified. Because the simulator is written in the
object-oriented language Java, it is easy to implement
unit tests using a tool such as JUnit. The implemented
ECC algorithms can be tested using a cryptographic
library as a golden model.

Evaluation. A common criteria for the evaluation of cryp-
tographic algorithms is their runtime. Because the
processor frequency is not important for a logic simu-
lation, the runtime is evaluated in cycles. The simula-
tor is capable of generating various statistics such as:
the runtime of every function, the number of times a
function is called, the number of times a certain in-
struction is executed, the number of code lines per
function, etc.

Debugging. Nobody writes correct code right from the
start. Everybody makes a mistake at some point in the
implementation of an algorithm. In such a case it is
important to have debugging capabilities. Our design
framework can trace the contents of all registers after



each cycle or the content of certain RAM addresses at
important points of the algorithms. Also a live com-
parison between a golden model and the actual assem-
bler implementation can be performed and has already
been implemented.

Assembler. The assembler is used to parse source code
and generates executables plus various other data
structures. Usually assembler is written in dedicated
files (with .asm extensions). Our assembler code is
written within Java files. This gives the advantage that
an editor (e.g. Netbeans) can be used for syntax high-
lighting and several spell checks are already done by
Java itself.

For the design of the processor it was important to
more than generate binary executables. Other for-
mats such as data formatted in S-records (for program
RAM) or VHDL tables (for bootloader synthesis) are
also required.

4 Results
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Figure 6. The final layout of Neptun.

The microprocessor design called Neptun, which has
been described so far, has been synthesized, placed, routed,
power simulated, produced and successfully tested. As
manufacturing process of the chip, we used the 180 nm
technology from UMC. The final layout is visible in Fig-
ure 6. The inner dimensions without the power rings are
1 mm x 1 mm (1 mm?, 106 kGE). The outer dimensions
of the scribe lines are 1.55 mm x 1.55 mm (2.4 mm?). Be-
cause the inner dimensions have been fixed beforehand, the
focus has been on optimally using the available area. For
the data and constant memories a 512x16-bit RAM macro
has been selected. This is more than required by a 256-bit
ECDSA signature or verification algorithm. Whereas the
size of the synthesized logic (CPU, bootloader, I/O) can

be assumed as constant, the size of the program RAM has
been maximized to store 5120x16 bits.

Table 1 lists the used components of the design and their
relative area requirements. The largest part of the design
are the RAMs. They cover more than 85% of the chip area.
The CPU uses with its 6089 GE less than 7 % of the design
area.

Area Area

[wm?]  [GE]
Program RAM 559173 59649 67.710%
Constant RAM 74168 7912 8.98%
Data RAM 74168 7912 8.98%
CPU 57085 6089 6.91%
ALU 30876 3294 3.74%
Bootloader 13130 1401 1.59%
EIA 232 12740 1359 1.54%
Timer O 8153 870 0.99%
Timer 1 8153 870 0.99%
Timer 2 8128 867 0.98%
Instruction Decoder 3519 375 0.43%
Parallel I/O 2840 303 0.34%
Total 825975 88110 100.00%

Table 1. Area requirements of the Neptun ECC Proces-
sor.

The chip Neptun runs on a maximum frequency of
55 MHz. Using the tool Encounter with a VCD-file as in-
put, a power simulation has been performed. During the
elliptic curve point multiplication, where the most parts
of the processor are active, the power consumption is
31.5 mW. Most of this relative high power requirement can
be traced back to the program RAM. A power rail analysis
showed that the ground bounce during the point multiplica-
tion is at most 3.55 mV. This low value has been achieved
by placing a grid of power rails on top of the program
RAM.

The important question at his point is: How does our
processor perform in comparison to well established pro-
cessor platforms. As it is shown in Table 2, we found two
publications concerning NIST P-192 ECDSA implementa-
tions. The implementation by Gura [5] use an AVR proces-
sor with an 8-bit multiplier, 32 general purpose registers,
but no accumulator. The Trimedia processor used by Hu
[7] is a 32-bit processor that comes with a powerful VLIW
architecture. In terms of cycles both implementations per-
form worse than our implementation. Because our previ-
ously introduced area-optimized design [13] has no con-
straints concerning the instruction set, its runtime is about
2% less than the runtime on Neptun.

5 Conclusion

In this paper we have presented the design and the im-
plementation of a low-resource microprocessor that has
an optimized instruction set for calculating computational
intensive crypto operations like the Elliptic Curve Digi-



Processor Word size  Signature  Verification
[bit] [kCycles] [kCycles]
Gura 2004 [5] ATmegal28 8 9920
Hu 2004 [7] TM1300 32 2955
Wenger 2010 [13] 16 1391 2613
This work Neptun 16 1405 2675

Table 2. Comparison of the performance of different processors.

tal Signature Algorithm (ECDSA). The core of the 16-bit
processor in Harvard architecture is a multiply-accumulate
unit that allows the efficient computation of the required
finite-field operations. A further reason why our processor
outperforms published results is that the memory access to
the RAM macro has been optimized. The RAM access is
possible in one clock cycle. A feature of parallel execu-
tion of instructions has been introduced. The presented ap-
proach is not only very promising for contactless devices
like smart cards but allows extending nearly every product
which requires an embedded microprocessor for security
functionality. The self-written instruction-set simulator and
assembler allow a very productive application of our pro-
cessor in nearly every application domain. Currently, the
processor is under fabrication on the UMC-L180 technol-
ogy. Further tests and measurements will be conducted on
the final silicon. Future work will consist of adapting an
existing compiler for our processor and the evaluation of
other crypto-algorithms and protocols.
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