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Preface 
 

 

The brain–computer interface (BCI) technology uses brain signals to directly drive external devices. Over 

the past decade, BCIs have begun to provide basic communication and motor control abilities to people with 

severe motor disabilities, thus offering a unique opportunity to improve their quality of life. 

The European TOBI project (www.tobi-project.org), and similar efforts worldwide, promised to push the 

field forward, from laboratory to home environments, from research experimental setups to real-world 

prototypes, and from healthy participants to end-user studies. Progress along all these lines has been made, 

mainly because of a holistic user-centered approach and the integration of novel research components in areas 

such as hybrid BCI, online adaptation and mental states, as well as human-computer interaction. Yet, we are still 

facing challenges in bringing BCI to end-users for their daily use. 

 

Goals of this workshop 

The 4
th

 and final TOBI workshop seeks to bring together all researchers, rehabilitation professionals, 

clinicians, and potential end-users in the field of BCI to share their progress, experience and prospects in 

practical BCIs for the end-users. We are thus soliciting contributions reporting progress in end-user studies as 

well as basic research facing the challenges in bringing BCI to end-users for their daily use. 

 

Topics of interest, but not limited to, include: 

 End-user studies and experiences with BCI technology 

 User-centered approaches and user training 

 Development and benefits of hybrid BCIs 

 Online adaptation and monitoring of mental states 

 Ethical issues in BCIs 

 Technology transfer to industrial products 

 Human-computer interaction 

 Novel BCI principles and paradigms 

 

Proceedings 

These proceedings contain all contributions to the 4
th

 TOBI Workshop that were accepted for presentation. 

All contributions were reviewed by independent reviewers. The submissions with the highest review scores and 

aligned with the workshop goals were assigned to an oral presentation. 

 

Reviewers were selected among members of the partners’ institution: 

 Ecole Politechnique Fédérale de Lausanne, Lausanne, Switzerland 

 Technical University of Berlin, Berlin, Germany 

 Graz University of Technology, Graz, Austria 

 Fondazione Santa Lucia, Rome, Italy 

 University Clinics, Heidelberg, Germany 

 University of Glasgow, Glasgow, Scotland 

 AIAS, Bologna, Italy 

 Clinique Romande de Réadaptation, Sion, Switzerland 

 University of Würzburg, Würzburg, Germany 

 

We would like to thank all reviewers for their valuable contribution. In particular, we thank the Ricardo 

Chavarriaga, Tom Carlson, Aleksander Sobolewski, Maria Laura Blefari and Robert Leeb for the second round 

of reviews to help authors address reviewers’ comments. 

  

 

 

We hope you enjoy the 4
th

 TOBI Workshop 2013 in Sion! 

 

The Organizing Committee 

 

Nancy-Lara Millán, Najate Guechoul, Robert Leeb, José del R. Millán. 
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Keynote Speakers 

1. Grégoire Courtine 

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

 

“Neuroprosthetic Technologies to restore Motor Functions  

after Severe Paralysis” 
 

 

 

Grégoire Courtine was trained in Mathematics and Physics, but received his PhD degree in Experimental 

Medicine from the Inserm Plasticity and Repair, France, in 2003. After a Post-doctoral training at the University 

of California (UCLA), he established his own laboratory at the university of Zurich in 2008. He recently 

accepted the International paraplegic foundation (IRP) chair in spinal cord repair in the center for 

neuroprosthetics at the Swiss Federal Institute of Technology, Lausanne (EPFL). 

 

Over the past 15 years, Grégoire Courtine has implemented an unconventional research program with the 

aim to develop a radically new treatment paradigm to restore  motor function in severely paralyzed people. 

Recently, he introduced a combinatorial intervention that restored supraspinal control over complex locomotor 

movements in rats with a spinal cord injury leading to permanent paralysis. The first testing in a paraplegic man 

suggested that this therapeutic approach may restore some degree of function in humans with severe paralysis. 

He received numerous honors such as the UCLA Chancellor’s award, the Schellenberg Prize for his advances in 

spinal cord repair, and a fellowship from the European Research Council (ERC). Several of his works received 

substantial press coverage in the national and international media, including radio stations and TV channels from 

different countries worldwide. 

 

Relevant references 

 

Van den Brand R, Heutschi J, barraud Q, Digiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider 

I, Martin Moraud E, Duis S, Dominici N, Micera S, Musienko PE, Courtine G (2012) Restoring voluntary 

control of locomotion after paralyzing spinal cord injury. Science. 336(6085): 1182-1185 

 

Dominici N, Keller U, Vallery H, Friedli L, van den Brand R, Starkey ML, Musienko P, Riener R, Courtine 

G (2012) Novel robotic interface to evaluate, enable, and train locomotion and balance after neuromotor 

disorders. Nature Medicine. 

 

Courtine G, van den Brand R, Musienko P (2011) Spinal cord injury: time to move. Lancet 377:1896-1898. 

 

Courtine G, Rosenzweig ES, Jindrich DL, Brock JH, Ferguson AR, Strand SC, Nout YS, Roy RR, Miller 

DM, Beattie MS, Havton LA, Bresnahan JC, Edgerton VR, Tuszynski MH (2010) Extensive spontaneous 

plasticity of corticospinal projections after primate spinal cord injury. Nature Neuroscience 13:1505-1510. 

 

Courtine G., Gerasimenko Y. P., van den Brand R., Yew A., Musienko P., Zhong H., Song B., Ao Y., 

Ichyama R., Lavrov I.,  Roy R. R.,  Sofroniew M.V., Edgerton V.R. (2009) Transformation of nonfunctional 

spinal circuits into functional and adaptive states after complete loss of supraspinal input Nature 

Neuroscience. 12(10):1333-1442. 

 

Courtine G, Song B, Roy RR, Zhong H, Edgerton VR, Sofroniew MS (2008) Recovery of supraspinal 

control of stepping mediated by indirect propriospinal relay connections after severe spinal cord injury. 

Nature Medicine. 14: 69-74. 

 

Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, 

Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR (2007) Can experiments in 

nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nature Medicine 

13:561-566 
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2. Niels Birbaumer 

University of Tübingen, Tübingen, Germany 

 

“Brain Machine Interfaces in Paralysis” 
 

 

 

Niels Birbaumer is Professor and Director of the Institute of Medical Psychology and Behavioral 

Neurobiology, University of Tübingen, Faculty of Medicine as well as the director of the 

Magnetoencephalography (MEG)-Center. His research interests are wide-ranging. Among other things he is 

dealing with neuronal plasticity and learning, with aspects of epilepsy, of Parkinson's disease and pain disorders. 

Prof. Birbaumer also conducts research on brain-computer interfaces (brain-computer interfaces , BCI), which 

should make it possible to exchange information without the use of the limb between the brain and machines. 

This research is intended as patients with end-stage amyotrophic lateral sclerosis (ALS) allow to communicate in 

spite of complete paralysis with their environment. 

 

Professor Birbaumer obtained his Ph.D. degree in psychology from the University of Vienna in 1969. Since 

then he has had a very active and prolific research carreer represented amongst other by the prices and awards 

listed below. 

 

Prizes and awards recipient 

 

1985: the Roemer Award for outstanding scientific achievements in Psycho-somatic Medicine (DKPM) 

 

1992 and 1999: Award of the Deutsche Gesellschaft zum Studium des Schmerzes for Research on the 

Treatment of Chronic Pain (together with H. Flor) and Experiments on Neural Pain Mechanisms 

 

1993: full member in the Academy of Sciences and Literature. 

 

1994: Nordmark Neuropharmaka Award for Behavioral Research in Parkinson’s disease 

 

1995: Gottfried Wilhelm Leibniz Prize award  & Psychologie-Preis of the Deutsche Gesellschaft für 

Psychologie (DGfP) and the Christoph-Dornier-Stiftung. 

 

1996: Distinguished Scientist Award of the American Association for Applied Psychophysiology and 

Biofeedback 

 

2000: the Wilhelm Wundt Medal of the German Society for Psychology; award for Research in 

Neuromuscular Diseases of the Deutsche Gesellschaft für Muskelkranke & Sertürner Preis, Mundipharma, 

for research on pain treatment with opiates. 

 

2001: Albert-Einstein-World-Award of Science of the World Cultural Council 

 

2003: he was elected a member of the Leopoldina 

 

2009: Distingiushed Scientist Award of the Society of Psychophysiological Research (SPR) 

 

2010: awarded the Helmholtz Medal of the Berlin-Brandenburg Academy of Sciences Award, which is 

awarded every two years to an outstanding scientist . 

 

For further detail on his biography, please refer to http://www.mp.uni-tuebingen.de/mp/index.php?id=62 
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3. José L. Pons 

Spanish Council for Scientific Research (CSIC), Madrid, Spain 

 

“Multimodal BNCIs: Sourcing Information from Motor Planing 

through Motor Execution. The Case of Suppression of 

Pathological Tremor” 
 

 

 

Prof. José L. Pons obtained his PhD in Physics, Universidad Complutense Madrid, in 1997. In 1998 he was 

appointed as Postdoctoral Fellow at the Institute for Industrial Automation of the Spanish Council for Scientific 

Research, CSIC. In 1999 he was awarded a position as Tenured Scientist, in 2007 a position as Research 

Scientist and, eventually, in 2008 a position as Full Professor, all of them at CSIC. 

 

Prof. Pons has published along the last ten years over 80 articles in highly ranked international journals in 

Robotics (Robotica, Autonomous Robots, Mechanism and Machine Theory), Smart Materials, Sensors and 

Actuators (Sensors and Actuatos A & B, Journal of the European Ceramic Society, Bol. Soc. Esp. Cerám. V., 

Journal of Electroceramics, IEEE Trans. on Ultr., Ferr., and Freq. Contr.), Neuroscience (The Cerebellum, Eur. 

J. Neurol.), Physiology (IEEE Engineering in Medicine and Biology magazine, Physiological Measurement, 

Medical Biological Engineering & Computing, Technology and Health Care) or Biomechanics (Gait & Posture, 

Applied Bionics and Biomechanics). His current interests are Neurorehabilitation, Rehabilitation Robotics and 

Neuroprosthetics. 
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TOBI Invited Speakers and Committee Members 

1. TOBI Invited Speakers 

G. R. Müller-Putz – Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria 

“Hybrid Brain-Computer Interfaces: Technology and Current and Future Applications” 
 

J. Williamson – University of Glasgow, Glasgow, UK 

“Designing for Unreliable Input Channels” 
 

M. Tangermann – Technische Universität Berlin, Berlin, Germany 

“Machine Learning as a Key Technology for BCI” 
 

D. Mattia – IRCCS Fondazione Santa Lucia, Rome, Italy 

“Harnessing Hybrid Brain-Computer Interactions for Stroke Rehabilitation” 
 

R. Rupp – University Hospital, Spinal Cord Injury Center, Heidelberg, Germany 

“BCIs for Control of Upper Extremity Neuroprostheses - Facts, Challenges and Visions” 
 

A. Kübler - University of Würzburg, Würzburg, Germany 

“Bridging Gaps: the User-centered Design for Bringing BCI to End-users” 
 

A. Al-Khodairy – Clinique Romande de Réadaptation SUVACARE, Sion, Switzerland 

“Brain-Computer Interfaces: A Rehabilitation Team Perspective” 
 

J.d.R. Millán – CNBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

“Design Principles for Neuroprosthetics” 

 

2. Program Committee 

José del R. Millán – Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

Robert Leeb – Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

Christa Neuper – Graz University of Technology, Graz, Austria 

Gernot R. Müller-Putz – Graz University of Technology, Graz, Austria 

Donatella Mattia – Fondazione Santa Lucia, Rome, Italy 
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Andrea Kübler – University of Würzburg, Würzburg, Germany 

Roderick Murray-Smith – University of Glasgow, UK 

Klaus-R. Müller – Technische Universität Berlin, Berlin, Germany 

Michael Tangermann – Technische Universität Berlin, Berlin, Germany 

Rüdiger Rupp – University Hospital, Spinal Cord Injury Center, Heidelberg, Germany 

Abdul Al-Khodairy – Clinique Romande de Réadaptation SUVACARE, Sion, Switzerland 

Evert-Jan Hoogerwerf – AIAS, Bologna, Italy 

Elizabeth Hildt – Eberhard-Karls Universität Tübingen, Tübingen, Germany 

Peter Schoenknecht – Medel GmbH, Hamburg, Germany 

 

3. Scientific Committee 

Laura Astolfi, Fabio Babiloni, Luigi Bianchi, Maria Laura Blefari, Tom Carlson, Ricardo Chavarriaga, Febo 

Cincotti, Gerd Grübler, Elizabeth Hildt, Evert-Jan Hoogerwerf, Sonja Kleih, Andrea Kübler, Robert Leeb, 

Massimiliano Malavasi, Donatella Mattia, José del R. Millán, Marco Molinari, Klaus-R. Müller, Gernot R. 

Müller-Putz, Roderick Murray-Smith, Christa Neuper, Rüdiger Rupp, Aleksander Sobolewski, Michael 

Tangermann 

 

4. Local Organizing Staff 

Nancy-Lara Millán, Robert Leeb, José del R. Millán, Najate Guechoul, Tom Carlson, Aleksander 

Sobolewski, Andrea Biasiucci, Marco Creatura, Serafeim Perdikis, Luca Tonin. 
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Agenda 

Wednesday, January 23, 2013 

 

Time Title 

08:30-09:00 Registration 

09:00-09:30 
Opening: welcome and general information: 
Prof. José del R. Millán - Ecole Polytechnique Fédérale de Lausanne, Lausannne, Switzerland 
Dr. Abdul Al-Khodairy - Clinique Romande de Réadaptation SUVACARE, Sion, Switzerland 

09:30-10:15 
Keynote: Prof. G. Courtine - Ecole Polytechnique Fédérale de Lausanne, Lausannne, Switzerland 
Neuroprosthetic Technologies to restore Motor Functions after Severe Paralysis 

10:15-10:45 Coffee Break 

10:45-11:05 
Hybrid Brain-Computer Interfaces: Technology and Current and Future Applications 
G. R. Müller-Putz - Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria 

11:05-11:25 
Assessing the User Experience with Hybrid BCIs 
R. Lorenz - Berlin Institute of Technology, Berlin, Germany 

11:25-11:45 
Towards a Hybrid Control of a P300-based BCI for Communication in Severely Disabled End-users 
A. Riccio - IRCCS Fondazione Santa Lucia, Rome, Italy 

11:45-12:05 

The Riemannian Potato: an Automatic and Adaptive Artifact Detection Method for Online Experiments using 
Riemannian Geometry 
A. Barachant - Team ViBS (Vision and Brain Signal Processing), GIPSA-lab, CNRS, Grenoble University, 
France 

12:05-12:35 
Designing for Unreliable Input Channels 
J. Williamson - University of Glasgow, Glasgow, UK 

12:45-14:00 Lunch 

14:00-15:30 Poster Exhibition I and Industrial Exhibition 

15:30-16:00 Live Demos 

16:00-16:30 Coffee Break 

16:30-16:50 
Online Covert Visuospatial Attention based BCI: A Study with Neutral Background and Natural Images 
L. Tonin - CNBI, Ecole Polytechnique Fédérale de Lausanne, Lausannne, Switzerland 

16:50-17:10 
Evaluation of Three BCI-controlled AT Devices in a Highly Paralyzed End User 
M. Rohm - University Hospital, Spinal Cord Injury Center, Heidelberg, Heidelber, Germany 

17:10-17:30 
An Adaptive Bandit Procedure to Explore User-specific Motor Imagery Tasks 
M. Clerc - Athena, INRIA Sophia Antipolis, France 

17:30-17:50 
Machine Learning as a Key Technology for BCI 
M. Tangermann - Berlin Institute of Technology, Berlin, Germany 

18:00-20:00 Aperitif 
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Thursday, January 24, 2013 

 

Time Title 

09:00-09:45 
Keynote Lecture: Niels Birbaumer - Institute of Medical Psychology and Behavioral Neurobiology, 
University of Tübingen, Germany  
Brain Machine Interfaces in Paralysis 

09:45-10:05 
Harnessing Hybrid Brain-Computer Interactions for Stroke Rehabilitation 
D. Mattia - IRCCS Fondazione Santa Lucia, Rome, Italy 

10:05-10:25 
How to decrease BCI Performance Variability? A Machine Learning Approach Applied to End-user Data. 
M. Schreuder - Berlin Institute of Technology, Berlin, Germany 

10:25-11:00 Coffee break 

11:00-11:20 
BCIs for Control of Upper Extremity Neuroprostheses - Facts, Challenges and Visions 
R. Rupp - University Hospital, Spinal Cord Injury Center, Heidelberg, Germany 

11:20-11:40 
Sensorimotor Oscillatory Reactivity of the Stroke Affected Hemisphere is increased by EEG-based BCI Training: 
A Study in Subacute Patients 
M. Petti - IRCCS Fondazione Santa Lucia, Rome, Italy 

11:40-12:00 
Brain Controlled Functional Electrical Stimulation for Motor Recovery after Stroke 
A. Biasiucci - CNBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

12:00-12:20 
A Preliminary Fundamental Study of Ambulatory SSVEP 
M. Duvinage - TCTS Lab, University of Mons, Belgium 

12:20-12:40 
Bridging Gaps: the User-centered Design for Bringing BCI to End-users 
A. Kübler - University of Würzburg, Würzburg, Germany 

12:45-14:00 Lunch 

14:00-15:30 Poster Exhibition II and Industrial Exhibition 

15:30-16:00 Coffee Break 

16:00-16:20 
Brain Computer Interfaces: A Rehabilitation Team Perspective 
A. Al-Khodairy - Clinique Romande de Réadaptation SUVACARE, Sion, Switzerland 

16:20-16:40 
Bridging Gaps: Long-Term Independent BCI Home-Use by a Locked-In End-User 
E.M. Holz - Institute of Psychology, University of Würzburg, Würzburg, Germany 

16:40-17:00 
Two Approaches to Communicate with Patients in Minimally Conscious State 
C. Pokorny - Graz University of Technology, Graz, Austria 

17:00-17:20 
Information Processing in Patients with Chronic and Severe Disorders of Consciousness 
R. Real - University of Würzburg, Würzburg, Germany 

17:20-17:40 
The Importance of User-centred Design in BCI Development: A Case Study with a Locked-in Patient 
T. Kaufmann - University of Würzburg, Würzburg, Germany 

19:00-22:00 Gala Dinner 
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Friday, January 25, 2013 

 

Time Title 

09:00-09:45 
Keynote Lecture: J. L. Pons - Spanish Council for Scientific Research (CSIC), Madrid, Spain 
Multimodal BNCIs: Sourcing Information from Motor Planning through Motor Execution. The Case of 
Suppression of Pathological Tremor 

09:45-10:05 
Continuous and Discrete Control of a Hybrid Neuroprosthesis via Time-Coded Motor Imagery BCI 
A. Kreilinger - Graz University of Technology, Graz, Austria 

10:05-10:25 
A Hybrid BCI for Telepresence 
T. Carlson - CNBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

10:25-11:00 Coffee break 

11:00-11:20 
A tactile P300-BCI for Communication 
R. Ortner - g.tec Guger Technologies OG, Austria 

11:20-11:40 
A 2D Cursor Control Based Brain-Computer Interface Speller 
B. Xia - Shanghai Maritime University, Shanghai, Shanghai, China 

11:40-12:00 
Design Principles for Neuroprosthetics 
J.d.R. Millán - CNBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

12:00-12:30 Round Table 

12:30-12:40 Closing Remarks 
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Assessing the User Experience with Hybrid BCIs 
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Abstract. Within the context of the MUNDUS project [Pedrocchi et al., 2010], three graphical user interfaces 

(GUIs) were designed for their prospective use in controlling a brain-computer interface (BCI)-driven upper-

limb neuroprosthesis. The action selection was divided into two stages: selection and confirmation that were 

controlled using event-related potentials (ERP) or motor imagery (MI). By assessing pragmatic as well as 

hedonic quality aspects of User Experience (UX), the study attempts to bridge the existing gap of proper UX 

evaluations in current BCI research [Plass-Oude Bos et al., 2011]. The in-depth comparison of UX between two 

hybrid BCIs and a conventional BCI approach provided valuable insights into the underlying dynamics causing 

the users’ experience to differ across the GUIs.  

Keywords: User Experience, Usability, User-Centered, Hybrid BCI, Motor Imagery, ERP, Neuroprosthetics 
 

1. Introduction 

In contrast with the consistent increase of UX evaluations in the field of human-computer interaction, a user-

centered perspective in the field of BCI assistive devices for patients is only scarcely adopted. Most BCI systems 

are exclusively evaluated in terms of classification accuracy and speed [Pasqualotto et al., 2012]. Besides 

including these common efficiency measures, the evaluation of further usability aspects such as ease of use, 

learnability and mental workload (hereinafter referred to as pragmatic quality of UX) could improve user 

efficiency and satisfaction [Plass-Oude Bos et al., 2011]. In order to gain a holistic perspective on UX, hedonic 

quality aspects [Hassenzahl, 2005] have also been taken into account. Measuring UX and improving BCIs 

accordingly could boost user acceptance, enjoyment and BCI task performance [Plass-Oude Bos et al., 2011]. 

That this is not just important concerning BCIs for entertainment can be construed from a study with ALS 

patients [Nijboer et al., 2010] in which motivational factors indeed seem related to BCI performance. Other 

studies point towards frustration as having a detrimental impact on BCI performance [Reuderink et al., 2009]. 

Within the context of the MUNDUS project, three different BCI interfaces were proposed for a prospective use 

in controlling a neuroprosthesis [Pascual et al., 2012]. By assessing the UX of the three GUIs, the present work 

reveals from a user’s perspective whether one of the interfaces is most suitable for this application.  

2. Material and Methods 

Twelve healthy subjects (6 female; mean age: 26.2 ± 2.9 years) took part in the one-session study. Brain 

activity was recorded from the scalp with multichannel EEG amplifiers using an active electrode system with 64 

electrodes placed according to the extended international 10-20 system (Fp1,2;AF3,4,7,8;Fz; F1-10;FCz;FC1-6; 

FT7,8;T7,8;Cz;C1-6;TP7,8;CPz;CP1-6;Pz;P1-10;POz;PO3,4,7,8;Oz and O1,2). First, the participants performed 

an ERP and MI calibration to compute one classifier for each paradigm. This was followed by a feedback 

recording, in which three different GUIs were presented to the subjects in a randomized order. The task for each 

GUI consisted of a two-stage action-selection task.  First, subjects selected one of six symbols representing 

possible actions executed by a neuroprosthesis, and then users had to confirm or cancel this selection. For the 

experiment, a solely ERP-based and two hybrid combinations were tested (see Fig. 1): (1) selection with ERP, 

confirmation with ERP (ERP-ERP), (2) selection with ERP, confirmation with MI (ERP-MI), (3) selection with 

MI, confirmation with ERP (MI-ERP). For the assessment of UX, the NASA-TLX [Hart and Staveland, 1988] 

and the User Experience Questionnaire [UEQ; Laugwitz et al., 2008] were administered after each GUI. The 

UEQ contains the three dimensions attractiveness, use (pragmatic) quality and design (hedonic) quality.  

3. Results 

NASA-TLX and UEQ scores were analyzed using one-

way repeated measures ANOVAs (α-level: 0.05). Due to one 

subject’s inability to control either one of the hybrid GUIs 

and another participant’s loss of control over the MI-ERP 

GUI, two subjects were excluded for the analyses. NASA-

TLX results showed a significant effect of workload (F(2, 18) 

= 19.627,  p < .001). The lowest workload score was reached by the ERP-ERP GUI (28.83; NASA-TLX scale: 0 

to 100), followed by the ERP-MI GUI (35) while the MI-ERP GUI achieved the highest workload score (62.5). 

Dimension scores of UEQ 

Dimension ERP-ERP ERP-MI MI-ERP 

Attractiveness 1.73 1.45 0.6 

Use Quality 1.83 1.33 0.79 

Design Quality 1.48 1.53 1.33 
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Post-hoc tests using the Bonferroni correction revealed a significant difference between the ERP-ERP and MI-

ERP GUI (p = .002) as well as between the ERP-MI and MI-ERP GUI (p = .005). The highest overall UEQ 

score was attained by the ERP-ERP GUI (1.69; UEQ scale: -3 to +3), followed by the ERP-MI GUI (1.42) and 

the MI-ERP GUI (0.91). This effect was also found to be significant (F(2, 18) = 4.003, p = .036). Post-hoc tests 

indicated no specific pairwise differences between the GUIs. Regarding the dimensions attractiveness and use 

quality, the ERP-ERP GUI again scored the highest and the MI-ERP GUI the lowest (Table 1). A significant 

effect was found for both dimensions (attractiveness:  F(2, 18) = 5.264,  p = .016; use quality: F(2, 18) = 4.913,  p = 

.020). Post-hoc tests unveiled that solely the difference between the ERP-ERP and MI-ERP GUI was statistically 

significant (attractiveness: p = .041; use quality: p = .038). For the dimension design quality no significant 

difference was observed (F(2, 18) = 0.408, p = .671, n.s.).  

 

(1) ERP-ERP GUI (2) ERP-MI GUI (3) MI-ERP GUI 

   

ERP: For the ERP trials the symbols were presented repeatedly in a sequential fashion at a single central position of the 

screen. MI: For MI selection the six symbols were equidistantly distributed in a circle on the screen. By 

exceeding the thresholds of the power bar the subject could rotate the arrow until reaching the desired action, 

and then increase its length to select it. For the second stage, the OK and CANCEL symbols appeared randomly 

on each side of the screen, and the direction and length of the arrow was controlled through the output of the MI 

classifier. 

4. Discussion 

The results clearly show that both the conventional ERP-based approach and the hybrid ERP-MI interface 

surpassed the MI-ERP GUI in terms of pragmatic quality aspects of UX. Both GUIs were perceived as less 

mentally demanding (NASA-TLX), more easy and efficient to use and more easy to learn (use quality items). 

Alongside these findings all three GUIs seem equally exciting, interesting and motivating to the user (design 

quality items). Hence, the MI-ERP GUI might be more appropriate for a BCI gaming application than for its use 

in a neuroprosthesis. The best overall results were achieved with the conventional non-hybrid approach. 
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Abstract. A hybrid (electromyographic, EMG) control devoted to the correction of spelling errors was 

introduced in a previously implemented P300-based BCI system designed to control an assistive technology 

software (Riccio et al., 20111; Zickler et al., 2011). The hybrid version of such system would provide severly 

disabled end-users with a way to exploit not otherwise functionally reliable residual muscular activity. Six 

healthy subjects and one severly motor impaired end-user participated to the system testing. Preliminary findings 

are in favour of the superiority in efficiency of the hybrid control with respect to the no-hybrid (only BCI-based) 

as indicated by the observed improvement of the performance (expressed as time for selction and number of 

errors) that was associated with a decrease of the system usage frustration perceived by the users.  

Keywords: Brain computer interface, Hybrid, Electromyography,  Event related potential, Communication 
 

1. Introduction 

1.1 The Hybrid BCI 

A hybrid Brain Computer Interface (BCI) is a BCI combined with at least one other system or device 

enabling people to send information (Müller-Putz et al., 2011). In a previous study, we reported on a developed 

system in which a P300-based BCI was combined with a QualiWorld Assistive Technology (QW) software for 

communication and environmental control (Riccio et al., 2011). Such BCI-based system was successfully tested 

with severely disabled potential end-users (Zickler et al., 2011) and according to their feedbacks on system’s 

usability, we endowed the system with a hybrid control that subserved the function of deleting uncorrected 

selections by means of electromyographic (EMG) signal generated by the end-user’s residual muscular activity. 

2. Material and Methods 

2.1. Participant  

Six healthy volunteers (3 males, 3 females; mean age 30) and one severely disabled end-user (female, 48 year 

old) participated to the study. The end-user, had tetraplegia with severe dysarthria due a brainstem ischemic 

stroke and she could communicate her primary needs only with the support of the caregivers.  

2.1. Hybrid system 

To fully adhere to a user-centered design, the hybrid system is adaptable to several degrees of residual motor 

activity and the customization of the EMG control channel is obtained during a screening session wherein the 

end-users’ target muscle is identified on the basis of their residual functional voluntary movements. For the same 

reason the visual stimuli eliciting P300 are adaptable to user’s needs in terms of shape, colors, dimension and 

position (Holtz et al., 2013). The visual stimulation is overlaid on top of the QW window through a proxy and 

the system is based on the TOBI common implementation platform both for the biosignal acquisition (signal 

server) and for the exchange of messages (Breitwieser et al., 2012). 

2.3. Protocol and Data Acquisition 

A calibration session was performed in order to define the EMG control features, such as the onset and offset of 

signal amplitude thresholds and the optimal time window for the EMG signal onset and offset to occur in order 

to operate the delete command. The same session was also devoted to identify the best stimulation modality 

(least number of sequences needed to achieve the 100% offline accuracy) within four stimuli changing for 

shapes (dot vs. grid) and colors (red vs. green) (Holtz et al., 2013). In a different session, participants were asked 

to spell online three predefined words (21 characters) using the system under two conditions: (i) No-hybrid task: 

uncorrected letter selections were deleted by means of the BCI control operating a backspace command 

integrated in the QW virtual keyboard; (ii) Hybrid task: the errors were canceled by exploiting the EMG control 

signal; in case of failure, the user had to delete the wrong letter as in the previous condition. For between 
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conditions comparative purposes, the number of sequences of stimulation was set at the minimum number of 

sequences needed by a given user to reach 80% of accuracy in order to artificially introduce spelling errors in a 

controlled manner. EEG and EMG signals were acquired using 8 EEG (Fz, Cz, Pz, Oz, P3, P4, Po7, Po8) and 2 

EMG active electrodes, respectively. All EEG channels were referenced to the right earlobe and grounded to the 

left mastoid, amplified using a g.tec USB amplifier (Graz, Austria) and recorded by the BCI2000 software. 

2.4. Data Analysis 

The efficiency of the hybrid BCI-system was evaluated in terms of performance estimated as i) time for selection 

(TIME; ratio between the total time to successfully complete the task and the minimum number of selections 

needed to execute it); percent of errors (ERRORS; ratio between the number of BCI errors and the total number 

of BCI selections) and users FRUSTRATION (as a workload factor by means of the NASA-tlx). The comparison 

between the two modalities was performed by means of a non-parametric Wilcoxon test. 

3. Results 

As shown in Figure 1, the efficiency of the hybrid BCI-system was higher as compared to that of the no-hybrid 

system version, as indicated by the significantly lower scores relative to TIME and ERRORS obtained in the 

hybrid task (p <0.05) with respect to those observed in the no-hybrid task. Further, the level of FRUSTRATION 

perceived by the healthy users resulted significantly lower for the hybrid condition (p<0.05). The end-user 

achieved TIME and ERRORS mean values lower in the hybrid task (TIME=19.13 sec; ERRORS=19.3%) as 

compared to the no hybrid task (TIME=34.8 sec; ERRORS=33.9%). The perceived FRUSTRATION was also 

lower while using the hybrid modality function (3.3) with respect to the no-hybrid (4.6).  

 

 
Figure 1. Plots showing statistic comparison between  the “hybrid task”and the “no-hybrid task” on the time of selection 

(TIME), percentage of errors (ERRORS) and perceived frustation (FRUSTRATION).  

4. Discussion 

These preliminary findings support the initial assumption that the integration of the EMG channel into the 

system would yield to an improvement of the system efficiency, as indicated by the significant decrease of the 

time for selection and of the percentage of errors in an on line spelling task performed under the hybrid and no-

hybrid task modality. One can speculate that the observed decrease of the percentage of errors under the hybrid 

task might be ascribed to a reduced psychological demand of the BCI-based spelling letters due to the possibility 

of correcting errors by exploiting the EMG channels. The lower level of perceived frustration associated with the 

hybrid task could be a consequence of the performance enhancement. The similarity in the system usage 

performance showed by the end-user corroborates the added value of the hybrid control concept. In severely 

disabled end-users, the residual muscular activity could be indeed, easily fatigable or not reliable and 

consequently not functionally useful to operate a control of a standard assistive device.  
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Abstract. Artifacts management is a critical problem in any applications involving on-line processing 

of EEG signals. This paper presents a multivariate automatic and adaptive method for identifying 

artifacts in continuous EEG data.  

Keywords: EEG, Artifact detection, Riemannian geometry, BCI. 
 

1. Introduction 

In this work we consider as artifacts any kind of EEG signal different enough as compared to the 

normal baseline signal. Based on this new definition, covariance matrices are used as descriptors of 

EEG signals and a Riemannian metric is employed to compare these covariance matrices with an 

average covariance matrix estimated on the signal baseline. This framework is not specific to a 

particular kind of artifacts and allows us to take into account the spatial properties of the artifacts. A 

practical implementation of this method will be described, and results of the online detection will be 

shown.  

2. Methods 

The goal of the detection algorithm is to determine if a portion of EEG signal TN
X


 recorded 

during a time window of T samples over N electrodes contains artifacts. In order to achieve this, a trial 

X will be represented by its spatial covariance matrix T
XX

T
=C

1

1



and the criterion for the detection 

will be based on a Riemannian distance computation. The main idea is to estimate a reference 

covariance matrix C and reject every trial which is too far, in term of Riemannian distance, from this 

reference matrix. The Riemannian distance between C and C is defined by [Förstner and Moonen, 

1999]: 

      
n

N

=n

R
=CCd 

1

2
log,  (1) 

with 
n

 the eigenvalues of 2
1

2
1 

CCC . The trial corresponding to C will be considered as an 

artifacts if 
R

d is greater than a threshold th. Thus, the detection algorithm requires two parameters: C , 

the reference point in the Riemannian manifold and the threshold th for the detection. The estimation of 

those two parameters is the important part of the algorithm. The reference point could be estimated in 

an adaptive manner during the whole recording session according to the following equation: 

 

  2/1/12/12/12/1

1
)()()()(

ttttt
CCCCCC




    (2) 

with 
t

C the reference matrix from the previous iteration, C the current covariance matrix and a 

coefficient which defines the speed of the adaptation. This adaptation is done only when clean signal is 

detected, i.e., the distance is lower than the threshold. The threshold th is estimated based on the mean 

 and standard deviation  of the distance to the reference matrix defined in Eq. 1 :  

 5.2th      (3) 
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These two parameters define a region of interest in 

the Riemannian manifold. Since the Riemannian 

metric is non-linear, this region of interest 

corresponds to a “potato” in the Riemannian 

manifold. Fig. 1 shows the potato for a dataset of 

100  2x2 covariance matrices on simulated data. 

Each point represents a covariance matrix in the 

manifold. The big black point corresponds to the 

reference matrix and the grid represents the edge of 

the potato where the Riemannian distance to the 

reference point is equal to th. 

3. Results 

This algorithm was implemented in the OpenViBE software [Renard et al., 2010], and applied 

during a P300 experiment. EEG signals were recorded using a g.tec amplifier and 16 dry active 

electrodes. After a bandpass filtering (1-20Hz), signals are epoched using a sliding window of 1s (with 

a step of 100ms). The parameter  of the adaptation is set to 100, and the initialization of the reference 

point is done at the beginning of the session, where the user is instructed to stay still for 10 seconds.  

 In the example Fig. 2, the potato rejects blinks (1
st
 artifact), electrodes movements (2

nd
 and 3

rd
 

artifacts) and eye movements (4
th

 artifact).  

4. Discussion 

The efficiency of this method is based on two facts: first, we use multivariate statistics by 

considering the covariance matrices as EEG signal descriptors. This allows us to take into account the 

spatial structure of the artifacts. For this reason the artifact detection is sensitive to the correlation 

structure of the EEG channels. Second, by using a strategy where an artifact is everything different 

enough from the reference activity, the algorithm is sensitive to many kinds of artifacts. Nonetheless, 

the initialization of the reference point is critical for the good functioning of this algorithm and its 

sensitivity and specificity strictly depend upon its correct initialization and correct adaptation. On the 

other hand, because of the good sensitivity of the Riemannian metric, the artifacts usually lie several 

standard deviations away from the reference point, so the threshold estimation is not critical. 

Acknowledgements 

This research has been supported by ANR (Agence Nationale de la Recherché) TecSan project 

ROBIK and AFM (Association Française contre les Myopathies) ROBIK. 

References 

Förstner W. and Moonen B. A metric for covariance matrices. In Tech. Report of the Dpt of Geodesy and Geoinformatics, 
Stuttgart University, 113–128. 1999. 

Renard Y, Lotte F,Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A. OpenViBE: An Open-Source Software 

Platform to Design, Test and Use Brain-Computer Interfaces in Real and Virtual Environments. Presence Teleoperators and 
Virtual Environments, 19(1): 35-53, 2010. 

Figure 1: Riemannian potato for a set of 100 2x2 

covariance matrices on simulated data. 

Figure 2: Results of the online detection for 20 seconds of signals recorded in OpenViBE. Only 5 electrodes are 

shown (Fp1,Fp2, AFz,Cz, Pz) .Grey areas correspond to time intervals where artifacts were detected. 
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Abstract. The main aim of this study is to demonstrate the reliability of an online EEG based BCI using 

covert visuospatial attention. For this purpose the BCI system has been tested across different days and 

in two different conditions: with neutral background and with natural images. The achieved 

classification performances achieved (70.6±4.3% in average, in case of neutral background) makes this 

mental signal as a promising candidate for BCI control. Although the performances dropped 

(61.2±3.3% in average) with natural images, this was the first attempt of a comparison between these 

two conditions in the case of a covert visuospatial attention task.  

Keywords: Covert visuospatial attention, EEG, BCI, Online 
 

1. Introduction 

Recently, several studies have started to explore covert visuospatial attention as a control signal for 

Brain-Computer Interfaces (BCI). These studies are mainly based on steady-state visual evoked 

potential paradigms [Treder et al., 2011] or on more flexible and spontaneous voluntary attention 

mechanisms without any external stimulation [Andersson et al., 2012]. However, the latter modality 

has not been yet fully explored in the case of EEG based BCIs. In [Tonin et al., 2012] we proposed a 

new method based on a time-dependent approach in order to enhance the classification accuracy of this 

particular paradigm. The main aim of the current work is to verify the aforementioned method online 

and furthermore to demonstrate the reliability and the robustness of this EEG based BCI. For the first 

time, we tested the BCI system in a more real condition wherein natural images were presented on the 

background of the screen. The results reported demonstrated the possibility of using this mental task as 

control signal for BCI. 

2. Material and Methods 

Eight healthy volunteers (age 29.3±4.8) participated in this study. Each subject performed two 

recording sessions separated by 1-2 days. The study was conducted in two conditions: covert 

visuospatial attention with neutral background (black) and natural images. The structure is illustrated in 

Table 1. Notice that the classifier was calibrated with only the first four runs from day 1 and therefore 

tested online across days and conditions. 

Table 1. Study structure. Between brackets the number of trials. Calibration runs were performed during day 1. 

 calibration day 1 day 2 total 

Neutral background   4 runs (160) 4 runs (120) 4 runs (120) 12 runs (240) 

Natural images 0 runs (0) 2 runs (60) 6 runs (180) 8 runs (240) 

 

Participants were instructed to fixate a cross in the middle of screen (for 2000 ms) and after a 

symbolic cue (100 ms) to focus their attention at one of the two predefined locations for 3000-5000 ms. 

The to-be-attended locations were defined as two circles continuously displayed at the bottom left or 

bottom right of the screen. During the whole trial period a black background or an image from a real 

environment was continuously presented according to the current condition. In the case of natural 

images condition they were randomly selected from a dataset with indoor pictures and they changed at 

beginning of each trial. At the end of the trial a red circle appeared at one of the locations (1000 ms) as 

feedback of the classification procedure. During the calibration, the feedback appeared always at the 

correct location in order to inform the subject of the end of the trial. It is worth to notice that there was 

no external (bottom-up) stimulation during the covert attention period but the images in the related 

condition. 

EEG signals were acquired with an active 64-channels system at 2048 Hz. Data processing and 

classification were performed according to [Tonin et al., 2012]. Briefly: we preselected parieto-
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occipital electrodes and computed the envelop of the signals for seven different sub-bands in the alpha 

range (from 8 to 14 Hz). Then, the trial period was split in consecutive, non-overlapping windows of 

150 ms. During the calibration, the most discriminative features in each window were selected and 

used to setup a classifier for the given interval. During the testing, the classifiers were applied online 

according to the belonging window. Finally, the resulting probability vector was accumulated in a 

Bayesian framework in order to make the final decision about the trial. 

In parallel, gaze positions were recorded by means of a commercial eye-tracker system. This data 

was used offline in order to ensure that subjects were doing the task covertly. We defined two Region 

of Interest (RoI) overlapping each one of the to-be-attended locations. A trial was considered 

contaminated by eye movements if the gaze position was in one of the RoI at least once during the 

covert attention period. 

3. Results 

Figure 1A depicts the 

performances for each subject 

averaged across the two recording 

days. The first outcome is that all 

subjects performed better than 

random. In the case of neutral 

condition, the overall accuracy 

across subjects was 70.6±4.3%. In 

addition, four subjects (s1, s4, s5 

and s8) reported high 

performances (88.7%, 70.8%, 

73.0% and 74.6%, respectively). 

Only three subjects showed a drop 

in performances during the second 

day. This suggests that generally 

no shift in the features space happened across sessions. Conversely, with natural images in the 

background (red bars in figure) subjects did not reach high classification accuracy (in average 

61.2±3.3%). Only subject s1 reported results comparable with the first condition (83.0%). In Figure 1B 

we report the percentage of trials contaminated by overt eye movements. The percentage is relatively 

low for all subjects (in average 3.6±1.4% and 3.2±1.2% respectively for the two conditions). This 

outcome supports the fact that subjects were correctly performing the covert attention task. 

4. Discussion 

This study highlights three different novelties in the field. For the first time, we demonstrated (i) 

the feasibility of an online EEG BCI based on covert visuospatial attention without any external 

stimulation. The classification accuracy achieved (70.6±4.3% in average, in case of neutral 

background) makes this mental signal as a promising candidate for BCI control. (ii) This was the first 

attempt in literature studying covert visuospatial attention with more natural and daily like images, 

although in this condition the performances dropped considerably (61.2±3.3% in average). It is worth 

to notice that the calibration phase was based only on runs with neutral background in order to avoid 

any possible bottom-up arising by the images themselves. This might be an explanation for the lower 

classification performances. Nevertheless, further analyses are needed in order to understand the 

underlying processes in this particular condition. Finally, (iii) for the first time -in the case of covert 

visuospatial attention- the stability of the classifier was tested across different days. This is a 

fundamental requirement to prove the robustness and the reliability of this mental signal for BCI control. 
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Figure 1. (A) Classification performances for each subject for the two 

conditions. (B) Percentage of trial contaminated by overt eye 

movements. Average across days and standard error are reported. 
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Abstract. Three BCI-controlled AT devices namely a Functional Electrical Stimulation (FES)-hybrid 

orthosis, a telepresence robot and a music player were tested and evaluated in a highly paralyzed 

subject (C3 Tetraplegic since 2010, 42 years old, BCI-naïve). He went through an extensive Motor-

Imagery-Brain-Computer Interface (MI-BCI) training of 102 runs and achieved an average 

performance >80%. He successfully passed all three testing protocols, stated a low to medium 

workload and was satisfied with their use. He could imagine using improved versions in his daily life. 

Keywords: Electroencephalogram (EEG), Brain-Computer Interface (BCI), Evaluation, Assistive 

technology 

Introduction 

Spinal cord injured (SCI) individuals suffer from restricted limb functions depending on the level 

of lesion. [Zickler et al., 2011] has shown that the main needs of highly paralyzed individuals are 

manipulation and communication. However, in high lesioned tetraplegic subjects only a few residual 

motor functions are preserved that can be used for control of conventional assistive devices (ADs). For 

this purpose Brain-Computer Interfaces (BCI) exploiting the subject’s electroencephalogram (EEG) are 

connected with such ADs offering a new opportunity for access. In even higher lesioned subjects in 

whom residual movements are mostly absent, a BCI remains the last option for control of ADs. 

The aim of this study is to evaluate the BCI performance and end user satisfaction for three 

different AT prototypes namely an upper extremity hybrid neuroprosthesis [Rohm et al., 2011], a 

telepresence robot [Tonin et al., 2011] and a music player in a highly paralyzed end user. 

Study participant and methods 

The individual (G.S.) included in this single case study is a right-handed 42-year-old man with a 

traumatic spinal cord injury since August 2010. He is affected by a motor complete lesion with a level 

of injury of C3. He has a limited passive range of motion in the elbow with a flexion deficit at 110°. He 

has no active hand, wrist and elbow movement on both sides, only pro-/retraction and 

elevation/depression of his shoulders and head movements are preserved. 

He has never participated in any clinical trial before and was naïve to BCI or FES applications. The 

TUEBS questionnaire, the ATDPA and a Visual Analog Scale (VAS) were used to assess the user 

satisfaction and the NASA-TLX to measure the subjective workload. 

Results 

3.1. Results from MI-BCI Online Training Sessions 

Due to the fact that G.S. lives 400km away from Heidelberg, only five sessions of BCI training 

have been conducted. 102 MI-BCI runs have been recorded since August 2011. 65 of these runs were 

recorded with feedback (online sessions) and 51 were evaluated. With the Graz-BCI he achieved an 

average performance of 78%, with the EPFL-BCI 85%. 

3.2. Prototype Testing 

G.S. drove a telepresence robot which was located ~720km away from his home along three 

different paths in a real working space, passing through pre-defined target locations first controlled 

mentally and, second by two buttons activated by residual head movements. During the telepresence 

trial G.S. was able to complete all the paths in both conditions. The times to complete the tasks were 

similar (on average 96.80+/-35.83s (BCI) and 82.6+/-32.25s (buttons)). These results are in line with 

previous work [Tonin et al., 2011]. He stated that he likes how the device looks and that it is small and 

can turn quickly. He could imagine using it as intended. However, he’d like to have a smaller system 
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with a smaller display integrated in his bed/wheelchair. He liked the device (VAS 9/10, TUEBS 4.3/5) 

and stated a low workload (NASA-TLX: 30/120). 

G.S. also tested the FES hybrid-orthosis, which aims at restoring grasping and reaching function via 

muscle stimulation, a passive orthosis and an electrical drive to lift the lower arm. He was quite 

satisfied with the device (TUEBS: 4/5) and claimed a low workload (NASA-TLX: 24/120). However, 

assessing the ATDPA the end user found both devices semi-useful (31/60 and 34/60). He securely 

grasped an ice cone from a special holder, lifted it to its mouth and licked it without haste (Fig. 1). 

During the task he elicited one unintended switch from arm- to hand control that he undid in a few 

seconds. All other BCI switches were elicited as intended. He overall liked the neuroprosthesis (8/10) 

but he stated that the whole system could be smaller when produced by a company and tailored to his 

body. Concerning aesthetic design, he stated that it does not matter in his highly paralyzed state. 

On day three, G.S. reported being rather fatigued and his classifier appeared biased towards one 

class. By the end of the experiment, his NASA-TLX scores for the binary BCI feedback paradigm were 

98/120, 62/120 for the REx paradigm and 49/120 for the music player. He was able to complete 19/20 

of the music player tasks with an effective accuracy of 80%. G.S. overall liked the music player (4/5). 

Further discussion about the end user's performance and preferences regarding the music player can be 

found in [Quek et. al. (in the same proceedings)]. 

A    B  
Figure 1. A demonstrates the setup of the telepresence trial and B of the neuroprosthesis trial. 

Discussion 

It was shown that all three BCI controlled prototypes worked well in the highly paralyzed subject 

and provided the functionality as intended. He liked all three devices and could imagine using them in 

his daily life and gave recommendations for their future improvement. 

It is worth noticing that if there was no actual task, G.S. became tired easily. In contrast a 

demanding task made him completely attentive. He needed several breaks during the testing sessions. 

During the music player trial he desired to select a particular album for himself and achieved this 

goal with an accuracy of 100% (13/13 selections). He reported that he really liked to be able to select 

his own album ("this is cheering me up more than the other BCI trials"), and that it was quickly done. 

However, the workload was fairly high. It is unclear whether this was due to the novel control 

paradigm, the high number of preceding trials or the biased classifier.  

At the end of day three, G.S. was unhappy that the BCI experiments were finishing and that he 

really hopes this research work will continue. 
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Abstract. In Motor Imagery BCI, a preliminary step for each new user is to find which motor tasks elicit the best 

discrimination. The user is customarily asked to repeat the imagination of different movements (typically three 

or four), and an offline analysis determines the best tasks among these. Because quite a number of repetitions are 

needed to afford a correct estimation of the classification rates, it is not possible to explore many tasks. A 

radically new way of selecting the best tasks is to optimize online the sequence of tasks. This idea is 

implemented, using a multi-armed bandit procedure, to select a single task, which can best be discriminated from 

the idle state. The performance of the method is evaluated in offline and online analyses. We demonstrate a 

significant reduction in calibration time compared to the uniform procedure. 

Keywords: BCI Calibration, EEG, Motor Imagery,  Reinforcement Learning, Online Adaptation, Multiarmed Bandit. 
 

Introduction 

A major concern in the BCI community is to produce systems that adapt automatically to the specificities of 

the user [Wolpaw et al., 2002]. The calibration phase can greatly benefit from such automatic calibration, 

allowing earlier feedback, because users who receive feedback at early stages in an experiment achieve better 

performance [Vidaurre et al., 2010]. Task selection  is a prerequisite to setting up a Motor Imagery (MI) BCI, 

because the tasks that afford best classification performance vary between subjects. But automatic calibration 

research has so far limited its scope to the features and the classifier:  so far, very few studies have paid attention 

to the time-consuming step of task selection [Dobrea et al., 2009]. 

In this automatic task selection study, we focus on a simple BCI paradigm, aiming to control a button [Solis-

Escalante et al., 2010]. Reinforcement Learning (RL), aiming to optimize an exploration-exploitation trade-off, 

is particularly well-suited for optimizing the sequence of task presentations: exploration is being made with little 

prior information, and new information can be exploited incrementally. In this abstract we summarize recent 

findings, showing how the multi-armed bandit model, and an Upper-Confidence Bound algorithm, can be used 

to optimize the task presentation procedure [Fruitet et al., 2012; Fruitet et al., 2012b]. 

Material and Methods 

 

   (a)      (b) 
Figure 1 (a) The UCB-classif algorithm. (b) The iterative task selection procedure. 

An offline study (10 subjects) was conducted to compare the automatic and the traditional (uniform, all tasks 

presented equal number of times) task selection procedures. An online study (4 subjects) was run to demonstrate 

that the automatic task selection indeed performed well online. The experiments were designed and run using 

OpenViBE [Renard et al., 2010]. The subjects were asked to imagine moving their right hand, both feet, or the 

tongue, during cued intervals lasting 2 seconds, with an inter-cue interval lasting 2.5 to 9.5 seconds (in order to 

record data in the idle condition). In the offline experiment, MI from the left hand was also recorded, and four 
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sets of artificially degraded features were produced (by combination of features of the idle state) resulting in 8 

“tasks”. 

As the goal of this study was not to optimize the features, six features were chosen according to a preliminary 

experiment with one of the subjects: the power around 11 and 20 Hz, on 3 Laplacian-filtered electrodes (C3, Cz 

and C4), and on two time windows (duringand after MI). The classifier was a linear SVM, and the criterion to 

maximize was the classification performance of a task with respect to the idle condition. 

We adapted an Upper Confidence Bound algorithm [Auer et al., 2002] to optimize a classification problem. The 

resulting algorithm, called UCB-classif, is presented in Figure 1. It optimizes the exploration-exploitation 

tradeoff between exploring different tasks, and exploiting data from the most promising ones.  

Results 

The offline study shows that the total number of task presentations leading to the selection of a good task is 

much reduced with UCB-classif compared to the traditional uniform task presentation method. This reduction 

increases with the number of tasks (example, for 8 tasks, 150 presentations instead of 250). 

Online results are presented in Table 1. For 3 out of 4 subjects, the task selected on each of the runs was the 

best-performing one. For Subject 2, two tasks had very similar performance so that UCB-classif could not 

distinguish between the two, but succeeded in eliminating the worst-performing task. 

 Average results of the online task selection procedure, for 60 total task presentations per run. 

 

4. Discussion 

These first results of an automatic task selection are very promising for developing BCIs that are faster to set up. 

It is all the more worthwhile as the number of tasks is large: for only 3 tasks, as customary in BCI today, it does 

not offer much advantage over uniform task selection. But, by accommodating a large number of tasks, one can 

explore different movement strategies. In selecting 1 out of 8 tasks, only 150 total presentations are necessary to 

obtain the performance achieved by 250 uniform presentations (20 minutes instead of 35).  

This method saves time in task selection, and can lead to better BCI performance, by exploring a greater 

repertoire of imaginary movements. This work should be combined with a feature adaptation method, to further 

improve the classification performance. Extension to more control classes could be performed by building all 

bandits whose arms consist of pair-wise classification rates. 
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presentations 
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presentations 

Subject 1       

(3 runs) 

74 20.0 

 

83 30.3 61 9.7 

Subject 2       

(5 runs) 
75.6 24.6 

 

79.8 23 67 12.4 

Subject 3        

(5 runs) 
84.4 

 

31.8 65.4 15.6 54.8 12.6 

Subject 4        

(5 runs) 

71.8 

 

17 88.8 30.8 61.2 12.2 
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Abstract. Brain-Computer Interfaces (BCI) must deliver accurate and stable decoding of the user's intention in 

order to be become a useful instrument in clinical practice, for example in the context of restoring motor 

functions of severely disabled patients. In this work we re-analyzed a data set containing 30 days of BCI 

recordings of a spinal cord injury patient. Using state-of-the art machine learning methods, we were able to  

increase the mean performance from 73.7% to 81.9% and to decrease the standard deviation from 8.7% to 5.9%. 

Keywords: EEG, BCI, CSP, classification variability, end-user 

1. Introduction 

An important clinical application domain for BCIs is to aid in restoring motor functions as well as to provide 

alternative methods for the substitution of motor function in severely physically disabled persons (e.g. Rupp & 

Gerner 2004, Tavela et al. 2010). A major requirement of such a clinical BCI system is not only high 

classification performance but also long-term reliability, i.e. stable classification performance. Thus, a successful 

BCI setup will have to be (i) tailored to the daily states of the user in order to ensure high and stable 

classification accuracy, and (ii) deliver this adaptivity with minimal intervention from the operator (e.g. the 

clinical personal). 

In this contribution we investigate a 30 day data set of a single end-user and aim to reduce classifier error 

and variability by combining state-of-the machine learning approaches and dynamic training data selection.  

2. Material and Methods 

The end-user is an individual with a chronic spinal-cord injury (SCI). He sustained a traumatic SCI in 2009 

with a neurological level of injury of C4. He is not able to generated functionally relevant movements of the 

elbows, hands or fingers on either side. Since August 2011, the end-user participated in a two class motor 

imagery BCI training using foot imagery vs right hand imagery.  A 9 electrode EEG setup was used with a 

Laplacian montage over electrodes C3 and Cz.  

The data set consists of 30 separate measurement days, with a variable number of days between 

measurements and with a variable number of runs per day (see Figure 1.A). A single run consisted of 24 

consecutive trials (12 trials for each class, in random order), after which there was a short break for the subject to 

relax before the next run of 24 trials began.  

Frequency-dependent class-discriminability was assessed using the signed r-square ('signed-r2') measure 

(Blankertz et al. 2011), which was computed on spectral power of Laplace filtered EEG channels C3 and Cz. 

Non-significant (α < 0.05, bootstrapping) r2-values were set to zero.  

Two LDA classifiers were compared in the offline re-analysis, of which both were based on spectral power 

features of spatial filter outputs. The first classifier uses 2 features from two Laplace-filtered channels (C3, Cz). 

This Laplace feature classifier was actually used during the recording to give feedback to the subject. The spatial 

filters for the second classifier were not fixed. Instead, 2 filters were optimized for 3 bands separately using the 

Common Spatial Pattern (CSP) algorithm (e.g. Blankertz et al. 2008). This mbCSP feature classifier was 

recomputed for each recording day using the following dynamic retraining scheme: For a given day, the first 

three runs were classified using a classifier that was trained on data from all available previous days. For the 

following runs of that day, mbCSP was re-computed using (i) data from the first three runs and (ii) all the data 

from the (maximally) previous 5 days that had the most similar profile of signed-r2 values.  

3. Results 

Figure 1.B and 1.C show the frequency-dependent r2-square values for Laplace-channels C3 and Cz. It can 

be seen that the strength of class-specific neural sources varies considerably across days, despite the fact that 

experimental paradigm was the same on all days. For instance, for days 1, 2, 4, 13, and 14 a much stronger 

discriminative beta-band power is found for the foot class in Cz than for the other class in C3. Whereas in days 6 

and 8, for example, the picture is reversed. Also, for the foot class in Cz, there are 8 days in the second half of 
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the data set (days >15) with no significant r2 values in the entire spectrum, compared to only 2 days in the first 

half of the data set (days < 15).  

Figure 1.D shows the resulting day-wise classification performance of the two classifiers described in 

section 2. In this plot, the variability of classification performance becomes evident: There are days for which the 

Laplace feature based classifier performs barely above chance (days 3, 7, 16, and 17), while at other days (e.g. 

days 18 and 21) the performance is above 80%. The average classification performance of the classifier based on 

Laplace features is 73.7%, while the CSP-feature based classifier achieves 81.9% accuracy. The difference is 

statistically significant with p<0.001 (Wilcoxon rank sum test). Notably, the standard deviation of performance 

for the two classifiers is 8.7% and 5.9%, respectively, yielding a reduction of about one third for the CSP 

featured based classifier. This reduction is statistically significant with p<0.05 (Bartlett test for equal variances). 

Figure 1. (A) Number of recording runs per day. Each run consisted of 24 trials. (B) and (C) Color-coded measure (r2-square) for 

frequency dependent class-discriminability for each day (y-axis). Shown separately for Laplace-channels C3 (B) and Cz (C). Color intensity 

represents strength of class-discriminability, while hue represents which motor imagery class is best decoded: red – right hand, blue – foot. 
(D) Classification performance for each day (starting from day 2) for LDA classifiers based on either Laplace-features or multi-band 

Common Spatial Patterns (mbCSP) features. (E) Classification accuracy averaged over days. Error bars indicate standard deviation.  

4. Discussion 

We have demonstrated that state-of-the machine learning approaches can yield high classification rates with 

reduced variability. Our dynamical retraining scheme automatically adapts the classifier and feature extraction 

process to the daily state of the BCI user, which was in this case a target end-user.  

However, our results were obtained in an offline re-analysis of previously recorded data of a single subject. 

Therefore, it remains to be shown whether the increased classification performance and decreased variability can 

be transferred to the online application of the system at the clinical evaluation site and whether our approach is 

beneficial to other end-users. The online BCI system of the clinical partner in this study has been adapted 

accordingly, and online evaluation of the setup are currently under way. We will present results of the online 

evaluation during the workshop. 
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Abstract. Motor imagery (MI) was proposed to enhance arm motor recovery after stroke. EEG-based BCIs 

operated by MI can provide a valuable method to support mental motor practice by allowing direct monitoring of 

the patient’s adherence to such task-specific training. In this paper we describe MI-related EEG patterns of 11 

subacute stroke patients who underwent a one-month BCI-supported motor imagery training with a specifically 

developed BCI-based device. Significantly higher involvement of the affected hemisphere was observed at the 

end of the one-month training as revealed by higher desynchronization values in motor relevant scalp areas of 

the ipsilesional hemisphere in the lower Beta range of frequencies.  

Keywords:BCI, stroke, rehabilitation. 
 

1. Introduction 

Motor Imagery (MI) was proposed to enhance arm motor recovery after stroke; however recent evidence 

reported no significant improvement from MI as an add-on to intensive therapy alone [Ietswaart et al., 2011]. 

One possible reason for this lack of effect could be attributed to an unclear definition of the content of such 

mental practice (i.e., the impossibility to verify the actual brain activity related to the MI task). In this context, 

EEG-based BCIs operated by MI can provide a valuable approach to support mental motor practice by allowing 

direct monitoring of the patient’s adherence to such task-specific training. It is widely agreed that a stroke lesion 

may results in a functional reduction of activity of the ipsilesional hemisphere associated with a correspondent 

increase in the contralesional one. Based on this assumption, rehabilitation strategies aim at increasing the 

excitability of the affected hemisphere and/or decreasing that in the unaffected [Dimyan and Cohen, 2011]. Here 

we propose sensorimotor (SMR)-BCI training as a tool to boost motor-related neuroelectrical responsiveness of 

the affected hemisphere. In particular, we highlighted the reinforcement of motor-related EEG patterns generated 

from the affected (lesioned) hemisphere of subacute stroke patients provided by a specifically developed BCI-

based training device [Pichiorri et al., 2011]. 

2. Material and Methods 

 Eleven subacute stroke patients (age: 61.9 ± 6.9 years; first ever, unilateral stroke causing paresis or plegia 

of the affected upper limb) underwent a BCI–assisted MI training preceded by a screening session, from which 

control features for BCI training were spatially selected over the damaged hemisphere at frequency ranges 

typical of sensorimotor rhythms (alpha and beta). The training protocol included 4 weeks of MI-based BCI 

training (3 sessions per week), during which the patient was asked to control the movements of a virtual 

representation of his own stroke-affected hand throughout the imagination of simple hand movements. Each 

training session contained from 4 to 8 runs (20 trials per run). Trials consisted of a baseline period (4 sec) 

followed by MI (max 10 sec). EEG signals were collected from 31 positions (frontocentral, central, 

centroparietal and parietal lines), sampling rate 200 Hz. In order to assess the BCI training effects, 2 training 

sessions were analyzed for each subject: an “EARLY” session, namely the second session for all subjects and a 

“LATE” session corresponding to the best session in the last week of training, selected according to patient’s 

performance rate. After preprocessing – downsampling at 100 Hz, band pass filtering (1-45 Hz), artifact 

rejection, CAR (Common Average Reference) spatial filtering – the power spectral densities (PSD) of the task- 

and baseline- related EEG signals were computed and averaged within five frequency bands defined according to 

Individual Alpha Frequency (IAF, 9.7±0.5): theta [IAF-6;IAF-2], alpha [IAF-2;IAF+2], lower beta 

[IAF+2;IAF+11], upper beta [IAF-11;IAF+20] and gamma [IAF+20;IAF+35] [Klimesch, 1999]. To highlight 

spectral activity related to the task, a statistical comparison (Student’s t-test) for a significance level of 5% was 

computed between MI and baseline PSDs. False Discovery Rate correction for multiple comparisons was applied 

to the statistical tests to avoid the occurrence of type I errors. In order to evaluate the efficacy of the BCI–

assisted MI training and its consistency across patients, a statistical comparison between t-values associated to 

EARLY and LATE sessions was performed for each channel and frequency band. Data from patients with lesion 
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of the right hemisphere were flipped in order to 

visualize the affected hemisphere on the left for the 

whole population. 

3. Results  

Statistical scalp maps (MI vs baseline) for a 

representative patient in alpha and lower beta 

bands for EARLY and LATE sessions are reported 

in Figure 1. The color of each pixel codes for the 

correspondent t-value: gray for not significant 

differences, hot (yellow-red) and cold (blue) color 

scales for the level of significant synchronization 

and desynchronization, respectively. In the 

EARLY session, the pattern elicited in both bands 

is bilateral and t values are just above threshold. In 

the LATE session, higher involvement of the 

affected hemisphere (AH) was observed mainly in 

lower beta band. In fact, an increase of spectral 

desynchronization was bilaterally visible in both 

frequency bands (absolute t values are greater than 10), mainly on the affected hemisphere. A similar SMR 

reactivity was observed in all patients. Group analysis revealed significant statistical differences (p<0.05) only in 

lower beta band oscillations recorded over the affected hemisphere sensorimotor strip (Table 1). 

 

 
Channel theta alpha lower beta upper beta gamma 

Affected Hemisphere (AH)  

FC3 0,776 0,131 * 0,036 0,119 0,138 

C3 0,735 0,336 * 0,024 0,161 0,289 

CP3 0,849 0,231 * 0,004 0,171 0,655 

Unaffected Hemisphere (UH) 

FC4 0,794 0,109 0,146 0,741 0,601 

C4 0,843 0,312 0,054 0,534 0,61 

CP4 0,828 0,54 0,171 0,507 0,612 

Table 1. p values of the statistical comparison EARLY vs LATE sessions for 6 channels over the motor cortex: FC3, C3, 

CP3 (Affected Hemisphere, AH) and FC4, C4, CP4 (Unaffected Hemisphere, UH). Significant Results (p<0.05) are 

highlighted in red.  

4. Discussion 

A growing literature suggests that BCI-supported MI training could be proposed in stroke patients, to 

potentially improve post-stroke recovery. In support of this application, our findings show that reactivity of the 

affected hemisphere of subacute, severely motor-impaired stroke patients is effectively modulated by a 

specifically designed training supported with a BCI device for motor rehabilitation. A higher involvement of the 

affected hemisphere was observed across training, possibly reflecting a motor cortex functional recruitment 

moving closer to normal, as disclosed by EEG patterns elicited by MI in a BCI context. How this increased 

motor-related brain activity can impact on the actual fucntional motor recovery of subacute patients remains to 

be elucidated in future controlled studies. 
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Figure 1. Statistical scalp maps of a subacute stroke patient: 

MI vs baseline in alpha and lower beta bands for the EARLY and 

LATE training sessions. Unaffected and Affected Hemisphere 

(UH; AH) are represented on the right and left of each scalp map, 

respectively. Color bars code for t-values. 
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Abstract. In the recent past, Brain-Computer Interface (BCI) have been proposed as a potential mean to 

maximize the output of standard motor therapy after stroke, providing  access to the damaged motor network of 

the brain. Also, Functional Electrical Stimulation (FES) is often applied during rehabilitation to directly engage 

muscles of the affected side of the body. In this paper, we describe a BCI system for stroke rehabilitation that 

decodes the engagement of motor areas of the brain and activates FES of a target muscle on the affected arm, 

accordingly. The system allows the physical therapist to monitor current brain activity through a EEG-guided 

visualization . Preliminary results on 4 patients show consistency in the EEG features selected for further 

training. Two of the patients completed the testing, and both show recovery of target muscle function. Our results 

support the idea that BCI can be used to promote beneficial brain plasticity, and justify further testing on a larger 

population.  

Keywords: Rehabilitation, Stroke, Brain-Computer Interface, Functional Electrical Stimulation 
 

1. Introduction 

Every year, approximately 10 million people worldwide are left disabled after a stroke [Roget et al., 2012]. 

Research in the direction of more efficient, faster rehabilitation is then crucial. Brain-Computer Interfaces (BCI) 

provide a mean to decode mental states and activate devices according to user intentions, and could provide a 

direct feedback on the engagement of motor areas of the brain surrounding the lesion site [Millán et al. 2010]. 

Functional Electrical Stimulation (FES) is often used to directly engage muscles on the affected side of the body 

during physical therapy. Still, no commercial system provides a mean to directly link the intention to move with 

the muscular response. 

In this paper, we report preliminary results of a BCI system for stroke rehabilitation initially described in 

[Cincotti et al., 2012]. User's intention to perform an extension movement of the affected hand is detected 

through a BCI and used to activate a FES device. A physical therapist receives the visual feedback about BCI 

performance, motivates the end-user and avoids compensatory behaviors in executing the task through a 

visualization of current EMG activity on the arm.   

2. Material and Methods 

The EEG was acquired through a gUSBamp with 16 active electrodes mounted in correspondence of the 

central sulcus and motor cortices. Bipolar EMG derivations of the extensor digitorum (target muscle), biceps, 

flexor carpi radialis and triceps were also recorded. The data were digitalized at 512 Hz and band-pass filtered in 

the range [0.1 70] Hz. One FES channel is applied to the extensor digitorum during the on-line sessions.   

    The experimental protocol consists in three different phases: first, patients undergo an EEG pre-screening 

session to characterize the initial state of the brain and calibrate the BCI classifier. In the following 2 months, 

they are trained with on-line BCI feedback and FES for at least 10 sessions. Finally, they perform a post-

screening to determine changes in EEG patterns following the treatment.  

    During both the pre- and post-screening sessions, users are asked to perform (or attempt performing) a full 

sustained finger extension of approximately 4s.  Each run is composed of 15 trials of motor task and 15 trials of 

resting, for both the affected and unaffected hand (AH, UH, respectively). For the on-line training sessions, the 

number of runs varies between 3 and 6 depending on user fatigue. Each run is composed of 15 trials where the 

user is asked to concentrate on his affected hand, trying to execute a full sustained finger extension of 

approximately 4s. FES of extensor digitorum is activated every time the BCI is sufficiently confident of motor 

engagement.  

     We have been working with 4 stroke patients up to now, all of them suffering a left hemisphere ischaemic 

infarct. Two chronic stroke patients completed the prototype testing. Two additional chronic patients are 

currently in the testing process.   
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3. Results 

In this paper, we present the most discriminant EEG features used by the BCI, extracted from the initial EEG 

screening session [Galán et al., 2007]. These features are used to train a classifier that judges whether each 

sample belongs to a motor task or to a resting task (samples with a probability < 0.6 will be rejected). Table 1 

reports some information about the 4 end-users, the classifier performance on the pre-screening session data, the 

number of on-line BCI sessions done so far and the functional Fugl-Meyer (FM) indexes. Figure 1 shows the 

experimental setup and the selected EEG electrodes and features in terms of spatial and frequency location.  

Table 1. Patients information, off-line classifier performance, number of already recorded BCI sessions and functional 

indexes (Fugl-Meyer) of a movement involving the extensor digitorum 

Subject ID  

(Age, Lesion site, 
Gender) 

tse 

(i.e. time since 

stroke event) 

BCI Classifier 

Performance / 

Rejection 

BCI sessions 

(on-line) 

Fugl-Meyer 

Upper Limb 

(pre-screening) 

Fugl-Meyer  

Upper Limb 

(post-screening) 

S1 (64, L, M) 10 0.9 / 0.43 10 7 / 66 17 / 66 

S2 (71, L, M) 14 0.91 / 0.68 11 31 / 66 40 / 66 

S3 (49, L, M) 10 0.91 / 0.45 9 – in progress 36 / 66 – 

S4 (50, L, F) 19 0.89 / 0.41 8 – in progress 30 / 66 – 

 

  

 

        

 

 

 

  

 

 

 

 

 

 
 

Figure 1.  Experimental Setup (left), spatial (right, top) and frequency (right, bottom) location of the EEG features 

extracted from the pre-screening session. The number of frequency features is the sum over all 4 patients.  

4. Discussion 

The spatial distribution of EEG discriminant features is fairly consistent over our 4 patients: they all have a 

rather bilateral representation of the motor action, except subject S1 that shows a central representation. 

Regarding the discriminant frequency components, they consistently localize in the mu and beta bands, except 

subject S1, who presents very low alpha features. BCI features for the other patients are rather aligned to those of 

healthy subjects. Interestingly, subject S1 was the most severed individual of our group.  

Regarding the two subjects that completed the testing, we observed functional improvements in both, 

especially in movements involving the extensor digitorum, as reflected by the Fugl-Meyer index. Remarkably, 

also subject S1, for whom the BCI features were rather different from those of the other patients and from healthy 

subjects, showed functional recovery passing from a totally paretic arm to a very limited but still noticeable 

voluntary activity of the fist. These results confirm the beneficial effects of direct muscle stimulation according 

to user intention to perform a motor task. Nevertheless, these initial findings need to be confirmed on a larger 

population and as compared to a control group. 
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Abstract. To bring BCIs outside the lab, researchers are focusing on studying standard BCI paradigms under 

ambulatory conditions. Although the P300 has been widely studied in such circumstances, the SSVEP potential 

has not got such a specific attention so far. This preliminary study aims at getting some evidence of the gait 

impact on the SSVEP SNR distribution and magnitude. Basically, gait seems to impact the SSVEP response 

measurement. After being confirmed, this result could help to improve the design of BCI dedicated to both 

sitting and ambulatory conditions. 
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1. Introduction 

For a few years, researchers have attempted to bring BCIs outside the lab. Among the different aspects, 

ambulatory BCI efficiency is an important part. Up to now, P300-based BCIs have been thoroughly analyzed 

[Castermans et al., 2011]. The main conclusion is that it is feasible and performance is not dramatically affected 

by gait-related artifacts or altered by modifications of the brain responses. 

However, none of the recent studies have focused on the SSVEP potential, which is though the quickest BCI 

paradigm. Indeed, only a one-subject SSVEP analysis was reported using 4 Hz and 6 Hz. Its main conclusion 

was the SSVEP is still working while walking [Touyama et al., 2010]. Obviously, this paper provides anything 

but a deep understanding of gait effects. Therefore, the aim of this paper is to show preliminary results on how 

movements can affect SSVEP responses according to two parameters: stimulus luminosity and frequency.  

2. Experiment and Methods 

In this section, the experiment is firstly described. Then, the analysis method is detailed. 

2.1. Experiment 

Basically, the experiment consisted in comparing the SSVEP brain response under different conditions: 

sitting/walking and normal/high luminosity. During the experiment, the subject had to focus on a 63-LED panel 

(7 x 9 cm), whose flickering frequency was increased from 10 to 46 Hz (to avoid low-frequency mechanical gait 

artifacts) by 2 Hz step (scanning of 19 frequencies). The distance between the LEDs and the subject’s eyes was 

checked during the whole experiment and fixed at 70 cm. For each flickering frequency, two recording sessions 

were performed while walking on a treadmill at 3 km/h and two others were recorded while sitting on a chair. 

These two sessions encompass two luminosity conditions, which were the same for each subject: one that could 

be used for a daily life application and one that tends to the supportable limit. For each session and for each 

frequency, a 30-second EEG dataset was recorded leading to a total of 76 recordings per subject. A 32-electrode 

ANT EEG cap was used with a common average reference [Ding et al., 2006]. Three healthy subjects 

participated in this study. 

 

2.2. Methods 

To detect the SSVEP response across all the channels and scanned frequencies, local Signal-to-Noise Ratios 

(SNR) were calculated as proposed in [Ding et al., 2006]. To depict the results that are not due to statistical 

fluctuations of noise, a one-tailed 95% distribution threshold was applied. Indeed, SNR fluctuations were 

measured by computing SNRs at non-flickering frequencies, excluding harmonics, in order to estimate the 

distribution, which was Gaussian. This allows to only focus on SSVEP SNRs that are unlikely due to noise. For 

each dual condition, all the SNR results across frequencies and electrodes are depicted in a matrix figure. 

3. Discussion 

This section is composed of two main analyses. First, the luminosity influence is discussed. Then, the 

SSVEP responses under sitting and walking conditions are analyzed. 
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3.1. Luminosity Effect 

As expected, the increase of the LED luminosity increases the SSVEP SNR. On Fig. 1, it clearly appears 

that a higher luminosity improves the contrast between areas with and without SSVEP responses. Logically, 

when a SSVEP response is insufficient compared to the noise level for a given luminosity, a higher luminosity 

allows it to be observed. Thereby, it is important to know the luminosity parameter when analyzing which areas 

are responding to the stimulus. However, some of the luminosity effect could lead to an artificial increase of the 

SNR in non-responding areas simply due to the common average referencing. 
  

3.2. SSVEP Responses Under Sitting and Walking Conditions 

As shown in Fig. 1, under sitting conditions, although the results are somehow heterogeneous among the 

subjects, a fairly standard behavior is observed. The SSVEP potentials are mainly located in the occipital/parietal 

areas as expected. Moreover, some significant -but lower- responses are elicited in the central/centro-parietal 

area close to the midline (not detected in Fig. 1). These results are coherent with the literature. 

In comparison, walking conditions may not be seen as a transparent process for the SSVEP paradigm. For 

some subjects, the occipital SNR magnitude appears to decrease (and sometimes disappear). This could be due to 

EMG artifacts. On the other hand, the SNR magnitude seems to be reinforced in the fronto-central, central and 

centro-parietal areas close to the midline below 16 Hz. This likely corresponds to the feet localization on the 

homunculus over the motor/sensorimotor areas. Moreover, just by walking, some frequency band responses 

vanish. Differences between luminosity conditions may suggest the main reason could be artifacts but it needs to 

be confirmed by EMG sensors on the neck. Future work will be devoted to determine whether these effects occur 

on larger population and if they are due to gait artifacts or a specific brain behavior.  

    

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 1. On the left: Luminosity and gait obviously impact the SSVEP log SNR distribution and magnitude. The former 

one allows the SSVEP response to emerge from the background noise. The latter one could slightly affect the 

SSVEP through artifacts. On the right: the electrode number and their localization are depicted. 
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Abstract. In the current study the BCI controlled application Brain Painting was installed at a locked-in ALS-

patient’s home. Family and caregivers were trained to set-up the EEG-cap and amplifier and to start an easy-to-

use interface for the brain painting application. BCI data, duration of painting time, and evaluation were saved 

automatically on a server. The Brain Painting was evaluated in terms of satisfaction, frustration and enjoyment 

using a visual analogue scale. In over 8 months the end-user painted in 86 BCI sessions (and ongoing). Overall, 

satisfaction was moderate to high (M=6.2 of 10, SD=3.65). The study demonstrates that expert-independent BCI 

use is possible. Nevertheless, independent BCI use is challenged by technical problems and variable BCI control.  

Keywords: Brain Computer Interface (BCI), independent home-use, P300, user-centered design, evaluation, locked-in state 
 

1. Introduction 

Brain-Computer-Interfaces enable the severely motor impaired person to communicate without muscular 

pathways. Despite intensive research, BCIs could hardly be established at the patient’s home [Sellers et al., 

2010]. Main problems are e.g., too complex and not ready to use software and time-consuming set-up, e.g. 

placement of EEG-cap. Another problem is the very expensive EEG equipment, e.g. EEG cap and amplifier. The 

BCI-application Brain Painting, which was successfully tested and evaluated in healthy subjects [Münßinger et 

al., 2010] and patients [Zickler et al., submitted], was implemented at the end-user’s home. 

2. Material and Methods 

2.1. Subject 

One female, 72 years old, locked-in ALS-patient was considered as end-user for this study. The end-user is 

artificially ventilated and fed, using an eye-tracker (eye-gaze system) for communication. She is living with her 

family and has a 24-hours care. She used to be a painter.  

2.2. BCI-set-up and application 

The easy-to-use P300-driven Brain Painting application was installed at the end-user’s home. An initial 

calibration was performed in this first meeting and the family was trained how to set up and start the BCI. After 

2 months the family was visited for a second time, in which a second calibration was made. The end-user was 

using the BCI independently at home, while the researcher team was in close contact to the family and the end-

user. Evaluation reports (see below) and BCI data were automatically transmitted and stored on a remote server, 

enabling the experts to follow BCI usage and end-user’s experience. The BCI experts intervened only few times, 

e.g., when technical problems occurred or BCI parameters had to be changed. This was always realized via 

remote control. EEG was recorded using a 8-channel active electrode cap (g.tec, Austria) from centro-parietal 

regions. 

2.3. Evaluation  

After every Brain Painting session the end-user was asked to answer evaluation questions. The end-user 

rated her satisfaction with the BCI session, her experienced frustration, and the level of enjoyment on a visual 

analogue scale (VAS). Furthermore subjective level of BCI control was rated, choosing between zero (0-50%), 

low (50-70%), medium (70-90%) and high control (90-100%). Accordingly, high control means that 90 to 100% 

of all selections were correctly made. In the initial test phase, only VAS satisfaction was rated (first 8 sessions). 

After this proof-of-principle phase the extended evaluation was assessed (reported for session 9 to 86). 

Furthermore a command line enabled the end-user to give further feedback or report on errors. 

3. Results 

The end-user painted in about 86 sessions within 8 months. Mean total painting time of M=66.21 

(SD=38.19). Overall, the end-user was moderately to highly satisfied (M=6.20, SD=3.65). Ratings for VAS 

Satisfaction across all 86 sessions can be seen in figure 1. VAS enjoyment ratings indicated that the end-user 

enjoyed the painting in most of the sessions, with an average of M=6.81 (SD=3.57). On the other hand, 
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frustration was rather low, with an average over all sessions of M=3.74 (SD=3.66). One of the main reasons for 

her dissatisfaction and frustration were technical problems, especially in the first BCI sessions. Further sources 

of dissatisfaction were bad or not good control due to possibly not sufficient electrode gel or bad cap placement, 

tiredness/bad concentration and loss of control due to drying electrode gel or shifting of cap after 2-3 hours of 

painting. Dissatisfaction also occurred when she could not produce the painting that she desired. The end-user 

indicated the subjective level of BCI control in 33.33% of all sessions being zero, in 26.92% low, in 25.64% 

medium and in 14.10% high. Setup of BCI equipment took around 20-40 min, while setup and operation of the 

application took around another 10-20 min, as reported by the family. 

 

 
 
Figure 1. VAS Satisfaction: Satisfaction was rated on a visual analogue  scale from 0 (not satisfied at all) to 10 (very 

satisfied).Note that ratings in session 2 and 7are missing. 

4. Discussion 

The results of the study demonstrate independent home-use of BCI. However, BCI usage is challenged by 

technical problems and varying BCI control. It cannot be excluded that control could have been better and less 

varying, if calibration would have been performed regularly. The moderate to high ratings in satisfaction and 

enjoyment and the number of sessions conducted, notwithstanding the occurring problems with the BCI, indicate 

that in this case the BCI well matched the patient’s needs. For the end-user, Brain Painting has become an 

important part of her life (personal statement). Further steps to increase effectiveness, efficiency and satisfaction 

are planned, comprising inclusion of face stimuli in the Brain Painting matrix [Kaufmann et al., in press] and to 

integrate the optimized computer interface for autocalibration [Kaufmann et al., 2012]. 
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Abstract. Two different EEG-based BCI approaches to communicate with minimally conscious patients were 

applied. In an auditory P300 paradigm, tone streams composed of short beep tones with infrequently appearing 

deviant tones at random positions were used as stimuli. In a mental imagery paradigm, the patients were 

instructed to perform imagined sports, navigation and feet movements. In the P300 paradigm, averaged results 

were significant in all four patients, but not on single-trial basis. Classification accuracies above chance were 

reached by three of the patients performing mental imagery tasks indicating the feasibility to use this paradigm to 

communicate with minimally conscious patients. 

Keywords: EEG, BCI, auditory P300, mental imagery 
 

1. Introduction 

Brain-computer interfaces (BCIs) based on electroencephalography (EEG) can provide severely motor-

disabled people with a new output channel for communication [Birbaumer et al., 1999]. To provide a simple and 

robust means of communication, the BCI should reliably detect one specific brain pattern, such as P300 

potentials or a task specific event-related (de)synchronization (ERD(S)) pattern. 

2. Material and Methods 

Two different approaches to communicate with patients were applied, namely detecting P300 potentials in 

an auditory P300 paradigm, and detecting ERD(S) patterns due to mental imagery tasks. Four male patients in 

minimally conscious state aged between 21 and 65 years participated in this study at Albert Schweitzer Clinic in 

Graz. Informed consent was obtained from the patients’ legal representatives. This study was approved by the 

Ethics Committee of the Medical University of Graz. 

Monopolar EEG was recorded at 32 positions with a sampling rate of 512 Hz. The patients were either 

sitting in a wheelchair or lying in bed with their upper part of the body slightly elevated. Each patient 

participated in two P300 sessions and in three to four mental imagery sessions. 

2.1. Auditory P300 

Two intermixed tone streams composed of short beep tones with infrequently appearing deviant tones at 

random positions were used as stimuli. The beep tones were arranged according to the tone stream pattern 

LHL_LHL… (‘L’ = low tone, ‘H’ = high tone, ‘_’ = silent gap). The inter-stimulus interval (ISI) was 300 ms in 

the low tone stream (LTS) and 600 ms in the high tone stream (HTS). The low (deviant) tones had a frequency 

of 396 Hz (297 Hz), the high (deviant) tones a frequency of 1900 Hz (2640 Hz). By intentionally shifting 

attention from one stream to the other the P300 response elicited by the deviant tones in the attended stream 

should be modulated [Müller-Putz et al., 2012]. 

A stepwise linear discriminant analysis (SWLDA) classifier together with 10x10 cross-validation was used 

to infer which tone stream was attended. Moreover, all data segments of one participant were averaged according 

to stimulus type and target stream and significant differences (α = 5 %, length L ≥ 30 ms) were estimated by 

bootstrapping using 1000 bootstrap samples. 

2.2. Mental Imagery 

The patients were instructed to perform different mental imagery tasks which should induce distinctive 

ERD(S) patterns [Goldfine et al., 2011]. In the sports task (S), they should imagine performing one sport of their 

choice. In the navigation task (N), they should imagine navigating through their house and looking around in 

each room. In the feet task (F), they should repeatedly attempt to perform a feet dorsiflexion. 

A linear discriminant analysis (LDA) classifier based on logarithmic band power features calculated for 

multiple frequency bands (ϑ: 4-7 Hz; α: 7–13 Hz; βL: 13-19 Hz; βM: 19-25 Hz; βU: 25-30 Hz) was used. A nested 

blockwise cross-validation (10x10 inner fold; leave-one-out outer fold) was applied to estimate the classification 

accuracy of each task versus reference. 
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3. Results 

In Table 1, all significant results of the P300 and the mental imagery paradigm together with the mean Coma 

Recovery Scale-Revised (CRS-r) scores of the patients across all sessions are summarized. In the P300 

paradigm, all single-trial classification results were below chance level (not reported). On average, significant 

positive (P) or negative (N) deflections within one stream (deviant vs. standard tones) or across streams (target 

vs. non-target deviants) could be detected in all patients. Only significant results in any of the channels Fz, Cz 

and Pz are reported. In the mental imagery paradigm, classification accuracies above chance (α = 1 %) were 

reached by three patients in the F or S task. Only the Laplacian channel derivation yielding the highest accuracy 

is reported. 

Table 1. Summary of all significant results of the auditory P300 and the mental imagery paradigm. 

Patient 

ID 

Mean 

CRS-r 

Auditory P300 Mental Imagery 

Session Condition Target Deflection Session Task Accuracy Channel Band 

PA01 18 2 within LTS P390 1 F 70 % Cz α 

  2 across LTS P300 1 S 68 % C2 α 

      2 S 76 % C2 α 

PA02 14 1 across LTS P680 1 F 69 % FC1 ϑ 

      1 S 75 % Fz ϑ 

      3 F 71 % FC1 ϑ 

PA03 13 2 within LTS N210      

  2 within LTS P810      

PA04 9 1 across HTS N730 1 S 69 % Fz α 

  2 within LTS N760 2 S 68 % CPz βm 

  2 within HTS N800      

4. Discussion 

The single-trial classification results of the auditory P300 paradigm are not sufficient for communication. To 

improve the paradigm, different stimuli (e.g., words) that may be easier to distinguish or elicit a stronger P300 

response might be beneficial in future. Nevertheless, since significant deflections were found on average, this 

paradigm might still be useful to support clinical assessment of patients by averaging data over many trials. 

Some of the P300 deflections showed delayed latencies, as also reported previously [Perrin et al., 2006]. The 

negative deflections might indicate (possibly delayed) mismatch negativities instead of P300 potentials. 

Using mental imagery, on the other hand, seems to be a promising approach for some patients to 

communicate their intent using EEG. Classification accuracies above chance were reached in the F or S but not 

in the N task. This is in line with previous findings indicating that, among other tasks, motor imagery rather than 

spatial navigation most frequently results in better classification performance [Friedrich et al., 2012]. 
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Abstract. To study the prevalence of the N100, P200, and P300 event related potentials (ERP) in patients with 

chronic and severe disorders of consciousness, ERPs were recorded in 19 long-term vegetative state and 

minimally conscious state patients during an auditory oddball paradigm in a passive – listen only – and an 

active – count the odds – condition at two time points. Significant ERPs were detected in all patients. N100 was 

significantly more frequent than the P300. No evidence was found for differential activity between the passive 

and the active condition.  

Keywords: EEG, t-cwt, wavelet, P300, disorders of consciousness, vegetative state, minimal conscious state, ERP 
 

1. Introduction 

The event-related potential (ERP) P300 has been linked to the processing of attention-demanding stimuli. 

For example, in categorization tasks its amplitude is larger for stimuli belonging to the attended category as 

compared to non-matching stimuli. It is thus, thought to indicate the intactness of a wide cortical network 

ranging from prefrontal to temporal-parietal areas [Polich, 2007].  

The vegetative state (VS) is a severe disorder of consciousness (DOC), presumably characterized by a 

complete loss of conscious experience despite preserved wakefulness. It is sometimes followed by a minimally 

conscious state (MCS), in which weak and inconsistent signs of awareness can be detected. In a previous study, 

up to 32% of DOC patients showed a P300 in an auditory oddball paradigm [Kotchoubey et al., 2005]. Here we 

report on the distribution of the N100, P200 and P300 ERPs recorded during an auditory oddball paradigm in 17 

DOC patients and nine healthy controls in two conditions. A passive ("listen only") condition served as a 

baseline to which responses during an active condition ("count the odd tones") were compared. We hypothesized 

that healthy subjects would show an increased P300 in the active condition, and we were interested in whether 

DOC patients would show a similar increase. Such an increase could be an indicator of preserved command 

following and thus, consciousness and cognition.  

2. Material and Methods 

Participants 19 patients with disorders of consciousness (sex: 11 male, 8 female; age: M = 50, SD = 14.19; 

diagnoses: 5 MCS, 14 VS; years since onset: M = 6.18, SD = 3.17; aetiology: 10 hypoxia, 3 trauma-related, 3 

intra-cerebral haemorrhage, 3 other; hemispheric localization of lesions: 4 left, 2 right, 3 both, 10 none), whose 

legal guardians gave informed consent, and nine healthy subjects participated in the study. Patients’ diagnoses 

were ascertained using the Coma Recovery Scale (CRS-R) immediately before EEG measurement. 

Procedure Subjects listened to an auditory odd-ball paradigm (60 odd and 420 frequent tones) in a passive 

(―listen only‖), and an active (―count the odd tones‖) condition (T1). In 17 patients, the experiment was repeated 

after a minimum interval of 1 week (T2) to compensate for the possibility of fluctuating arousal levels. 

EEG recording and analysis EEG and EOG was recorded (512Hz) from 31 standard 10-20 system 

electrode locations. Offline, the EEG was bandpass (0.01 – 70Hz, 12dB) and notch filtered, epoched into 850ms 

long intervals, and aligned to the 100ms pre-stimulus baseline. Ocular artefacts were corrected using a regression 

procedure and trials with absolute voltages in excess of 100 µV excluded. Only datasets with at least 20 trials in 

each condition (n = 17) were considered for the remaining analyses and re-referenced to linked mastoids. ERPs 

were detected using the t-CWT procedure [see abstract Real et al., Bostanov, 2003; Real et al., 2012]. ERPs were 

defined as follows, N100: negative peak between 50 and 200ms at Fz or Cz, P200: positive peak between 100 

and 250ms at Fz or Cz, P300: positive peak between 250 and 500 ms post stimulus onset at Fz, Cz or Pz. All 

available trials were used for N100 and P200 detection, whereas all odd tone and the immediately preceding 

frequent tone trials were used for P300 analysis. 

3. Results 

Healthy participants All healthy subjects showed significant activation in the N100, P200 and P300 ranges 

in all conditions, with the exception of one subject in which no P200 could be detected in the active condition. 

Seven of nine healthy subjects showed a significantly larger P300 in the active than passive condition. 
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Patient participants Reliable ERPs were detected in all 17 patients entering the analysis. A P300 was found 

in two VS, in one MCS and in one patient who was diagnosed as MCS at T1 but VS at T2. No significant 

difference between the P300 in the active and passive conditions was found in any patient. 

The N100 was found more often than the later P300 in both experimental conditions (binomial tests, all p < 

.05) at T1 but not at T2. No difference was found for the P200. 

 
Table 1 Frequency of ERPs by experimental condition and time points in patients 

 T1 T2 

ERP passive active passive active 

N100 12/13 10/10 5/5 9/10 

P200 6/13 6/10 4/5 3/10 

P300 2/13 1/10 1/5 3/10 

 

Discussion 

Our results replicate previous findings of a comparatively higher prevalence of the N100 in comparison to 

the P300, and an overall rare occurrence of a P300 (4/17 = 24%) in DOC patients [Kotchoubey et al., 2005]. In 

contrast to healthy subjects, in DOC patients the P300 of the active condition was not enhanced compared with 

the passive condition. This may indicate that patients did not perform the task for multiple reasons, like lack of 

language understanding, insufficient attention span, lack of motivation or cognitive abilities, or indeed disrupted 

conscious awareness. Future analyses, based on an extended sample, will also test whether the time since the 

event predicts absence/presence of the P300 ERP.  
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Abstract. Although Brain Computer Interfaces have been proposed as communication devices for those with 

severest motor impairment, research is rarely performed with this target population, i.e. people in the locked-in 

state. Usually, developments are tested in healthy samples and assumptions are made regarding generalization of 

results to patient samples. Herein we report a case study with a user in the locked-in state. Different paradigms 

on different modalities were applied and far best performance was achieved in the tactile modality, usually 

regarded as inferior to the visual and auditory modality. Although she displayed distinct ERPs in a visual 

oddball, the visual channel could not be utilized for communication – even a so-called gaze independent speller 

failed. Our results thus highly encourage BCI development in the frame of a user-centered approach. 

Generalization from healthy participant data to patient samples should be treated with great caution and cannot 

replace actual end-user testings. BCIs that may be regarded less effective or less practical, may be the only 

possibility for a specific end-user. Adjusting BCI development specifically to end-users’ needs and requirements 

is mandatory and will thereby potentially allow for a transfer of BCI technology out of the lab into end-users’ 

daily lifes. 

Keywords: brain computer interface (BCI), event related potentials (ERP), end-users, user-centered design, visual, auditory, tactile  
 

1. Introduction 

Brain Computer Interface (BCI) developments are often tested in healthy samples and generalization to 

functionality in those with severest motor impairment is often assumed yet less often confirmed. It is well known 

that performance deteriorates when bringing this technology to potential end-users and that some users even lack 

sufficient control (BCI inefficiency). Retained abilities may greatly vary across potential end-users. Thus, there 

is an extensive need for testing BCI developments in patient samples. Their needs and requirements may well 

differ from those of healthy participants, care-givers or family members [Zickler et al., 2011]. Herein we present 

data from a case study which emphasizes the need of a user-centered design in BCI development. 

2. Material and Methods 

2.1. The case 

The herein presented potential BCI end-user is a 46 year old woman who has been in the locked-in state for 

7 years after a brainstem stroke in the pons. She has no reliable muscle control other than vertical eye 

movements. During the last year, control of the left thumb rehabilitated but is not yet fully reliable. She 

communicates by means of binary partner scanning (yes = eye lift; no = looking down). It is assumed that the 

lesion in the brain stem barely affected her cortical abilities (as confirmed by CT) and she was fully attentive 

during all sessions. 

2.2. Experimental Design 

Data was collected on five consecutive days and different setups tested for finding a reliable communication 

channel: (1) Oddballs in 3 modalities, i.e. visual (count Einstein face, ignore red squares), auditory (count high 

pitched tone, ignore low pitched tone) and tactile (count stimulus on one location, ignore the other; locations 

were switched between runs to account for sensitivity differences). All oddballs shared the same parameters 

except for the modality and stimulus duration (two stimuli, target to non-targets ratio: 1:5, 1000ms inter-stimulus 

interval; 2 runs per modality). (2) Matrix based visual ERP-BCI paradigms in different settings (6x6, 4x4; 

different sizes on screen) (3) A so-called gaze-independent visual ERP-BCI paradigm with characters displayed 

consecutively in the middle of the screen [Acqualagna et al., 2010]. Only 6 characters were used in this case to 

align the paradigm with the parameters (incl. timing) of the visual oddball. (4) Tactile paradigm in which letters 

were grouped into four categories that could be selected by focusing attention on one of four tactile stimulation 

units placed on the left arm (which was sensory-sensitive in her case). This paradigm was specifically designed 

to copy her partner scanning approach, thus allowing for communication in a well-known, long established 

setting.  
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EEG was obtained from 15 passive Ag/AgCl electrodes with mastoid ground and reference and sampled at 

512Hz. All paradigms were implemented in Python 2.7 and connected to BCI2000 via UDP. 

3. Results 

Fig. 1 displays the average ERP at electrode Cz for each modality evoked in two runs of an oddball 

paradigm. To control for reliability of elicited ERPs we set up a classifier on one run and tested it on the second 

run (and vice versa). Tactile modality displayed most reliable ERPs that resulted in an average offline 

classification accuracy of M=100%, i.e. all trials were correctly identified (each run comprised 3 trials with 30 

odds per trial). Visual modality was moderately accurate (M=66.5%), whereas auditory ERPs resulted in worst 

performance (M=33.0%). We thus tested only visual and tactile modalities with BCI systems.   

(1) Visual BCI: Although she reported to fully perceive the entire screen, no matrix based BCI communication 

could be established. Interestingly, also the gaze-independent central speller paradigm did not yield positive 

results.  From none of the acquired data sets, reliable classifier weights could be generated. 

(2) Tactile BCI: Four tactile stimuli were the target once in a tactile BCI calibration session. Offline performance 

was estimated 100% with 8 stimulation sequences. Unfortunately, this system could not be tested online as 

the user had to cancel the last testing session due to strain. Online results are thus pending.  

  
Figure 1: Average ERP at electrode Cz 

from the oddball sessions in three different 

modalities 
 

 

 

 

 

 

4. Discussion 

Results of our case study manifest the importance of testing BCI systems in the target population and 

developing systems specifically adjusted to their needs. To our experience, only such user-centered BCI design 

is able to account for the great variance of users’ retained abilities. From the literature we expected visual (gaze-

independent central speller) and auditory modalities to work with the locked-in patient. Although she was not 

able to fixate, she reported to fully perceive the entire screen. Compared to the visual oddball, in which a salient 

white face was used as rare stimulus, it may be much more difficult to identify a target character among others of 

same size and color if the user is not able to fixate the stimuli. This result may question the gaze-independence of 

gaze-independent spellers. From the auditory oddball results we assume that no auditory BCI would work in her 

case, yet no auditory BCI data were recorded for systematic investigation. Importantly, from the literature we 

expected tactile stimulation inferior over others [Aloise et al., 2007], as the only study reporting similarity of 

P300 amplitudes across modalities placed an odd stimulus on the sensitive belly while all other stimuli were on 

less sensitive locations [Brouwer et al., 2010]. In our case, tactile stimulation evoked large and reliable ERPs that 

could accurately be classified. Online results are pending but offline classification accuracy for discrimination 

between four tactile stimulation units is promising.  

Consequently, we highly encourage to not exclude approaches that may not be feasible for effective 

communication from a healthy user’s perspective and to test BCI technology in end-user samples.  
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Abstract. The feasibility of using a time-coded motor imagery-based brain-computer interface (BCI) for the 

control of an elbow and hand neuroprosthesis was investigated in a study with nine healthy subjects and one 

person with spinal cord injury (SCI). Context-based BCI commands, which resulted from motor imageries with 

different activation lengths, were used to open/close the hand or to flex/extend the elbow. All participants had to 

follow a predefined activation sequence simulating a self-feeding procedure. On average 5.5 out of 10 sequences 

were successfully completed by the study participants. The SCI end-user was among the best subjects. The 

system was found to be feasible for persons with severely limited muscular functions by providing a control 

method purely based on mental activity. 

Keywords: Electroencephalogram (EEG), Brain-Computer Interface (BCI), Functional Electrical Stimulation (FES) 
 

1. Introduction 

People with spinal cord injury (SCI) suffer from restricted limb functions to different degrees depending on 

the level of injury. Individuals with an injury above the 5
th

 cervical vertebrae can greatly benefit from an upper 

extremity neuroprosthesis which can restore elbow extension/flexion and grasping function to a certain extent. 

Self operation of such a neuroprosthesis requires some kind of control signal. This signal can be derived from 

muscles not affected by the spinal cord lesion, e.g., shoulder, mouth, or cheek movements. However, in severely 

disabled people with SCI not enough muscles are under voluntary control. Therefore, signals derived from brain 

activity may be an alternative for such a neuroprosthesis control in this user population. One popular method is 

to measure electrical activity on the scalp of the user with electroencephalography (EEG). This activity can be 

classified and translated into commands by a brain-computer interface (BCI) [Wolpaw et al., 2002] which can be 

used to control neuroprostheses. The aim of this study was to investigate if time-coded motor imagery (MI) 

[Müller-Putz et al., 2010], generated by commands with different time lengths, can be used to either control the 

grasping of the hand or to move the arm up or down continuously. The time-coded BCI can be more difficult to 

master but has the benefits of needing only one changeable pattern for controlling more than one action and the 

effortless use of rest for a non-control state. 

2. Material and Methods 

Nine healthy subjects with BCI experience took part in the study (M=24.9, SD=1.7 years old). Additionally, 

one end-user participated: a 30 year old male, diagnosed with an incomplete/complete SCI at the level of C4/C5. 

The patient had no voluntary hand and restricted elbow function. MI BCI training (MI versus rest) was carried 

out to record data for preparing an LDA classifier. All healthy subjects used right hand MI; the end-user had to 

use feet MI because no reliable pattern was found for the right hand. Using the classifier online, subjects had to 

complete ten sequences (open hand→close hand→move arm up→open hand→return to starting position) with a 

time limit of 180 s. Intermitting break sequences of 60 s were used to count false positives (FPs). Muscles of the 

arm and hand were controlled by functional electrical stimulation (FES) with support from a hybrid orthosis 

(consisting of more than one component), which could read and control the angle of the elbow and further 

provided stabilization [Rohm et al., 2011]. Healthy users controlled the arm of a proxy-subject who was 

equipped with the hybrid FES orthosis to prevent undesired effects on the brain signals from sensory feedback 

due to FES. Users were provided with video feedback showing the controlled arm from a perspective above the 

shoulder. The SCI end-user underwent the same procedure without a proxy-subject for direct comparison of the 

results obtained in healthy subjects. In addition, he performed the experiment a second time with the hybrid FES 

orthosis mounted on his own arm. In his case, effects on the brain signals from sensory feedback could be 

neglected due to the absence of sensory function in his distal arm. A scheme of the setup can be seen in Fig. 1A. 

An abstract feedback, which was a schematic visualization of the arm, displayed the current angle of the arm and 

the state of the grasp. Fig. 1B shows all possible states and according effects of short and long MI commands. A 

short command was detected between 0.75 and 1.25 s; a longer detection was used to move the arm as long as 

the detection was active or until an end position was reached. A continuously filling bargraph informed the users 

about the current length of the detected command. 
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A B  
Figure 1. A demonstrates the setup of the experiment. Two subjects were only used with healthy BCI subjects in order to 

avoid sensory feedback from FES stimulation. B shows the eight states the arm could reach and the context-based 

commands executed depending on the length of the MI command.  

3. Results 

All subjects were able to generate more commands during the experimental than during break sequences 

(Tab. 1). Five participants could successfully complete more than half of the sequences, including the end-user 

who had the second best true positive (TP) rate (the percentage of correct context-based commands) when using 

the orthosis. The average time used to finish all ten sequences was 22.6 min, the maximum being 30 min plus 

some overtime to finish final commands. 

Table 1. TP rate, FP/min, commands/min, length of  sequences, and number of successfully completed sequences for all 

healthy subjects and for two different sessions with and without the equipped orthosis on the end-user. 

 TP [%] FP/min Commands/min Length [min] Successful [%] 

S1 45.9 3.2 8.3 26.2 30 

S2 77.7 8.2 9.7 11.5 100 

S3 49.9 1.5 6.7 28.9 20 

S4 68.1 1.1 8.7 18.7 90 

S5 45.8 7.4 8.4 26.9 30 

S6 67.5 7.6 9.0 18.1 90 

S7 50.6 5.7 7.7 30.4 0 

S8 62.3 3.5 7.5 24.3 60 

S9 54.0 4.3 6.5 29.1 20 

End-user, - orthosis 66.4 7.3 10.5 14.5 90 

End-user,+ orthosis 73.7 2.0 6.9 19.9 80 

Average 60.2+/-11.4 4.7+/-2.6 8.2+/-1.3 22.6+/-6.4 55.5+/-36.2 

4. Discussion 

The TP rates for all subjects were relatively low, because for most of the subjects it was difficult to perform 

MI reliably for different time lengths. Some had difficulties with long MI while performing better for short MI 

and vice versa. Fortunately, the end-user could control the neuroprosthesis very well. The presented setup 

showed that signals derived from the brain may be an interesting alternative to systems based on EMG or 

muscular functions for continuous control of elbow and hand movements in very high lesioned spinal cord 

injured people.  
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Abstract. Previously we have shown that motor-disabled end users were able to drive a telepresence robot using 

a Brain-Computer Interface (BCI). However, to facilitate the interaction part of telepresence, users must be able 

to voluntarily and reliably stop the robot at any moment, not just drive from point to point. We propose to exploit 

the user’s residual muscular activity to provide a fast and reliable EMG channel, which can toggle start/stop the 

telepresence robot. Our preliminary results show that not only does this hybrid approach increase accuracy, but it 

also helps to reduce workload and was the preferred control paradigm of all 4 participants in this study. 

Keywords: Hybrid BCI, Telepresence, Mobile Robots, Motor Imagery, Shared Control 
 

1. Introduction 

We have already shown how a 2-class BCI can enable motor-disabled end users to successfully drive a 

telepresence robot in a complex environment [Carlson et al., 2012]. To date, these users have relied upon an 

assistant to start and stop the BCI feedback that allows them to drive the robot. Furthermore, they were only able 

to stop the robot when the shared control system determined that they wished to dock to a particular target. 

However, it is an important element of any telepresence system to be able to reliably start and stop the robot at 

any point, regardless of the interface [Tsui et al., 2011]. As a solution, we propose to exploit the hybrid BCI 

(hBCI) principle, which has already been shown to work well in the Braintree text entry prototype, whereby a 

complementary EMG channel is added to the EEG-based BCI [Perdikis et al., 2012].  

2. Material and Methods 

2.1. The Telepresence Platform 

Our telepresence robot is driven using a 2-class asynchronous sensory-motor rhythm-based BCI. The robotic 

platform and the EEG-based BCI system (including pre-processing, feature extraction and classification 

methods) are described in detail in [Tonin et al., 2011]. The default behaviour of the robot is to move forward 

and avoid obstacles where necessary. The user can then voluntarily deliver one of the two classes (turn left or 

turn right), or decide not to issue a turning command, which yields an implicit third class known as intentional 

non-control, where the robot continues with its default behaviour. A shared control system takes the 

environmental context into account when interpreting these commands [Tonin et al., 2011].  

2.2. The Control Paradigms 

We compare the existing BCI control paradigm with the new hybrid paradigm, which adds an EMG channel 

to the system. In the original paradigm, once the shared control system has automatically stopped the robot at an 

identified “target” location, to remain stationary, users must (intentionally) not deliver any commands, until they 

are ready to move on. This can be extremely demanding, especially if the user wishes to interact with someone 

(telepresence) whilst the robot is stationary. Conversely, in the new hBCI paradigm (see Fig. 1(a)), an additional 

bipolar EMG channel acts as an asynchronous toggle switch, which can start or stop the robot’s motion and 

simultaneously (un)-pause the delivery of BCI commands. Motor-disabled end users often have some residual 

voluntary EMG activity that can be exploited for this purpose [Perdikis et al., 2012]. 

2.3. The Experiment Protocol 

We perform a feasibility study with 4 healthy males aged 28±6 years. They were all able to reach >90% 

accuracy in delivering left and right commands in a cued protocol, prior to undertaking the experiment with the 

robot. The task involved driving the robot along 8 trajectories, each ~5m in length. The subject was audibly cued 

by the experimenter to pause and resume driving twice at predefined locations along each path. We compare the 

original BCI control paradigm (condition INC)—where the shared controller stops the robot and any BCI 

command resumes the motion—with the new hBCI paradigm (condition Hybrid), for both short (10s) and long 

(30s) pauses. The left and right turns and pauses were interleaved and counterbalanced within subjects, whereas 

the control paradigms were block-counterbalanced between subjects.  
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3. Results 

 
Figure 1. (a) The protocol: BCI (INC condition) vs hBCI (Hybrid condition). (b) The error in the duration of the pause for 

different length trials using both control paradigms, for each subject, s1-s4. Positive values indicate that they 

remained stationary too long, whereas negative values mean that they moved on too soon. (c) The task load index 

reported by all 4 subjects, higher values mean higher perceived workload. 

Although we do not yet have enough participants to give any statistically significant results, this pilot study 

does suggest some noteworthy trends. As can be seen in Fig. 1(b), it was much more difficult for participants to 

make the robot remain stationary for a precise period of time using intentional non-control, compared with using 

the hybrid BCI. This is especially the case for long trials, where participants were instructed to stop for a period 

of 30 seconds, but on average could only remain stationary for around 20 seconds, before they accidentally 

delivered a command. Furthermore, the variance of the INC trials is greater than that of the hybrid trials, which 

again highlights the difficulty of precise timing for BCI command delivery [Carlson et al., 2012]. In the hybrid 

condition, for one of the long pause trials, subject s2 relaxed and accidentally flexed his arm, which resulted in a 

false positive in the EMG and contributed to the larger negative mean error. Importantly, the subjects report a 

reduction in the perceived task workload, when using the hybrid approach, as can be seen in Fig. 1(c). Moreover, 

all 4 of them reported that they preferred to use the hybrid version for stopping, rather than relying upon the 

shared control in combination with intentional non-control. 

4. Discussion 

This pilot study suggests that not only does the hybrid approach provide a reliable and precise stopping 

mechanism, but that users are able to successfully complete the task with a lower perceived workload. These 

results may be transferred to representative end-users, who are able to produce reliable EMG activity (fatigue 

should be negligible given the sporadic nature of stop commands). The new hybrid control paradigm empowers 

users to start and stop the BCI controller, without having to rely upon an assistant. This, combined with the 

lower overall workload, is likely to enable BCI users to work independently for prolonged periods of time.  
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Abstract. Brain-Computer Interfaces (BCI) for communication purposes are usually controlled via a P300 

paradigm. There, a high number of different classes is presented to the user, thus enhancing the information 

transfer rate in comparison to e.g. motor imagery based BCIs. During the last years several P300 speller, based 

on visual stimulation, were developed. For people with visual impairments another stimulation strategy needs to 

be used. In this publication a tactile P300 based BCI was tested on nine healthy users, reaching an average 

control accuracy of 68.1 % after the first session. Three of the nine users performed additional sessions to 

evaluate the effect of training on the accuracy rate. 

Keywords: EEG, P300, tactile stimulation, BCI, people with impairments 
 

Introduction 

The P300 approach is one of the most popular BCI control strategies currently used, especially for spelling 

devices. Guger et al. (Guger et al, 2009) investigated how many people are able to control a visual P300 based 

BCI. After five minutes of training 89% of 81 persons were able to spell with an accuracy rate between 80% and 

100%, when using a row-column flasher (chance level was 1/50). Ortner et al (Ortner et al., 2011) investigated 

the control accuracy of a visual P300 speller for people with motor impairments, showing that one user suffering 

from locked-in syndrome, reached an accuracy of 40% (chance level: 1/50). But the P300 can also be elicited via 

auditory or tactile stimulation. This offers the possibility to control a P300 speller to people suffering from visual 

impairments. Also, a tactile P300 approach could be used to investigate the consciousness of nonresponsive 

persons. Brouwer et al. (Brouwer et al., 2010) investigated the feasibility of a tactile P300 speller with two, four 

or six vibrotactile elements placed around the user’s waist. They reached a mean bitrate of 3.71 bits per minute 

in their best setup. In the work presented here eight elements were placed on the user’s fingers (see Figure 1). 

Material and Methods 

EEG was measured on eight positions of the cortex (Fz, Fc1, FC2, C3, CZ, C4, CP1, CP2) and bandpass 

filtered between 0.1Hz and 30 Hz. The vibrotactile elements (tactors, produced of vibrating elements without 

specific control of the stimulation frequency) were fixed on the little finger, ring finger, middle finger and index 

finger of the left and right hand. The tactors were stimulated in randomized order. The stimulation time was set 

to 100 ms and the pause between the stimulations was 150 ms. As in a visual P300 speller the subject’s task was 

to attend to one of the tactors and count each time this tactor vibrated. Each vibration of the target tactor elicited 

a P300 wave in the EEG. The classification was done using a multi-class linear discriminant analysis classifier. 

For each session a training run was used for setting up the classifier and a second testrun for testing the control 

accuracy was performed. A sequence of stimulations comprised 30 repetitions, the user had to attend during a 

sequence to the selected tactor, after the sequence was finished the selected tactor was visualized on the 

computer screen. For each run eight sequences were performed. For masking the acoustic noise produced by the 

tactors (that could also elicit P300 waves) the experimenter played brown noise via two earplugs to the user. 

After the testrun, the online classification accuracy was calculated. Three users (Subject 5, 6 and 9) performed 

additional sessions to see if their performance increases due to training.  

 

Results 
Results are summarized in Table 1. The mean accuracy was 68.1% but the performance of single subjects 

varied between 25% and 100%. The last row shows the accuracy of the three people who underwent additional 

training, the number of additional sessions is shown in parenthesis. S5 reached again 62.5% for the second 

session and finally 100% after the third session. The results of S6 in the additional sessions were: 62.5%, 87.5%, 

87.5% 100%. 
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Figure 1. Left: Eight tactors (blue) used for stimulation. The g.STIMbox is used to control the single tactors and turn them 

on and off. Right: Setup of the experiment. Four tactors are placed on the fingers of the left hand, the other four 

are placed on the fingers of the right hand. For electrical noise suppression in the EEG signal, the user is 

connected to ground (yellow stripe). 

Table 1. Results of the nine users 

Subject ID 1 2 3 4 5 6 7 8 9 Mean STD 

Accuracy after one session 

in % 
25 100 100 25 62.5 50 62.5 100 87.5 68.1 30.7 

Accuracy  after additional 

sessions in %  (number of 

additional sessions) 

- - - - 100 (3) 100 (5) - - 0(10) 66.70 57.70 

Discussion 

The overall control accuracy (68.1%) of the device was worse than in the work by Guger et al., (Guger et al., 

2009). The device though is not intended to compete against visual P300 speller, but rather to be an alternative. 

Furthermore two of the three subjects who did additional training reached 100% accuracy after 3 and 5 session. 

For one of them (subjects 9) the accuracy decreased with every session, until he reached 0%. We suspect that 

this was due to a lack of motivation. Also the number of classes is lower compared to a visual P300-speller 

where one can use a bigger matrix of single characters. Some users reported that it was hard for them to 

discriminate neighboring fingers, but the users doing more sessions also reported that it got easier after some 

training.   
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Abstract. In this paper, we present a motor imagery based brain-computer interface speller that combines motor 

imagery based 2D cursor control with “Hex-o-spell” paradigm. The experimental results showed that the average 

spelling speed is 11.96 characters per minute and its average information transfer rate is 54.48 bits per minute. 
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1. Introduction 

Motor imagery based BCI speller generally can not use full size virtual keyboard on the screen due to their 

limited commands. Thus motor imagery based speller always work with the special designed paradigm. The 

Berlin BCI research group has proposed a excellent speller paradigm, called „Hex-o-Spell‟ [Blankertz et al., 

2006], in which the subject can spell a letter in two-step. This system is based on two-class motor imagery BCI 

and it‟s speed is between 4.6 and 7.6 characters per minute (CPM) for two subjects. Comparing spelling 

performance with ERP or SSVEP based speller,  the speed of „Hex-o-Spell „ speller  is not comparable. In this 

paper, we present a novel BCI speller, which use BCI actuated 2D cursor to spell in „Hex-o-Spell‟ paradigm. 

Five subjects achieve good performance in online experiments.  

2. Material and Methods 

2.1. 2D control 

In our previous study [Xia et al., 2012], we presented a three-class  (left hand, right hand and feet) motor 

imagery based BCI for 2D cursor control. The output probability P1, P2, P3, predicting probabilities of Support 

Vector Machine (SVM)  classifier, are mapped to three vectors, as shown in Fig. 1(a). P1 is the probability of 

left hand imagery , P2 and P3 are the probabilities of right hand and foot imagery. The angle between two 

vectors is 120 degree and the value of vector is equal to the value of output probability. In order to move the 

cursor to a target, the subject should combine two motor imagery tasks simultaneous to generate a speed vector 

to drive the cursor to the target instead of considering horizontal and vertical movement. 

2.2. Hex-o-Spell paradigm 

We adopted a similar „Hex-o-Spell‟ paradigm in [Blankertz et al., 2006], which consists of two-layer 

structure. Each layer includes six blocks. In the first layer, there are 5 letters or symbol and a blue circle in each 

block (Fig. 1 b).  Only a letter/symbol and a blue circle in each block at second layer (Fig.1 c). There are 30 

symbol in this paradigm ( 26 letters and four special symbols: comma, period, space and delete). A sample of 

spelling is shown in Fig.1(b,c). In the initial state, the cursor is at the center of the hexagon. In order to spell „L‟, 

the user will move the cursor to choose the block with „L‟.  When the blue circle of target block is hit,  the 

paradigm will extend to second layer. At the same time, the cursor will be moved back to the center of the 

hexagon. Then the user will move the cursor to hit the blue circle of target  block with „L‟ and the  procedure is  

 
                                       (a)                                          (b)                                             (c) 

Figure 1. Speller  paradigm (a).three-class MI based 2D control. (b) First layer (c). Second layer 

finished. 
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2.2. Experiment  

The EEG signals are recorded with a 16 channel g.USBamp system using band-pass filtered between 5 and 

30 Hz and sampled at 256 Hz. Electrodes are placed according to the international 10-20 system. Thirteen 

channels in motor cortex area were selected (FC3 FCz FC4 C5 C3 C1 Cz C2 C4 C6 CP3 CPz CP4), the ground 

and reference electrodes were fixed on Fz and the right earlobe respectively.   

In our previous study, we recruited 10 naïve subjects for motor imagery based 2D control experiment [Xia 

et al., 2012]. Only six subjects finished the 2D control experiment and five of them are invited to attend current 

study  (4 males; 1 female; all right handed; age 22-26 years; all got payments) . 

In online spelling experiment, each subject is asked to spell English word in 3 runs (Run1 

WOMEN_DESK_WATER_HAND_MEMORY; Run2 ZONE_BABY_FACE_TAXI_JUNE; Run3 QUICK 

_VIDEO_GOLF_HOUR_PENCIL). Subject repeated the experiment 3 times.  We set the no error protocol in 

this experiment that means subject should correct spelling mistake.  

Table 1. Average Accuracy , CPM, ITR and Times 

Subject             Accuracy(%)              CPM            ITR(bits)      D1(s)      D2(s)       D3(s)       D4(s)      D5(s)   D6(s) 

S1                      92.04                        9.82            36.71            1.78        5.17         4.32         2. 54        2.02      3.54 

S2                     98.48                         14.87          72.33            1.55        2.33         2.20         2.49        1.56      3.24 

S3                     95.73                         11.65          49.70            1.65        3.11         3.24         3.22        1.80      3.53 

S4                     95.39                         8.84            37.68            2.91        3.78         4.42         3.52        1.90      4.91 

S5                     98.05                         14.64          70.96            1.40        2.33         2.51         2.86        1.45      2.56 

Mean                95.94                          11.96          53.48           1.86        3.34         3.33          2.93       1.75      3.56 

3. Results 

To evaluate the performance of the proposed spelling system, we calculated the accuracy, the CPM , 

information transfer rate (ITR) and time of each direction. As shown in Table.1, the spelling accuracies are over 

90% for all subjects. The CPM for three of five subjects is beyond 11. Even the Subject 4 can spell approximate 

9 characters per minute.  The average ITR of all subjects is 53.48.  To move the cursor to target 1, 3, 5, the 

subject only uses one type of motor imagery . To hit the other three targets, the subject combined two type of 

motor imagery simultaneously. As shown in Table 1, the average times of target 1 and 5 are very short. But for 

some subjects,  they can not control foot imagery well to hit the target 3 quickly. 

4. Discussion 

In general, Motor imagery based BCI spellers need special paradigm due to its limited commands. Even 

using well designed paradigm as Hex-o-spell, it can not achieve high speed performance. In this study, we 

combined Hex-o-Spell paradigm with 2d cursor control system to build a high speed speller. In online 

experiment, subjects can spell quickly and precisely. Comparing with other types speller system, such as P300 

and SSVEP based speller[Speier et al., 2011;Hwang et al., 2012],  our results are satisfactory and comparable. 
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Abstract. We propose a novel combination of two tasks to improve classification accuracy in Brain-

Computer Interface (BCI): hybrid BCI using tactile selective attention and motor imagery. Subjects 

performed two different tasks: event-related desynchronization (ERD) using motor imagery, and 

steady-state somatosensory evoked potentials (SSSEP) using tactile selective attention. Subjects 

performed these two tasks individually, and then combined the two tasks simultaneously and 

sequentially in hybrid conditions. Ten healthy subjects participated in these four paradigms on the same 

day and off-line analysis showed that most subjects achieved improvement in classification accuracy in 

the sequential hybrid condition.  

Keywords: Hybrid Brain-Computer Interface, event-related desynchronization (ERD), steady-state 

somatosensory evoked potentials (SSSEP) 

 

1. Introduction 

One of the biggest issues in motor imagery-based Brain-Computer Interface (BCI) technology is 

how to enable BCI-illiterate persons to control several machines with high reliability. Recently, hybrid 

BCI, which combines features acquired simultaneously from two different brain patterns, has been 

reported to facilitate this.  Combining ERD and SSVEP yields better classification accuracy than each 

individual method alone and reduces the BCI-illiteracy. However, these results showed that 

classification accuracies were increased only for SSVEP-dominant subjects and that accuracies even 

decreased in the hybrid condition for ERD-dominant subjects. In addition, patients in the late stages of 

amyotrophic lateral sclerosis (ALS) cannot gaze at the flickering LED consistently when using SSVEP. 

To compensate for these disadvantages, we attempted to adapt SSSEP using tactile selective attention 

in motor imagery. For most subjects, this approach yielded better accuracy than each individual method 

alone, and it may be one solution for patients who cannot use their eyes to control BCI efficiently. 

2. Methods 

Ten healthy subjects (two females among them, 25  2.78) participated in four BCI paradigms 

(ERD, SSSEP, Simultaneous hybrid, Sequential hybrid). Each subject performed these four paradigms 

randomly on the same day to avoid adaptation. Each paradigm consisted of two runs and each run 

collected 25 trials for each class. At the beginning of each trial, subjects focused on the center point of 

a computer screen. After 2 seconds, a left- or right-pointing arrow appeared on the screen and subjects 

imagined their hand moving for 3 seconds in ERD condition. Also, as in the ERD condition, in the 

SSSEP condition, subjects concentrated for 3 seconds on tactile stimulation of the thumb. Stimulation 

frequencies were selected by a screening procedure in order to apply resonance-like frequencies. 

Similar to the previous tasks, in the simultaneous hybrid condition, subjects imagined and concentrated 

simultaneously according to the direction of the arrow. In the sequential hybrid condition, the task 

period was 6 seconds. During the first 3 seconds, subjects concentrated on tactile stimulation, while for 

the last 3 seconds before the stimulations were removed, subjects imagined their hand movement. 64 

EEG electrodes (Biosemi Active Two system) were attached on the scalp in the 10-20 international 

system and EEG signals were collected with 512 Hz sampling rates.  
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3. Results 

For each paradigm, we estimated the BCI classification accuracy using Fisher’s linear discriminant 

analysis (FLDA) after filtering by common spatial pattern (CSP). Five features that most related to 

each class were selected after CSP filtering. Datasets were separated into two groups (training: 70%, 

testing: 30%) and accuracy was calculated. This procedure was repeated 120 times to cross-validate 

performance thereby the mean accuracy from the estimates was adopted as a performance. Figure 1 

depicts the average of the accuracies of all subjects corresponding to time and band power time courses. 

The classification results are tabulated in Table 1. In sequential hybrid condition, only imagination 

period was calculated to compare with ERD condition. ERD and SSSEP datasets were band-pass 

filtered with 8-15 and 16-25Hz, respectively. 

   
Figure 1. Left:classification accuracy over ten subjects corresponding to time.Right:band power change with 

respect to pre-stimulus period of subject 5. Dashed vertical magenta line represents the end point of 

stimulations in the sequential hybrid condition. 

Table 1. Results of the cross-validation procedure.The best condition for each subject is displayed in boldface.  

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean STD 

ERD 62.6 61.8 82.4 55.2 60.4 52.5 53.6 51.6 54.8 57.2 59.2 9.0 

SSSEP 56.7 58.1 52.1 64.5 65.8 66.2 54.6 65.4 54.2 52.1 59.0 5.9 

Simultaneous

hybrid 
58.6 66.3 61.4 56.6 58.8 57.6 63.5 62.9 52.3 58.1 59.6 4.0 

Sequential 

hybrid 
81.1 67.2 62.3 74.9 95.1 65.0 67.1 68.8 60.8 65.8 70.8 10.4 

4. Discussion 

In the simultaneous hybrid condition, no improvement in accuracy was evident that tactile 

stimulation could disturb motor imagination from the subject’s questionnaire. On the other hand, the 

sequential hybrid condition yielded a remarkable improvement in accuracy and this is surprising since 

many of subjects showed around chance level in ERD condition. The reason why accuracies were 

improved in sequential condition is still under investigation. 
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Abstract. Recently several reseachers proposed different P300-based Brain Computer Interfaces which can be 

controlled even with impaired eye movements (covert attention). However, in all the comparative studies, 

authors detected lower accuracy for the covert attention modality with respect to the overt one. This study aims 

to investigate if this decrement correlates with lower stability of the P300 potential evoked during the task. We 

evaluated the latency jitter of the P300 evoked potential with two BCI spellers exploiting overt and covert 

attention. We found that the P300 latency jitter is significantly higher and Written Simbol Rate is significanly 

lower for the covert-attention BCI speller. We conclude that the reduced performance of BCIs based on covert 

attention is only partially explained by the absence of discriminant short-latency Visual Evoked Potentials. 

Keywords: Brain Computer-Interface; P300; Latency jitter; (C)overt attention; Wavelet analysis 
 

1. Introduction 

The Farwell and Donchin’s P300 Speller interface is one of the most widely used BCI paradigm for text writing. 

Recently, some authors showed that the P300 Speller recognition accuracy significantly decreases when the eyes 

movements are impaired [Brunner et al., 2010]. User interfaces specifically designed to be operated in absence 

of eyes movements have been recently reported [Treder et al., 2010; Liu et al., 2010; Aloise et al., 2012]. In all 

the comparative studies, authors have shown a decrease in system performance using interfaces in covert 

attention condition with respect to the overt attention one, and they associated the spelling success with the overt 

tasks mainly on visually evoked potentials (VEPs) measured at occipital and parieto-occipital sites [Treder et al., 

2010, Aloise et al., 2012]. Also, Thompson et al., [2013] demonstrated that accuracy achieved with P300 Speller, 

was strongly correlated with the P300 latency jitter. This study aims to investigate whether the decrease in 

system performance (i) is fully explained by the absence of VEPs, and (ii) correlates with a lower stability of the 

P300 evoked potential elicited  in covert attention condition with respect to overt attention one.  

2. Material and Methods 

Nine healthy female subjects were involved in this study (mean age 27±5). Scalp EEG signals were recorded 

(g.USBamp, gTec, Austria, 256Hz) from 8 positions (Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8, referenced to the 

right earlobe and grounded to the left mastoid). The stimulation interfaces consisted in: i) the P300 Speller, a 6 

by 6 matrix containing 36 alphanumeric characters; ii) the GeoSpell interface, in which characters are organized 

in 12 hexagonal groups of 6 characters each, following the same logic of a 6 by 6 matrix [Aloise et al., 2012]. 

Each subject performed 4 recording sessions in different days. A session consisted of 6 runs (3 runs for each 

interface) and 6 trials per run. Each trial (consisted of 8 stimulation sequences) corresponded to the selection of a 

single character displayed on the interface. Each stimulus was intensified for 125ms, with an Inter Stimulus 

Interval (ISI) of 125ms. For each participant, BCI performances were assessed offline, according to the number 

of stimulation sequences averaged during each trial. We used a Stepwise Linear Discriminant Analysis 

(SWLDA) to select the most relevant features that allowed to discriminate Target stimuli from Non-Target ones. 

In particular we performed a 3 fold cross-validation exploring all the possible combinations of training (2 runs) 

and testing (1 run) data set for each session and for each interface. The maximum Written Symbol Rate (WSR, 

symbols/minute [Liu et al., 2010]) was calculated for each iteration as a function of the number of stimuli 

repetitions in the trial. Furthermore, we excluded the contribution of the VEPs in the performance evaluation in 

order to take into account only the P300 event related potential. Only for the P300 Speller interface, we 

evaluated performances taking into account both VEPs and no-VEPs contribution. In this way, the EEG signal 

was reorganized in overlapping 600 ms long epochs starting 200ms (0 ms for the P300 Speller with the VEPs 

contribution) after the onset of each stimulus. Also, we evaluated the latency of the P300 evoked potential for 

each trial, in order to estimate the jitter of the latency for each interface. In this regard, we applied a method 

based on the Continuos Wavelet Transform (CWT) and the estimation of the empirical Cumulative Distribution 

Function (CDF), in order to enhance the signal (P300) to noise (spontaneous EEG) ratio [Hu et al., 2010]. At this 

point, we calculated the inverse CWT for each trial, and we estimated the latency of the P300 potential as the 

highest peak of the signal into the epoch. Therefore, we estimated the distribution of the P300 latency for each 

subject, for a total of 72 trials (4 sessions, 3 runs, 6 trials) for each interface. We evaluated the jitter of the 

latency subtracting the 3
rd

 and the 1
st
 quartile of the distribution.  
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3.  Results 

Results showed a significant decrease in the jitter of the P300 latencies during the P300 Speller task (p 

<.05), with respect to the GeoSpell interface one. Furthermore, performance achieved with P300 Speller in terms 

of WSR, were significantly higher (p <.05) with respect to the GeoSpell interface.  

 
Figure 1. Maximum value of WSR and P300 latency jitter over Cz channel for each subject, and the mean and stardard 

deviation over all the subjects for each interface. Also, WSR values with and without VEPs contribution have 

been represented for the P300 Speller interface. 

4. Discussion 

The aim of this study was to investigate whether the decrease in system performance using GeoSpell 

interface in covert attention condition could be related to a low stability of the P300 potential evoked during the 

task. In this way, we evaluated the P300 latency jitter and the achieved performances of nine healthy subjects 

during the two tasks, excluding the VEPs contribution during the feature extraction stage. The results showed an 

increase in the P300 latency jitter, consistent with performances evaluation. Preliminary findings, indicated that 

even in the absence of VEPs, the P300 Speller interface used in overt attention modality, reaches greater 

accuracy with respect to the GeoSpell one used in covert attention. Furthermore, both the accuracy and the 

latency jitter significantly change comparing overt and covert tasks. This result could indicate that the low 

stability of the P300 evoked potential during the covert task would be one of the causes of the significant 

decrement of the system performances. Further investigations will be addressed to understand what are the 

neurophysiological causes of the high jitter detected during the covert task. A possible hypothesis would be that 

the covert attention modality induces an higher variability of the time needed for the perception and 

categorization processes of the stimuli. Also, a method capable to estimate the P300 latency at level of single 

epoch, could be used to decrease the P300 latency jitter online, improving the system performances. 
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Abstract. Muscle synergies are thought to be the building blocks used by the central nervous system to control 

the overdetermined problem of activation of muscles. Decoding these synergies from EEG could provide useful 

tools for BCI-controlled orthotic devices. In this paper, we assess the possibility of decoding muscle synergies 

offline from EEG slow cortical potentials in two healthy subjects performing a planar center-out reaching task.  

Keywords: Offline decoding, Linear Decoding Model, EEG, Muscle Synergies, Kinematics 
 

1. Introduction 
When moving our limbs, our muscles are hypothesized to be controlled as group of muscles, or muscle 

synergies, instead of individual units. A lower dimensional descending neural signal is possibly integrated in the 

spinal cords before reaching the muscles. Decoding muscle synergies from EEG signals could be a useful tool to 

control a robotic arm in real-time. Indeed, muscle synergies contain information about the kinematics and 

dynamics of the arm. 

3D hand kinematics have been shown to be relatively well decoded from EEG slow cortical potentials 

[Bradberry et al., 2010]. We hypothesize that the same slow cortical potentials might contain information on the 

synergies, as they also carry information on other motor parameters such as movement onset [Lew et al., 2012]. 

Therefore, we first extract muscle synergies from EMG data of two healthy subjects during a planar reaching 

task. We then decode the extracted muscle synergies from slow cortical potentials of EEG using a Linear 

Decoding Model. We finally compare the decoding performance of muscle synergies and kinematics. 

2. Material and Methods 

2.1. Experiments 

Two healthy subjects were asked to perform center-out planar reaching movements to four targets, 10cm 

away from the center, while holding the PHANTOM robotic arm, which recorded the kinematics at 100Hz.  

Scalp EEG were recorded for 64 electrodes (10/20 international system) at 2048Hz. 3 EOG channels were 

also recorded at 2048Hz. Raw EEG signals were low-pass filtered at 50Hz, resampled to 100Hz, high-pass 

filtered at 0.2Hz, low-pass filtered at 1Hz, and standardized to have zero-mean and unit standard deviation for 

each channel. Processed EEG signals were further corrected for processed EOG activity by linear regression. 

EMG signals were recorded for 16 muscles of the arm, shoulder, upper back and chest (1KHz). Raw EMGs 

signals were high-pass filtered at 50Hz, rectified, low-pass filtered at 20Hz, down-sampled to 100Hz, baseline 

corrected using the processed rest EMG, and normalized to have unit variance on the whole EMG signal. 

2.2. Time-invariant Synergies Extraction 

Muscle activation can be represented in a lower dimensional space (i.e. muscle synergies) by the sum of K 

continuous positive activation coefficients multiplied by their fixed positive weight vector [Cheung et al., 2005]. 

We estimated the synergies using the Non-Negative Matrix Factorization algorithm [Lee and Seung, 1999]. 

The number of synergies was chosen so that the reconstruction R
2
 of half of the trials – that were not used to 

estimate the synergies weights – was above 80%. With this criterion, seven synergies were sufficient. Once the 

number of synergies has been identified, the synergies weights and activation coefficients were extracted for all 

trials. The synergies activation coefficients were further low-pass filtered at 1Hz.  

2.3. Decoding 

To continuously decode muscle synergies and hand kinematics from EEG signals, we used a linear decoding 

model, similar to Bradberry et al. [2010]: 

    (1) 

where ci is the activation coefficient of the i
th

 synergy, a and b are weights obtained from multiple linear 

regression, L is the number of lags (L=10), and N is the number of EEG sensors (N=16). The EEG electrodes 

selected for decoding were located on the ipsilateral and contralateral motor cortex. The same model was used 

for decoding hand kinematics where ci was replaced by the end-effector velocity. 

Decoding performance was assessed by an 8-fold cross-validation. The performance measure is the 

ci[t]= ai + bnki
k=0

L

å
n=1

N

å EEGn[t - k]
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Pearson’s correlation coefficient between the decoded synergies or kinematics and the actual signal. We 

computed the chance level by shuffling the input and output trials for training the decoder. We repeated the 

procedure 1000 times to get a distribution of decoding performance from random inputs and computed the one-

sided 95% confidence interval as the chance level. 

3. Results 
The mean synergies weights for both arms of both subjects are shown in Figure 1A. The decoding 

performance for decoding the 3D end-effector velocities and 7 muscle synergies are given in Figure 1B.  

 
Figure 1. (A) Mean synergies weights for the two arms of two subjects. 7 synergies were extracted with NNMF from EMG 

recordings of 16 muscles. Synergies were sorted by similarity across arms and subjects by maximizing the 

normalized dot product of the synergies weights. Mean similarity across subject is shown above each synergy. (B) 

Mean decoding performance (across two subjects, two arms) of the kinematics (velocity) and synergies activation 

coefficients from EEG slow cortical potentials. The dotted line indicates the one-sided 95% chance level. Error 

bars show the minimum and maximum decoding performance. 

4. Discussion 
We showed that for two healthy subjects, it is possible to reconstruct some of the muscle synergies relatively 

well with two synergies being decoded with a performance close to that of the kinematics. However, other 

synergies were poorly decoded with a decoding performance close to the chance level. We note that our 

kinematics decoding performances were on average slightly higher (rx=0.29, ry=0.43, rz=0.41) than those 

obtained in [Bradberry et al., 2010] (rx=0.19, ry=0.32, rz=0.38).  

One of the issues in decoding synergies is the definition of synergies itself. The number of synergies 

extracted is based on an arbitrary criterion and changing this number can affect the decoding performance of 

synergies that would be otherwise combined or separated with a different number of synergies. In addition, the 

algorithm used can also influence the extracted synergies, especially when using algorithms such as Factor 

Analysis that allows for negative synergies weights and activation coefficients.  

In the near future, we will see if it is possible to decode kinematics from only the subset of the best decoded 

synergies which would indicate us which synergies are actually important to be decoded from EEG. In addition, 

we will test if similar synergies across subjects and limbs are systematically decoded with a similar accuracy. 

For example, we see from this two subjects analysis that the forearm, extensor, both shoulders and flexors, and 

chest synergies are relatively well decoded (r=0.34, 0.34, 0.39, 0.31, and 0.31 respectively) while the two 

synergies controlling the back muscles are not (r=0.14 and 0.2). If this is systematically true, we could decode 

only this highly decodable subset of synergies and use this as control input to a robotic device and, more 

importantly, to an exoskeleton or FES orthosis. 

 

Acknowledgements 

The authors thank Dr. S. Silvoni (Ospedale San Camillo, Venezia, Italy) and Luca Tonin (EPFL) for initial 

work and data collection. 

 

References 

Bradberry TJ, Gentili RJ, Contreras-Vidal JL. Reconstructing three-dimensional hand movements from noninvasive electroencephalographic 
signals. The Journal of Neuroscience, 30: 3432–3437, 2010. 

Cheung VC, d’Avella A, Bizzi E. Central and sensory contributions to the activation and organization of muscle synergies during natural 
motor behaviors. The Journal of Neuroscience, 25: 6419–6434, 2005. 

Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature, 40: 788–791, 1999. 

Lew E, Chavarriaga R., Silvoni S., Millán JdR. Detection of self-paced reaching movement intention from EEG signals. Frontiers in 

Neuroengineering, 5: 13, 2012. 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

56



Asking the Practioneers – Requirements Concerning a 

New EEG-based Diagnostic Battery 

H. Erlbeck
1
, A. Kübler

1
 

1 
University of Würzburg, Würzburg, Germany 

Correspondence: H. Erlbeck, University of Würzburg, Interventional Psychology, Marcusstraße 9-11, D-97070 Würzburg                            
E-mail: helena.erlbeck@uni-wuerzburg.de  

 

Abstract. To overcome high rates of misdiagnosis in patients with disorders of consciousness (DOC) it has been 

discussed to develop diagnostic means based on imaging and electrophysiological techniques. Nine interviews 

have been conducted with representatives from acute care clinics and neurological rehabilitation centres to 

investigate their requirements concerning such new methods. It was found that the current diagnostic process 

still largely relies on clinical assessment. Interviewees criticised the dependence of the diagnostic outcome on 

skills and experience of the physician and the lack of measures to estimate the further development of patients. A 

new system is expected to provide reliable and valid results containing prognostic information. 

 

Keywords: disorders of consciousness, detection of consciousness, diagnosis, EEG, event-related potentials 
 

1. Introduction 

Vegetative state (VS) is defined as ‘wakefulness without awareness’ meaning that these patients show signs of 

wakefulness like sleep-wake-cycles but are assumed to be unaware of themselves and their environment [Jennett 

& Plum, 1972]. In contrast, minimally conscious (MCS) patients do show inconsistent but reproducible 

behaviors associated with conscious awareness [Giacino et al., 2002]. Studies have repeatedly indicated a high 

proportion of misdiagnosis in patients in minimal conscious and vegetative state [Schnakers et al., 2009]. 

One aim of research with patients with DOC is to provide new diagnostic approaches to overcome this issue 

since only a correct diagnosis can be the starting point for an effective therapy. Making use of event-related 

potentials measured with EEG is one promising method [Kotchoubey et al., 2002]. However, in order to transfer 

research results into a ready-to-use product, it is essential to learn about requirements and expectations of 

physicians having to work with it in the future. This study presents first results from seven interviews conducted 

with representatives from different neurological institutions which deal with patients diagnosed with DOC.  

2. Material and Methods 

Semi structured interviews were conducted in nine different places across Germany – four in acute care 

clinics (ACC) and five in neurological rehabilitation centres (NRC). Interviewees were five medical directors, 

two chief physicians and two senior physicians. They were told about the development of a new EEG-based 

diagnostic battery based on event-related potentials. This system could support diagnostics by analysing brain 

reactions to different tones and semantic material. The interviews took approximately one hour and covered 

three main topics: current diagnostic procedures, weaknesses of the current process and expectations concerning 

a new diagnostic battery. All interviews were recorded and transcribed. Answers to each question were grouped 

into clusters and counted. 

3. Results 

For reasons of clarity, answers of ACCs and NRCs will be presented together unless a differentiation is of 

importance for the result. 

3.1. Current Diagnostic Process 

A diagnosis in ACCs is made rather quickly within few hours. NRCs acknowledge the diagnosis provided 

by the referring ACC but review it on admission of the patient. A diagnosis is regularly checked on an hourly 

(ACCs), daily or weekly (NRCs) basis depending on the status and medical history of the patient.  

When making a diagnosis, physicians largely rely on the clinical assessment including observation of the 

reactions to speech, painful stimuli and visual stimuli. All institutions apply EEG, especially in comatose, VS 

and MCS patients. One institution (NRC) also applies event-correlated potentials. In some cases CT (n=6) or 

fMRI (n=4) are used additionally. The Glasgow Coma Scale is administered in six, the Barthel Index in five and 

the Coma Recovery Scale revised in two institutions. 
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Seven institutions consider their diagnosis to be of primary importance for treatment decisions and future 

therapeutic processes of the patients. Two institutions (NRC) consider the diagnosis to be important but put a 

greater focus on prognosis and treatment. 

3.2. Weaknesses in the Current Procedures 

Results in the current diagnostic process partially depend on experience and observational skills of the 

responsible physician (n=5). Therefore there is a wish for a stronger focus on different aspects of diagnostics 

already in the education of becoming neurologists (n=3). 

Three interviewees also saw a weakness in the lack of methods to estimate the further development of a 

patient concerning regaining consciousness or rehabilitative progress. Furthermore, a lack of sufficient resources 

to apply imaging techniques was mentioned by three interviewees. 

Two interviewees mentioned a lack of consideration for cognitive matters in diagnostics. A lack of measures 

to track the on-going development of a patient, the wish to become even quicker in the diagnostic process and a 

wish for a better transfer from science to practice was mentioned by one interviewee respectively. Furthermore, 

the wish for a clear differentiation of akinetic mutism and covered behavior was mentioned once. 

3.3. Requirments and Expectations 

Six interviewees stated a general interest in applying a new system in their institution (one ACC, three 

NRCs). The three remaining representatives from ACCs cannot imagine using it in their institutions but consider 

it to be interesting, especially for therapeutic institutions such as NRCs. 

All interviewees named reliability and validity as absolutely mandatory. Additionally, a high immunity to 

disturbances and characteristics of a medical environment (n=6) and the practicability of the system regarding 

time, personnel, financing and the general design (n=7) are considered important. However, it was also 

mentioned four times that the amount of resources available to invest will largely depend on the benefit of the 

resulting output. 

Following up on the weaknesses of the current diagnostics, the most decisive expectations are the prognostic 

value of the results (n=7) and a support in therapeutic decision-making (n=5). Thus, the output is expected to be 

accurate in terms of a selective differentiation between various diagnoses and prognoses. 

4. Discussion 

A correct diagnosis is vital not only because prospects for MCS patients are more favourable than for VS 

patients but also to avoid the situation of an aware patient being treated as being in VS [Healy, 2010]. The results 

shed light on two important aspects: Firstly, there are weaknesses in the current diagnostic process and 

practioneers are generally interested in new measures to overcome them. Secondly, practioneers have clear 

expectations concerning a potential new battery. Therefore, it will be necessary to create a validated system that 

works reliably, allows for prognostic statements and does not add to the burden of limited financial and 

personnel resources. Thus, further effort has to aim at providing an EEG based test battery for selective 

prognostic results for supporting and fostering diagnosis and therapy of DOC patients. 
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Abstract. We explore whether it is possible to detect mental workload - based on established models described in 

literature - during self-paced event-related desynchronization (ERD) based brain-computer interface (BCI) 

operation. During 40 min. self-paced ERD BCI operation we found no detectable workload related changes in 

the electroencephalogram. We did, however, find changes in the heart rate that appear to be time-locked with 

patches of deteriorated self-paced ERD performance. 

Keywords: Brain-Computer Interface (BCI), Electroencephalography (EEG), Event-Related Desynchronization (ERD) 
 

1. Introduction 

Self-paced event-related desynchronization (ERD) based brain-computer interfaces (BCI) are designed to 

grant users on-demand access to communication (e.g. [Millán and Mouriño, 2003]). The prospect of this natural, 

intuitive and non-muscular interaction renders such systems potentially valuable communication and control aids 

for individuals with severe functional disability. 

Based on literature ([Hockey et al., 2003; Zander and Kothe, 2011]), we explore whether including 

awareness of the user's mental workload, could be used to counteract the inherent performance instability of 

asynchronous ERD BCI systems. According to established models, increased mental workload induces changes 

in the electroencephalogram (EEG; [Gevins and Smith, 2007]) and heart rate (HR; [Stuiver et al., 2012]). We 

evaluate, whether our implementation of these models - which we first validate using an N-Back paradigm - 

detects workload or other performance related changes during 40 min long online self-paced ERD operation. 

2. Material and Methods 

2.1. N-Back condition 

Three male volunteers (S1-S3; age 28 ± 3.6 years) ran through 12 N-Back runs (50 x 3s trials) of different 

workload configurations (N=0-, 1-, 2- and 3; constant perceptual and motor demand, varied workload). Subjects 

were asked to press a button, whenever the current, visually presented letter matched the letter presented N steps 

before. For N=0, subjects were asked to press a button whenever the letter "H" was shown. After every run, 

participants rated their perceived level of workload between 0 and 10 (continuous scale). The 12 runs were 

configured to the N-Back levels 0, 1, 0, 3, 0, 2, 0, 3, 0, 1, 0 and 2. We recorded EEG using 12 sensors from 

frontal, central and parietal sites. ECG was recorded from a bipolar derivation on the thorax. 

For offline analysis we band-filtered the EEG of channel Fz for the first 0-Back run between 4 and 8 Hz 

(theta-band), squared, logarithmized and averaged over the whole run to get a subject specific baseline [Gevins 

and Smith, 2007]. On the data from run 2 to 12 we continuously computed the logarithmic theta band power 

from Fz and averaged the resulting signal over 120 s. EEG segments, in which the computed time series 

exceeded 15% of the baseline value, were classified as time periods of high workload (binary EEG detector). For 

ECG the same procedure but a lower detection threshold of 8% was used. 

2.2. Self-paced online ERD condition 

Three non-novice male volunteers (S1, S4, S5; age 26.7 ± 5.5 years) participated in the self-paced online 

ERD experiment. The recording setup and offline simulation procedure were identical to Section 2.1. In addition, 

the system was configured to detect workload online based on the EEG. To avoid erroneous workload 

detections, the online, binary EEG detector output (0=no workload; 1=workload) was additionally averaged over 

240 s. Online, high workload was detected only, when this additionally averaged signal exceeded the threshold 

of 0.5. 

We set up the ERD classifier using a cue-guided, co-adaptive paradigm ([Faller et al. 2012]), where subjects 

performed right hand movement imagery vs. relax with eyes open. After calibration, users had to select a 

predefined sequence of menu entries by performing hand movement imagery within defined time periods using 

the Hex-o-Select ERD user interface (UI; [Faller et al. 2012] based on [Blankertz et al. 2006]) for 40 minutes.  
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3. Results 

3.1. N-Back condition 

Subjects reported the highest level of workload for the N-Back conditions N=2 and N=3. In two of the three 

subjects S2 and S3, both 3-Back and the last 2-Back condition were detected using the EEG based binary 

workload detector. Logarithmic theta band power in the different N-Back runs correlated statistically significant 

(p≤0.05) with the level of perceived workload for S2 (r=0.86; p=0.0003) and S3 (r=0.72; p=0.0191) but not for 

S1 (r=0.54; p=0.067). The HR based algorithm detected both 3-Back and one 2-Back condition in Subject S1 

and one 3-Back condition in Subject S2. There were no detections for Subject S3. The averaged HR signals for 

the different N-Back runs correlated statistically significant (p≤0.05) with the levels of perceived workload for 

S1 (r=0.80; p=0.002), but did not for S2 (r=-0.21;p=0.52) or S3 (r=-0.14; p=0.66). 

3.2. Self-paced online ERD condition 

All participants were able to control the Hex-o-Select UI using the ERD input signal for the full 40 minutes, 

achieving positive predictive values of 40 to 63 %. The EEG-based workload detector, triggered in only one of 

three participants (at the same time point online and during offline simulation). In that case the detection onset 

coincided with very strong movement artifacts. During simulation, the HR-based workload detector triggered in 

two subjects (S1 and S5). These activations were time-locked to time-spans during Hex-o-Select operation, 

where the users made a high number of false positive selections or failed to trigger selections as instructed. 

4. Discussion 

For all participants in the N-Back condition, either the EEG or HR measure was sensitive to task difficulty 

and perceived mental workload. The self-paced ERD operation on the other side does not appear to induce 

workload at a high enough level to lead to detectable changes in the theta band of the EEG. Interestingly, the 

HR-based offline simulation led to detections that were time-locked with patches of low self-paced ERD Hex-o-

Select performance. It is unclear, however, whether these HR changes might necessarily be related to workload. 

Alternatively they could appear in response to bad performance ("Fight-or-Flight" response) or maybe - although 

unlikely - even be indicative of a mental state that causes low self-paced ERD performance. In any case, results 

from this first pilot study suggest, that HR could be an adequate signal to detect phases where the ERD control 

output may be less reliable. Revealing the details of the apparent interrelations between ERD based Hex-o-Select 

performance and the changes in HR requires further, more detailed investigation. 
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Abstract. Motor disabilities of people from any origin have a dramatic effect on their quality of life. The 

BrainAble project is about empowering them and pursues to mitigate the limitations of the everyday life to 

which they are confronted to due to innovative interfaces as BNCI and technologies of SmartHome, Social 

Networks  and Virtual Reality. Now, at the end of the third and final year, when the development is finished and 

the cycles of user testing have been doing, it is time to summarize the project and propose new challenges. 

Keywords:Brain Neural Computer Interface, Ambient Intelligence, Virtual Reality, SmartHome 
 

1. Introduction 

The aim of the BrainAble project is to offer an ICT-based HCI composed of BNCI system [Wolpaw, J.R. et 

al. 2002] combined with affective computing, virtual environments and the possibility to control heterogeneous 

devices like SmartHome (SH) environments, and Social Networks (SN), allowing the disable person to increase 

its level of autonomy and eInclusion. The paper summarizes the different techniques researched and developed 

to achieve this aim.  

2. Material and Methods 

As we have already introduced, the possibility to achieve the goal of BrainAble is only feasible by the 

combination of the last advances in BCNI, SH, Ambient Intelligence (AmI) [J.C. Augusto., 2007], and VR 

techniques. Figure 1 shows how the project establishes the key relationships between these technologies.  

 

 
Figure 1.  System overview by modules related to technologies. 

2.1. BNCI  

In Brainable, BCNI development is based on the non-invasive electroencephalogram (EEG). BCNIs have a 

very limited bandwidth and cannot compete with other means such as speaking, writing or traditional HCIs, but 

can be extremely useful for users who cannot speak, write or use traditional HCIs. Thus, by adding contextual 

information could increase the effectiveness of a BNCI by allowing users to accomplish their goals more quickly 
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and effectively. The platform has been implemented with several BCNI GUIs, such as the P300 Matrix, and 

Hex-o-Select, SSVEP or ERD. 

2.2. SmartHouse and Ambient Intelligence 

The SH technologies allow the house resident to control different devices of the house as TV, lights or 

furniture, like curtains or doors. In conjunction with this set of devices, we can establish a network of sensors in 

order to known the current status of the environment.  As an innovative point, the BrainAble system includes the 

SN as one more sensor of the platform understanding the social interaction and information as a part of the user’s 

context.  

With all the information collected, and thanks to the combination of different techniques of AmI, we can 

control the house based on the context and act according to it helping to the disabled to be independent in its own 

house. Another possibility is to use this information to increase the usability of the BNCI system suggesting the 

most suitable actions to the user in each moment [Casale P. et al., 2012].  

2.3. Virtual Reality 

BrainAble provides a virtual interactive environment for training a new user to the platform, and also for 

providing an enhanced experience. The user is represented by a customizable avatar and is able to navigate the 

virtual environment, which can represent, for instance, her/his home, with the smart devices allowing to interact 

with them directly from the VR. VR is also used as a way to reduce the isolation of the user, thanks to the 

inclusion of a virtual community where meeting other people and interacting with them directly. 

3. Results 

Currently, the project consortium has finished the third-year prototype that implements an operational 

system which allows a BNCI to interact with SH functionalities such as the controlling of a commercial 

television, lightning system, a surveillance camera, access to Twitter and Facebook and a telepresence service 

composed via a robot device to make the users feel as if they were somewhere else. The prototype also includes 

a customizable avatar in a virtual model of the user’s home allowing to interact with the SH devices and also a 

virtual community. The consortium has generated two complete prototypes which are under the final revision 

cycle by the end users. 

4. Discussion 

After three years of development and research the BrainAble system is ready. The two prototypes, in United 

Kingdom and Spain, are showing the benefits of the system, the points to improve and they have opened the way 

to the evolution of the platform. Therefore, we can assure that the aims of the project have been accomplished. 

From the result of this project the BackHome project learns being a step forward in the research of the BCNI 

field. In fact, the next step is to move the system from the hospitals and rehabilitation centers to users’ homes 

allowing them to follow the cognitive rehabilitation in a more comfortable and familiar environment. This 

evolution will be also able to evaluate the increase of the user’s quality of life allowing the therapists to adapt the 

system to these parameters, thanks to telemonitoring capabilities, and the system to auto-evaluate itself.  
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Abstract.  In this paper, we present a method for spatio-temporal discriminant analysis of cortical sources 

corresponding to the EEG signals recorded for Event-Related Potentials (ERP).  We use cortical current density 

inverse method to localise the sources from the surface EEG and then find discriminant sources corresponding to 

the task at different time instances. We show the results for two different ERP experiments which are based on 

error-related potentials (ErrP) and evoked potentials in rapid serial visual presentation (RSVP). The spatio-

temporal discriminant sources provide essential information about the brain dynamics for different experiments 

performed. 

Keywords: Inverse solution, EEG, discriminant sources, event-related potentials 

1. Introduction 

The spatio-temporal discriminant analysis for event related potentials (ERPs) is conventionally performed 

on the sensor space, i.e. at the level of scalp EEG. In this paper, we are presenting a method to perform the same 

analysis on the source space with the use of distributed inverse solution. The method finds spatial sources across 

time that best discriminate two class-conditions for error-related potentials (ErrP) and rapid serial visual 

presentation (RSVP) based ERP experiments. For a given experiment, the analysis is performed across all 

subjects. When compared to discriminant analysis on sensor space, our method provides functional information 

of localization of discriminant sources over time.  The localization results obtained with ERP experiments show 

that the discriminant activity of a signal is originating from a focalized source that varies spatially in different 

regions across time.  

2. Experimental Setup 

The protocol and experimental setup for measuring ErrPs is similar to the procedure presented in 

[Chavarriaga and Millán, 2010]. Ten healthy subjects (3 females) took part in the experiment. The subjects were 

asked to monitor movement of a cursor which was moving in discrete steps towards a fixed target on the screen. 

The cursor movement is termed erroneous whenever it moves away from the target. For discriminant analysis, 

data from six offline runs was used totaling 600 single trials (about 20% were erroneous). 

For the RSVP experiment, 12 subjects (7 females) were instructed to count images of a specific object while 

natural images were presented to them at a rate of 4Hz. There were four different search tasks corresponding to 

four different animals. The images were selected from the Corel natural image database. A total of 1600 images 

were shown, among which 10% of images were target images.  

3. Discriminant Analysis 

The experiments were performed with 64-channel Biosemi EEG system using 10/10 international 

configuration of electrode positions at sampling frequency of 2 KHz. The EEG data was common average 

referenced and filtered in the frequency range [1 10] Hz. The intra-cranial source activity is estimated from 

surface EEG using cortical current density (CCD) based distributed inverse method [Cincotti et al., 2008].  The 

discriminant power (DP) for each estimated source was computed using Fisher score ((mean1-

mean2)/(var1+var2)) and at each time instance in the period [0 1]s after stimulus onset [Goel et al., 2011]. We 

selected top 100 discriminant sources at each time instance and equated their score to 1 and others to 0. 

Subsequently, we averaged the new scores across subjects for each experiment. The cumulative score obtained in 

the time interval was normalized by the highest score obtained among the sources.  

4. Results 

Fig. 1 (top) shows the mean and variance over subjects on the grand averages of all the trials belonging to 

two classes error-correct and target-distractor for both experiments. Channel FCz is selected for ErrP experiment 

and channel Pz is selected for RSVP experiment, since these channels are known to capture the error activity and 

P3b evoked activity, respectively. These plots also give insight of the temporal activity for two experiments. The 
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ErrP has prominent peaks around 300, 400 and 500 ms; whereas the P3b has prominent peak around 500 ms 

after stimulus onset.  

As shown in Fig. 1 (bottom), the spatial localization of discriminant sources for ErrP is quite prominent in 

the fronto-central region of the cortex. The intensity of localization is high at time instances when the difference 

waveform in grand average plot peaks while the localization is sparse when the difference waveform crosses 

zero. Overall, the discriminant sources remain strongly focalized in the same region. 

For the evoked activity in RSVP experiment, we find a clear cluster of discriminant sources only at a 

specific point in time that corresponds with the peak of the grand average that fits neurophysiological evidence 

of P3b. This cluster is present over parietal cortex at time instance 0.48s.  
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Figure 1. (Top Row) Grand average across trials of one class and their difference for ErrP (CPz) and RSVP(Pz) again 

averaged over subjects. (Bottom Row) Source localization of selected discriminant sources at various time 

instances shown on head model (dorsal view).  

5. Discussion 

In this paper we presented a method for spatio-temporal discriminant analysis of cortical sources obtained by 

the use of inverse solution. It provides direct correlation between task discrimination and the related functional 

anatomy at cortical source level. The extra step for inverse computation is not that demanding and makes it 

possible for real time use. The relevant discriminant sources identified by this method have been further selected 

for the purpose of classification in a brain-computer interface task that commonly uses these ERP signals. The 

process yields comparable performance to scalp EEG, while providing information about spatial distribution of 

cortical sources (i.e. finer-grain resolution than EEG). 
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Abstract. Controlling a device by the brain requires the user to pay visual attention to it, which is partly in 

conflict with the visual BCI feedback. Therefore, a tactile stimulator is developed, which provides a tactile 

illusion as BCI feedback. The stimulation system consists of six coin motors and a single-board microcontroller. 

Several psychophysical experiments are conducted to optimize the parameters that generate the illusion. Two 

protocols that convert the BCI feedback into spatiotemporal patterns of the stimulator are tested online. 

Keywords: BCI, EEG, Tactile Feedback, Motor Imagery 
 

1. Introduction 

When controlling brain-actuated devices a split attention between the application and the brain-computer 

interface (BCI) feedback is needed, which is sometimes demanding for the participants [Leeb 2012]. Imagine 

controlling a wheelchair with the BCI: on the one hand you have to look where you want to drive your 

wheelchair, since you want to find the way and avoid obstacles, on the other hand you have to be aware of the 

BCI feedback, which shows your current brain status and gives information about how close you are to 

delivering commands with the BCI. Therefore, both visual feedback loops are important for a successful 

application control, but are competing for the same resource: our visual channel. Is there a chance to reduce the 

load or to free the visual channel from one of the components? Auditory or somatosensory modalities have 

already been used in BCI research. Since, we are interested in controlling our applications in a self-paced way 

without any external cues, evoked activities like auditory BCIs or steady-state-somatosensory potentials are not 

in our focus. Therefore, we transferred the position of the normal feedback bar in case of the visual BCI 

feedback, into a tactile feedback with stimulators on the neck of the participant. A similar approach was already 

presented in [Cincotti 2007], but their magnetic actuators interfered slightly with the electroencephalogram 

(EEG). Here we: present some new tactile stimulation hardware; investigate different stimulation patterns to 

optimize the subject’s sensations; and analyze the influences of the tactile stimulation into the EEG. 

2. Material and Methods 

2.1. Hardware and Software Setup  

Six coin motors (Precision Microdrives, UK) with a diameter of 10mm and a typical vibrational amplitude 

range of 0.5g to 1.8g are utilized for delivering tactile BCI feedback. The motors are attached in a horizontal line 

on lower neck with a center point at the spine and about 2.5cm of inter-motor-spacing (Fig. 1a). The 

spatiotemporal vibration pattern of the stimulator is controlled by the laptop through a single-board 

microcontroller (Arduino, Italy) to indicate the BCI performance of a subject in a 2-class BCI (Fig. 1b). 

Two types of protocols, point-based and movement-based, that convert the current BCI feedback to 

spatiotemporal vibration patterns were tested. The point-based type places illusory tactile sensation at one point 

corresponding to the visual BCI performance. For example, for a classifier probability of 0.75, the virtual 

sensation point is placed at the mid-point between the spine and the rightmost motor. In the movement-based 

protocol, the speed of illusory tactile feeling of movement via all motors from one side to the other is altered 

based on the BCI performance. For example, a probability of -0.75 generates continuous left direction 

movements and that of 1 produces continuous right movements with a higher speed than that of 0.75. In 

addition, for both protocols, the amplitude of the vibration increases as the probability approaches to the extreme 

values. 

2.2. Characterisation of the tactile illusion 

The tactile illusion that places the virtual tactile sensation point in between the two real stimulation points 

[Alles 1970] is employed in both protocols to increase the spatial resolution (only 6 motors). This illusion point 

varies the position depending on the amplitude ratio of the real stimuli. For example, when two motors vibrate 

with the equal amplitude, tactile illusion is located at the center, whereas when the amplitudes are unbalanced it 

moves closer towards the larger stimulation amplitude. Hence, if the amplitudes of two motors are properly 

varied over time, a smooth movement between the two motors appears. To determine the appropriate shape of 

this amplitude variation, two types of preliminary experiments (i) between two motors and (ii) over all motors 

are conducted. Three subjects were asked to rank (1=low–4=high) four stimuli that have different shapes of 

amplitude variation (linear and three logarithmic) based on the characteristics of illusory movement: consistency 
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of perceived strength, position of the illusion, and direction of the movement. In addition, to provide a constant 

increment of the perceived amplitude, the just-noticeable difference (JND) was measured for each subject. 

(a)    (b) 

Battery

M
Arduino 
MEGA 
2560

5V 
Regulator

M

MOSFET driver

M

Coin motor

5V, 490Hz PWM5V, 490Hz PWM

6

Serial communication

   (c)  
Figure 1. (a) Picture of a typical setup and (b) block diagram of the developed tactile BCI feedback system with six motors. 

(c) Reported average ranks after normalization over each subject. Wide and narrow bars represent the results of 

virtual movements between two motors and over all motors, respectively. 

3. Results 

3.1. Parameters for apparent tactile illusion and constant increase of perceived strengh 

Fig. 1c shows the results of experiments to determine the shape of the amplitude variation. It shows that 

consistency increases in both cases, between two motors (wider bar) and over all motors (narrower bar), as the 

shape becomes more logarithmic over time [Alles 1970]. However, there is a certain preference to the shape of 

log([1 3]) in direction when the tactile illusion moves between two motors. For position, subjects preferred 

logarithmic shape. This results suggest that it is better to use the shape of log([1 3]) for the point-based protocol 

and the shape of log([1 10]) is appropriate for the movement-based protocol. In the JND experiments, JNDs lie 

in the range of 5% to 20% for different locations and base amplitudes. As a result, Weber fraction is set to 0.2, 

such that the vibration amplitude varies depending on the BCI performance. Note that, over a wide range of 

Weber fraction values, the shape of the exponential function remains almost unaffected when the function is 

scaled to the available ranges of the amplitude of the motors and that of the BCI performance. 

3.2. Influence of vibrotactile stimulation on the EEG 

The EEG was recorded from 64 channels (active BioSemi amplifier, fs=2048Hz, filter: DC–417Hz) while 

different tactile stimulation patterns (all motors / just left side / just right side / movement-based) were tested 30 

times each. Every trial consisted of 5 seconds stimulation and 15 seconds rest. The spectrum was calculated for 

1-second epochs (5 per stimulation period and 5 per rest (second 6-11)) and averaged over the repetitions for 

each condition. No influence of the various stimulation patterns could be found in the EEG spectra while 

comparing stimulation to rest and over the conditions.  

Furthermore, to see the influence of the tactile stimulation on the online performance of a motor-imagery 

based BCI (g.USBamp, 16 channels, 512Hz, filter: 0.5–100Hz), two subjects compared the different feedback 

modalities. Two runs with 15 left and 15 right cues were performed for the following conditions: normal visual 

feedback, visual and tactile feedback, only tactile feedback and again visual feedback. No difference in the 

performances (99.2%, 98.3%, 99.2% and 90.8%, respectively) could be identified. 

4. Discussion 

In this work we presented the setup of a tactile stimulator which can be used to provide tactile BCI feedback 

to the user without interfering with the EEG.  It seems that the subjects are able to perceive this type of tactile 

feedback well and no performance degradation could be identified. The next step would be to test this directly 

with an application, to add the visual part of it and to investigate the split attention with more subjects. 

Acknowledgements 

This work is supported by the European ICT Project TOBI (FP7-224631), by the National Research 

Foundation of Korea and the Ministry of Education, Science and Technology of Korea (2012-0005790). 

References 

Cincotti F, et al. Vibrotactile Feedback for Brain-Computer Interface Operation, Comput Intell Neurosci, 48937, 2007. 

Leeb R, et al. Transferring Brain-Computer Interface Skills: from Simple BCI Training to Successful Application Control, Artif Intell Med, 

submitted, 2012. 

Alles DS. Information Transmission by Phantom Sensations, IEEE Trans. Man-Mach. Syst, 11 (1): 85-91 1970. 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

66



A Portable Auditory P300 BCI using Directional Cues and 

Natural Stimuli 

S. Halder
1,*

, N. Simon
2,*

, C.A. Ruf
2
, I.        

1
, E. Pasqualotto

3
, A.       

1
, N. Birbaumer

2
 

1
Department of                                                  -                            

2
                                                                                                           

                  

3
 Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, 1348 

Louvain-la-Neuve, Belgium 

Correspondence: N. Simon  

*these authors contributed equally  

E-mail: nadine.simon@student.uni-tuebingen.de  
 

Abstract. Currently many brain-computer interface systems require intact gaze control. This excludes all users 

who have lost such control. One possible alternative is the application of non-visual stimuli. We propose a P300 

speller system using auditory stimuli based on natural sounds with additional spatial cues. Eleven healthy 

participants peformed two sessions with the proposed system. Average offline accuracies of 90% and bit rates of 

5.45 bits/min were achieved in the second session of training.  

Keywords: EEG; auditory P300; spelling 
 

1. Introduction 

Brain-computer interfaces (BCIs) provide a communication channel for severely paralyzed people. P300-

BCIs can be controlled without functional gaze if auditory stimuli are used. Different systems have been 

proposed including spoken words [Furdea et al., 2009], tones augmented by physical spatial cues [Schreuder et 

al., 2010] or systems using tones with simulated spatial cues [Käthner et al., 2012]. We propose a new design 

combining spatial cues with natural sounds as stimuli. 

2. Material and Methods 

2.1. Participants 

Eleven healthy participants took part in the study (eight female, mean age 24.27 years, SD = 7.14 years). 

Participants were compensated with 8€/hour or course credits.  

2.2. Data acquisition 

The electroencephalogram (EEG) was recorded with 32 active Ag/AgCl electrodes. These were located at 

positions F3, Fz, F4, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, P1, Pz, P2, P4, PO7, 

PO3, POz, PO4, PO8, Oz and four EOG channels. Channels were referenced to the left and grounded to the right 

mastoid. The EEG was sampled at 500 Hz with a BrainAmp amplifier (Brainproducts, Germany).  

2.3. Auditory ERP speller 

Every participant used the auditory P300 BCI on two consecutive days. Online feedback was provided using 

a stepwise line discriminant analysis (SWLDA) classifier trained on the first three runs of the first session. After 

analyzing the data offline it was found that performance significantly increases if the classifier is retrained using 

the first three runs of the second session before classifying the remaining data of the second session. Every 

participant spelled nine words with five or six letters totaling 48 letters per session. In the first session an 

additional three words with five letters were recorded to train the classifier (consisting only of letters from the 

diagonal of the matrix: AGMSY).  

Five different animal sounds augmented with spatial cues as described by [Käthner et al., 2012] were used as 

stimuli (Figure 1). The stimulus for row/column one (“duck”) was presented from the left, for the second 

(“bird”) from diagonal left, the third (“frog”) from the central position, the fourth (“gull”) from diagonal right 

and the fifth (“pigeon”) from the right. The user would first select a row and then after a short pause of 1920 ms 

a column of the matrix. Stimuli were presented with a duration of 150 ms followed by a pause of 250 ms (400 

ms total inter-stimulus interval (ISI)) and repeated a total of 10 times per row and column. The BCI2000 

software in combination with BrainVisionRecorder handled all aspects of stimulus presentation, data recording 

and online classification.  
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Figure 1. Visual support matrix. The animal icons indicate which of five different sounds coded for a particular row or 

column. For example, to select K the user would attend to the frog to select the third row and then attend to the 

duck to select the first column.  

3. Results 

 

Participants achieved mean accuracies of 76.73% in the first session and 69.64% in the second session. After 

retraining the classifier on the first three runs of the second session an accuracy of 90.18% was achieved when 

classifying the remaining six runs (with a total of 32 letters). The online information transfer rate (ITR) of the 

first session was 4.23 bits/min. This increased to 5.45 bits/min after retraining the classifier offline (using the 

same procedure and parameters as online) with the data from the second session.  

4. Discussion 

With 70% online accuracy subjects performed sufficiently well to possible operate a spelling system. The 

substantial increase in classification accuracy after retraining in the second session suggests that training effects 

can be expected if the participants perform more sessions. Event-related potentials are not affected by the 

training. Therefore, we assume a training effect on the task of focusing on the target stimuli. An increase from 

2.76 bits/min in [Käthner et al., 2012] to a minimum of 4.23 bits/min was achieved through the use of natural 

sounds as stimuli. Thus, this design is a promising path for increasing ITRs in auditory P300 BCIs that will lead 

to a communication method for people in the complete locked in state. 
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Abstract. Tactile ERP-BCIs may provide unique advantages over visual and auditive BCIs but often suffer from 

lower user performances. Herein we thus, evaluated the use of generic models for increasing BCI performance of 

low performing subjects. Such models create a generalized classifier from a pool of calibration sessions. Data of 

N=15 healthy participants was used to evaluate different generic models. Preliminary results display the 

potential of generic models for increasing the performance of those users who do not achieve sufficient accuracy 

from their own calibration run. Further research will be required to evaluate the effectiveness of different generic 

models in an online setting with larger sample size. 

Keywords: Brain Computer Interface (BCI), event-related potentials (ERP), Generic model, tactile ERP-BCI,  

1. Introduction 

ERP-BCIs offer a high amount of control without the need for long-lasting training sessions. Tactile 

stimulation allows users to retain visual and auditory senses for non-BCI tasks and can easily be hidden 

underneath the cloths to reduce visibility of the system. Tactile stimulation was found to be a viable modality for 

ERP-BCIs [Brouwer and van Erp, 2010]. Although it may yield unique advantages in terms of user-friendliness 

it was found to achieve lower performance compared to visual or auditory stimulation [Aloise et al., 2007]. It has 

been shown for the visual modality that some users can use generic model classifiers instead of personalized 

classifiers to achieve acceptable performances [Jing et al., 2012]. Such models incorporate data from a pool of 

participants to create a generalized classifier independent from participants´ own data. Herein, we evaluated the 

potential of generic models in tactile ERP-BCIs for increasing accuracy of low performing participants. 

2. Material and Methods 

N=15 healthy participants (12 female, mean age 22.5 years, SD=3.2) participated in the study. Tactile 

stimulation was applied to participants’ left leg, right leg, belly and neck with 4 pairs of vibrate transducers (C2 

tactors; Engineering Acoustic Inc., USA; stimulus duration: 220 ms; inter-stimulus interval: 400 ms). EEG 

signals were recorded from 16 passive Ag/AgCl electrodes and amplified using a g.USBamp amplifier (g.tec 

Engineering GmbH, Austria). Two data sets per person were included into this offline analysis, i.e. one 

calibration run and one run for testing of classifier performance. The reported accuracies are based on 

classification of 48 single sequences.  

Offline classification was performed in MATLAB 2010b (The Mathworks Inc., USA) using stepwise linear 

discriminant analysis. Participants who achieved performances below the required level for communication of 

70% [Kübler et al., 2001] were regarded as low performance participants (N=6). For each participant four 

different classifiers were generated: 

1. Base model: Base performances were gained using only participants’ own calibration data for classification. 

2. Generic model: A generic model was computed based on data from the full sample except for the participant 

on which the model was tested, i.e. the model was different for each participant but comprised data from the 

remaining N=14 participants. 

3. Optimized generic model: Additionally, we created an ‘optimized’ generic model using only the calibration 

data of the N=8 participants who achieved more than 70% performance with their reference classifier. To 

maintain generic property of the model for those high performance participants, we created classifiers 

excluding their own calibration data from the optimized model.  

4. Mixed model: Finally for each participant we created a mixed classifier using the weights from the generic 

model classifier and the participant’s personal classifier (base model). 

3. Results 

Different classifiers were used to calculate offline performances for 6 low performance participants (see Fig. 

1a). Three of six low performance participants (P2, P3, and P15) could achieve higher performances using the 

optimized generic model classifier. Importantly, optimized generic models boosted performance of P3 by 65% 

and of P15 by 36% of the performance achieved with their own model. However, not all low performers could 
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benefit from generic models. One participant achieved almost the same level of performance and the remainder 

displayed decreased performances (P8: -4%, P5: -20%; P6: -12% of performance with their own models).  

Additionally offline performances were also calculated for the 9 high performance participants. ERPs of 

some participants well matched the features underlying the generic model, while others displayed great 

difference. For example participant 1 scored the best performance using the optimized generic model, due to 

broad similarities between spatio-temporal features (Fig. 1b). On the other hand, participant 9 achieved the 

lowest performance as his individual pattern did not match the generic model. Our results thus suggest that 

different models may be needed to account for inter-individual differences. 

 
Figure 1. (A) Average single trial performance, using 4 different classifiers. (B) Determination coefficients 

for data from generic model (top) vs. data from exemplary participants 1 (middle) and 9 (bottom). Channels are 

shown on the y-, time on the x-axis and R²-values are color coded. Please note that color scales are different. 

4. Discussion 

Preliminary results show that some low performance users can achieve higher performance using a generic 

model classifier and particularly display the potential of the optimized model. Some low performance users, 

however, do not improve using a generic model. From data of high performers it can be seen that not all users 

may display EEG patterns in line with the generic model, e.g. in P9 generic model classifiers did reduce the 

performance drastically. Despite using features that strongly differed from the generic model, he achieved high 

performance using his own classifier. Therefore our generic classifier is not generic for all tested participants. 

Additional participant data is required to evaluate whether there might be different generic models which could 

account for users not compatible to this generic model. Additional data may also further contribute to a better 

generalization of the generic model. Finally, use of generic models for tactile ERP-BCIs has to proof its validity 

in an online setting. However, our results are promising in that three participants, who achieved only low 

performances using their personal classifiers, could benefit strongly from using an optimized generic model 

classifier 
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Abstract. As a preliminary study of the EEG-based BCI to detect motor imagery of fingers, the EEG responses 

to the movements of palm, index and little finger of the right hand were investigated. The 63-channel EEG 

responses of four healthy human subjects were measured and the spatial distributions of the sensory motor 

rhythm (SMR) components on mu, beta and gamma bands were evaluated. It was shown that the mu band ERD 

during movements and beta band rebound ERS were observed in the contralateral hand area on sensorimotor 

cortex of three subjects, and the high gamma band ERS responses during movements were observed in the 

contralateral hand area of one subject. It was also shown that a clear high gamma band component could be 

extracted from the responses of one subject to the three tasks by using ICA. 

Keywords: EEG, motor execution, sensory motor rhythm (SMR), high gamma band, ICA 
 

1. Introduction 

The BCI (brain-computer interface) based on motor imagery using EEG can be realized by focusing on the 

sensory motor rhythm (SMR) components from sensorimotor cortex, in which the ERS/ERD (event-related 

synchronization/desynchronization) of mu and beta band EEG were extracted and detected [Pfurtscheller and 

Lopes da Silva, 1999]. 

Recently the possibility to detect high gamma (HG) band EEG during motor tasks was shown [Darvas et al., 

2010]. The HG frequency is higher than typical artifacts (e.g. EOG) or hum noise. The oscillatory EEG with 

higher frequency is hypothesized to be detected faster than that with lower frequency. These features indicate 

that the BCI to detect HG SMR might improve the current BCI based on motor imagery. 

In this study, the SMR responses on mu, beta and gamma band frequency to the grasping of palm, tapping of 

index finger and little finger were investigated for further possible improvement of BCI based on motor imagery. 

2. Material and Methods 

Four right-handed able-bodied male subjects (22-24 years old) took part in the experiments. The study was 

reviewed and approved by the Ethics Committee on Clinical Investigation, Graduate School of Engineering, 

Tohoku University. 

Subjects sitting on an armchair in an electromagnetically shielded room were requested to execute one of the 

tasks which were self-paced movements of palm (grasping), index or little finger (tapping) of right hand. On 

each trial, subjects were instructed to grasp or tap rapidly three times with a self-paced interval which was longer 

than 4 seconds. A session consisted of 25 trials and the task was fixed on each session. For each subject, the 

experiments were conducted for two days, and the number of sessions for each day was 12 (4 sessions for each 

task in a randomized order). 

During experiments, EEG was recorded from 63 Ag/AgCl electrodes placed over the whole head based on 

the extended international 10-20 system (reference and ground were right and left earlobe, respectively). 

Additionally, a bipolar EMG was recorded from extensor digitorum muscle. The measured signals were 

bandpass-filtered between 1 and 500 Hz and sampled at 2500 Hz. No notch filter was applied. 

After applying the CAR (common average reference) filter, the time-frequency ERS/ERD maps were 

computed.  The onset time of the motor execution was detected from the envelope of the EMG data by applying 

the Hilbert transform.  

The recorded data was also analyzed after applying ICA (independent component analysis). The FastICA 

algorithm [Hyvärien and Oja, 1997] was used in this study. 

3. Results 

In three subjects, mu band ERD during movements and beta band rebound ERS were observed in the hand 

area of sensorimotor cortex. The activations in contralateral area were larger than in ipsilateral area. The 

responses to finger movements were smaller than those to palm movements (Fig.1(a), left), and the spatial 
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distributions of these responses were similar. A HG ERS (82 Hz) during palm movements was observed from 

one of the three subjects (Fig.1(a), right).  

The ICA was applied to the EEG data taken from the same subject as in Fig.1(a). All the obtained 

independent components were analyzed to find significant HG responses. The unmixing matrix selected on each 

task (left) and the ERS/ERD on HG band of the decomposed data (right) were shown in Fig.1(b). It was shown 

that the HG components elicited by the movements of palm, index finger and little finger could be extracted by 

ICA. The weight values of the unmixing matrixes were localized near to the contralateral (and ipsilateral on little 

finger) hand area on sensorimotor cortex. 

4. Discussion 

Although the mu and beta band ERS/ERD responses were found from three subjects, the HG responses 

could be observed from one subject. In this subject, it was shown that the ICA could decompose the measured 

EEG signal to the clear HG components related to palm, index finger and little finger, as well as the mu and beta 

band components. The ICA might be useful for designing spatial filters with local spatial distribution for 

decomposing the target responses to classify motor tasks [c.f. Kanoh et al., 2012]. 

The spatial distributions of the ERS/ERD responses to the movements of index finger and little finger were 

quite similar on these frequency bands.  The cortical mapping of the SMR could be effective for classification of 

precise hand movements or motor imagery. 
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Figure 1. Responses to the movements of palm, index finger and little finger on one of the subjects. (a) ERS (blue) and 

ERD (orange) responses of the original EEG. Time-frequency map of ERS/ERD of the measured EEG taken 

from CP3 (left), and the spatial distribution of the HG response at time and frequency shown on the map by 

red point, on which the maximum ERS was observed during movement at 80-100 Hz (right). (b) A selected 

unmixing matrix obtained by ICA (left), and the ERS/ERD of the corresponding HG independent component 

at the same frequency shown in the right figure in (a). The Bootstrap confidence intervals (99%) were 

displayed by cyan lines (right). 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

72



A BCI using Electrocorticographic VEPs  

C. Kapeller
1,2

, R. Prückl
1,2

, R. Ortner
1,2

, C. Guger
1
 

1
Guger Technologies OG, Schiedlberg, Austria,

 2
Johannes Kepler Universität, Linz, Austria 

Correspondence: C. Kapeller, Guger Technologies OG, Sierningstrasse 14, 4521 Schiedlberg, Austria. E-mail: kapeller@gtec.at 
 

Abstract. Many brain-computer interface applications rely on visual stimulation causing steady-state visual 

evoked potentials. Most of them are non-invasive and based on scalp recordings. Therefore, performance for 

non-invasive methods is well known. However, there are no results for invasive, sub-dural recordings available. 

In this work one epileptic patient was tested in using a BCI relying on code based VEPs. 

Keywords: ECoG, c-VEP, BCI, SSVEP 
 

1. Introduction 

A brain-computer-interface (BCI) allows the user to control a device like e.g. a neuroprosthesis with brain 

activity (Wolpaw et al., 2002). Usually, BCIs use brain activity extracted from electroencephalography (EEG) or 

electrocorticography (ECoG) (Leuthardt et al., 2004). Some of them rely on visual stimuli that elicit steady-state 

visual evoked potential (SSVEP) (Wang et al., 2008) or code-based VEPs (Bin et al., 2011). The code based 

approach promises better accuracy and higher ITR than the frequency coded SSVEP (Bin et al., 2009). This 

work investigates the comparison of code-based VEPs in the EEG and ECoG, as well as the online classification 

performance of a corresponding BCI system.  

2. Material and Methods 

The BCI system is based on MATLAB/Simulink and performs online and offline signal processing. Online 

classification results can be sent an arbitrary device. For visual stimulation a 63 bit pseudo-random m-sequence 

(Sutter, 2001) was presented on a standard 60 Hz LCD monitor. One subject suffering from epilepsy was not 

photosensitive and therefore participated at the experiment. Six intracranial electrode grids across the left 

hemisphere (Figure 1, left) were placed for ECoG recordings, because of a scheduled resective brain surgery. 

Data was recorded using a g.USBamp bio-signal amplifier (g.tec, Graz, Austria) with a sampling rate of 256 Hz 

and band-pass filtered between 0.5 and 30 Hz. As the visual cortex was not covered by all electrodes, only 

electrodes that were closest to the visual cortex were used for the analysis. The first task (i) was to gaze at a 

reference target over 200 cycles, to extract an average template signal from the ECoG for each electrode, with 

respect to the sequence. In a second task (ii), four target sequences were presented on the screen simultaneously. 

Each sequence is a phase shifted version of the reference sequence from (i). The subject had to gaze at each 

target three times for 10 s (3 s of rest and 7 s flickering), which led to 12 trials in total. For online target 

identification, a 2.1 s (two sequence cycles) long signal buffer is compared with the previously calculated 

templates using a canonical correlation analysis (CCA). Therefore, the canonical vector based on the templates 

and the raw data, is calculated offline and then used as a spatial filter, to combine the signal channels in the 

online experiment. The correlation coefficients between the spatial filtered signal and the phase shifted templates 

are the features in a linear discriminant analysis (LDA). The LDA classifier is computed offline, based on the 

comparison of the raw data from (i) and four phase shifted versions of the templates and then applied for online 

classification. 

3. Results 

Figure 2 shows the VEPs of eight electrodes after task (i), whereas the response of electrode E1 is highest 

(up to 50 µV). In the second task (ii), the ECoG experiment showed a maximum online classification accuracy of 

83 % (Figure 1, right).  
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Figure 1: Electrode montage with 6 strips (A1-A12, B1-B10, C1-C12, D1-D8, E1-E10, and F1-F10) across the left 

hemisphere (left). Online classification error of code-based VEPs, based on four phase shifted visual stimulation sequences 

(right). 

 

Figure 2: Templates of the individual electrode positions according to the ECoG grid E and F of the subject. Only the first 

four electrodes of the grids were used, as they cover best the visual cortex. Electrode E1 shows the highest amplitudes in the 

VEPs. 

4. Discussion 

Studies using code based VEP response and EEG achieve grand average accuracies of 92 % (Bin et al., 

2011). Nevertheless, the coverage of the visual cortex was much better in the EEG experiments compared to the 

ECoG subject. A visual inspection of the ECoG templates shows that only electrode E1 has a good response to 

the visual stimulation. The presented system can be used for continuous control of a device, as well as trial based 

control for high-level commands. The current implementation contains a latency of about 2-3 s, which influences 

the reaction time, especially in the continuous mode. As ECoG provides higher temporal resolution compared to 

EEG, higher stimulation frequencies in combination with smaller signal buffer might be useful, to reduce 

latency. 
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Abstract. Recent advances in brain computer interfaces (BCI) based on event related potentials (ERP) proved 

that face stimuli can increase spelling performance due to an improved signal-to-noise ratio of the recorded 

ERPs. This study investigated its effect on BCI inefficiency in users with neurodegenerative disease who often 

display decreased spelling performance as compared to healthy participants. Performance achieved with the 

commonly used BCI (P300-BCI) was compared to BCIs using face stimuli in several online sessions with 

different number of stimulation sequences. Herein we report on data from N=9 participants with 

neurodegenerative disease. Online performance was significantly increased when using face stimuli as compared 

to classic stimulation. Importantly, two users who were highly inefficient with the commonly used BCI 

(performance ≤ 40%) spelled with high accuracy levels when using face stimuli. Our results thus display 

particular benefits of face stimuli in the target user group.   

Keywords: brain computer interface (BCI), P300, event related potentials (ERP), face stimuli, neurodegenerative disease  
 

1. Introduction 

Recently we proposed a paradigm for Brain Computer Interfaces (BCI) based on event-related potentials 

(ERP) in which faces are used as stimulus material for elicitation of ERPs [Kaufmann et al., 2011]. Instead of 

highlighting characters in a visually displayed character matrix (as done in the commonly used ERP-BCI 

paradigm), faces were used as character overlay. Participants focused their attention on the intended character 

and counted the number of face flashings instead of counting the number of character highlighting. It was found 

in healthy participants that such face stimuli significantly improve spelling accuracy due to an improved signal 

to noise ratio of the recorded EEG post stimulus [Kaufmann et al., 2011; Zhang et al., 2011; Jin et al., 2012].  

Herein we further investigated this benefit by (1) targeting users with neurodegenerative disease and (2) by 

systematically validating its effect on online performance when spelling speed was increased step-by-step (i.e. 

decreasing the number of stimulation cycles). In particular, we were interested in the potential effect of stimulus 

material on BCI inefficiency as such decreased performance is an issue often raised when bringing BCI 

technology to potential end-users (e.g., [Nijboer et al., 2008]).  

2. Material and Methods 

Users with neurodegenerative diseases (N=9; eight men; mean age 50.00 years, SD = 15.21, range 26-72) 

participated in the study. They were diagnosed with ALS (N=4), SMA (N=2), SBMA (N=2) and MD (N=1). 

EEG was obtained from 12 passive Ag/AgCl electrodes at positions Fz, FC1, FC2, C3, Cz, C4, P3, Pz, P4, O1, 

Oz, O2 and sampled at 512 Hz (BCI2000 software, g.USBamp amplifier). 

2.1. Paradigms 

Three different paradigms were validated by these users. First, the commonly used character flash (CF) 

paradigm in which characters of the visually displayed matrix are light flashed in random order. Second, the face 

flashing (FF) paradigm as introduced by Kaufmann and colleagues [2011]. Instead of light flashing, characters 

are overlaid by the famous face of Albert Einstein. Third, we introduced personalized stimuli to the FF 

paradigm, i.e. characters were flashed with faces of personally well-known and liked persons (friends, family 

members). We assessed if personal familiarity with the stimulus material may further increase BCI performance 

as compared to famous face stimuli.   

2.2. Experimental Design 

Each of the speller paradigms described in 2.1 was calibrated once with 15 stimulation sequences (one 

sequence comprised each row and column flashed once) on a ten-character word. Thereafter, users participated 

in 5 online sessions (a session comprised one run per paradigm) starting with 10 stimulation sequences and 

gradually decreasing the number to 6, 3, 2 and finally 1 sequence. Consequently, spelling speed was increased 

from run to run, thereby increasing error probability by limiting the amount of ERPs that entered classification. 
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3. Results 

Users 1 and 2 skipped the last online session due to strain. Classification accuracy obtained offline was in 

line with previous report for healthy participants [Kaufmann et al., 2011], i.e. FF paradigms were superior to CF.  

3.1. Online Spelling Performance 

The effect of stimulus material on spelling performance appeared particularly pronounced when exposed to 

an online setting with decreased number of stimulation sequences. Difference in spelling accuracy between 

paradigms was significant in all scheduled online sessions (Kruskal-Wallis tests; all H(2) > 8.85, all p ≤ .012; 

Bonferroni adjusted alpha level: α = .0167). Post-hoc Mann-Whitney-U tests revealed no significant difference 

between FF paradigms (all p>.317) but high superiority of both FFs over CF (all p ≤ .0033).  

3.2. Effect on BCI Inefficiency 

Two users (6 and 7, see Fig. 1) were not able to communicate with an online accuracy above 40% when 

exposed to the commonly used CF paradigm. To investigate if this high inefficiency was due to a bad calibration 

run (e.g. due to lack of attention), we recalibrated the system based on data from online session 1 (10 sequences) 

and recomputed performance in session 2-5 offline based on this recalibrated classifier. However, accuracy 

remained low. In contrast, when exposed to FF paradigms, these users spelled at high accuracy levels. User 7 did 

not even perform any error with any of the FF paradigms. 

 

  
Figure 1:  Accuracy achieved online by N=9 users with neurodegenerative disease 

4. Discussion 

These results manifest the importance of improving stimulus material for overcoming BCI inefficiency in 

users with neurodegenerative disease. By increasing the signal-to-noise ratio of the EEG post stimulus with face 

stimuli, classification of ERPs was facilitated. No indication was found that personal familiarity with the 

presented face further increases performance, yet users verbally reported that they preferred those stimuli. Jin 

and colleagues recently reported no effect of face motion and emotion [Jin et al., 2012]. Future research should 

further investigate improvements to the stimulus material, as its strong benefit is apparent [Kaufmann et al., 

2011; Zhang et al., 2012; Jin et al., 2012]. 

Acknowledgements 

This work was supported by the European ICT Programme Project FP7-224631. This paper only reflects the 

authors’ views and funding agencies are not liable for any use that may be made of the information contained herein. 

References 

Jin, J., Allison, B. Z., Kaufmann, T., Kübler, A., Zhang, Y., Wang, X., & Cichocki, A. The Changing Face of P300 BCIs: A Comparison of 

Stimulus Changes in a P300 BCI Involving Faces, Emotion, and Movement. PloS one, 7(11), 2012 

Kaufmann, T., Schulz, S. M., Grünzinger, C., & Kübler, A. Flashing characters with famous faces improves ERP-based brain-computer 

interface performance. Journal of neural engineering, 8(5), 056016. 2011 

Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., Halder, S., et al.. A P300-based brain-computer interface for 

people with amyotrophic lateral sclerosis. Clinical neurophysiology: official journal of the International Federation of Clinical 

Neurophysiology, 119(8), 1909–1916, 2008 

Zhang, Y., Zhao, Q., Jin, J., Wang, X., & Cichocki, A. A novel BCI based on ERP components sensitive to configural processing of human 

faces. Journal of neural engineering, 9(2), 026018, 2012 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

76



Empathy and Motivation in BCI Performance  

S. C. Kleih
1
, N. Grüneberg

1
 , A. Kübler

1
 

1
University of Würzburg, Germany 

Correspondence: S. Kleih, University of Würzburg, Marcusstr. 9-11, Würzburg, Germany. E-mail: sonja.kleih@uni-wuerzburg.de  
 

Abstract. Motivation was shown to have an effect on P300 BCI performance and P300 amplitude. Usually 

monetary reward has been used for motivation manipulation. In this study we not only investigated a non-

monetary reward method (an information presentation about BCI research), but also included empathy as a 

possible psychological factor influencing BCI performance.  

Keywords: Empathy, motivation, Brain-Computer Interface (BCI), P300.  
 

1. Introduction 

Motivation was found to influence Brain-Computer Interface (BCI) performance in healthy subjects (Kleih 

et al., 2010). However, one might criticize that monetary reward was used to manipulate motivation as the 

motivation to use a BCI in patients in need is, by no doubt, of a much more internal and therefore different 

nature (Nijboer et al., 2010). There might also be healthy subjects who participate in BCI studies because they 

wish to contribute to research development and for whom monetary reward is less important than the content of 

the study. Motivation then could be defined as “motivation-to-help”. Those who have a higher motivation to help 

may also be more empathetic which might result in a higher ability to take other peoples‟ perspective. We 

hypothesized in this work that participants who are highly motivated to help and empathetic perform better in a 

P300 BCI spelling task as compared to participants who are motivated only by monetary reward they receive for 

participating in the BCI study. We further hypothesized that P300 amplitudes in motivated participants would be 

higher compared to unmotivated participants.  

2. Material and Methods 

2.1. Subjects 

Our sample of N=20 participants was on average M=23.35 (SD=3.87, range 18-35) years of age and N=14 

participants were female. Participants were reimbursed with 8 Euros per hour and all were naïve with regard to 

BCI training.  

 

2.2. Design 

 A univariate between-subjects design with two levels in the variable group was used. Participants were 

divided into two groups (N=9 motivated and N=11 unmotivated) by sending a questionnaire via e-mail and 

evaluating the results before inviting participants for an information presentation for additional motivation 

manipulation one week before the BCI measurement. In this information session, first motivation and empathy 

were assessed using questionnaires (Visual Analogue Scale motivation, Questionnaire for Current Motivation-

BCI, Saarbrücker Persönlichkeits Fragebogen and NEO-FFI agreeableness scale). Then the existing motivation 

(high versus low) was further manipulated by the content and the way the information presentation was 

designed. In the motivated group, the information presentation about BCI use was designed to be very vivid and 

enthusiastic. Patient examples were used to illustrate the rationale behind BCI research and diverse media were 

used for content presentation (Power Point, Video, Interview material). In the unmotivated group, only black and 

white slides and no other media than Power Point were used. The content of the presentation was an introduction 

to the procedures and material necessary for an EEG measurement such as the size and shape of electrodes. 

While in the motivating presentation, participants were encouraged to ask questions and discuss the contents 

interactively, the non-motivated group was taught ex-cathedra. Within one week after the information session, 

appointments for the BCI measurement were scheduled with participants.  

2.3. Procedure and Data Analysis 

Prior to the BCI measurement, participants received a written reminder which summarized the contents of 

the information session to reactivate the motivation manipulation. Motivation questionnaires were applied again 

and participants spelled two five letter words, each word four times. For data acquisition, we used BCI2000 

Software, 12 Ag/AgCl electrodes, and a g.USB amplifier. Data were classified with stepwise linear discriminant 

analysis (SWLDA). We used Brain Vision Analyzer for peak detection within 200 and 600 ms after stimulus 

onset. The level of significance was set to α = .05.  
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3. Results 

3.1. Motivation Manipulation and its Effect on P300 and Accuracy 

We found significantly higher motivation as measured with the VAS in the motivated compared to the 

unmotivated group (F (1,18) = 5.34, p < .05). Therefore, motivation manipulation was successful. However, we 

neither found higher P300 amplitudes in the motivated compared to the unmotivated group (F (1,18) = 1.54, p = 

.23), nor was BCI performance as measured by accuracy higher in the motivated group (F (1,18) = .46, p = .51). 

3.2. Empathy and its Effect on P300 and Accuracy 

After regrouping participants depending on their ability for perspective taking as measured with the SPF, we 

found significantly higher P300 amplitudes on electrodes P3, Pz and P4 in participants with a low ability for 

perspective taking (LAPT) and therefore, lower empathy, compared to participants who are highly able to take 

others‟ perspective (HAPT) (F (1,18) = 6.64, p < .05, see Fig. 1).  

 

 

4. Discussion 

Contrary to our hypotheses, we found no effect of motivation on BCI performance and P300 amplitude 

when further increasing the existing motivation level (motivated versus unmotivated) in participants before the 

BCI measurement. However, when redistributing participants according to their empathy as measured with the 

subscale „perspective taking‟ in the SPF, we found higher P300 amplitudes in the less empathetic participants. 

We speculate that subjects with higher empathy values were less able to focus attention allocation. Participants 

who are highly able to take the perspective of a patient who is in need of assistive technology, might be more 

emotionally involved and therefore, less able to focus on the BCI task at hand. Future research should aim at 

further elucidating the psychological factors influencing attention allocation in BCI tasks as personality traits 

seem to influence BCI performance and might need to be considered for explanation of variance in BCI 

performance.  

Acknowledgements 

This work is supported by the European ICT Programme Project FP7-224631. This work only reflects the 

authors‟ views and funding agencies are not liable for any use that may be made of the information contained 

herein. 

References 

Kleih, S. C., Nijboer, F., Halder, S., & Kübler, A. (2010). Motivation modulates the P300 amplitude during brain-computer interface use. 

[Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't]. Clin Neurophysiol, 121(7), 1023-1031. doi: 

10.1016/j.clinph.2010.01.034 
 

Nijboer, F., Birbaumer, N., & Kübler, A. (2010). The influence of psychological state and motivation on brain-computer interface 

performance in patients with amyotrophic lateral sclerosis - a longitudinal study. [Original Research]. Frontiers in Neuroscience, 4. doi: 
10.3389/fnins.2010.00055 

 

Figure 1. P300 amplitudes in the groups with 

high ability for perspective taking 

(HAPT) and low ability for 

perspective taking (LAPT). 
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Abstract. For clinical assessment in patients with brain injuries, it is crucial to detect the presence and absence 

of ERP components at the single subject level. One sensitive but so far rarely tested method seems to be the 

Studentized continuous wavelet transformation. Here, we evaluated a new implementation of this method using 

800 simulated EEG datasets. 

Keywords: EEG, t-CWT, wavelet, multiscale analysis, P300, simulated data, sensitivity, specificity 
 

1. Introduction 

Event-related potentials (ERP) promise to become an essential tool in assessing conscious processes in 

patients with severe brain damage. In healthy participants, EEG signal-to-noise ratios (SNR) vary from -10 to -5 

dB [Coppola et al., 1988]. While we know of no direct SNR estimates in patients, reports on, e.g. reduced ERP 

amplitudes [Duncan et al., 2005] suggest reduced signal strengths. 

The Studentized continuous wavelet transform [t-CWT; Bostanov et al, 2006] has been suggested as a 

particularly sensitive method for ERP detection. However, an application of this procedure for diagnostic 

purposes does not only require information about sensitivity (true positive rate), but also about specificity (1- 

false positive rate). Sensitivity can be estimated from EEG recorded from healthy participants using reliable 

paradigms, since all participants can be reasonably expected to show ERPs, the paradigms were designed to 

elicit [e.g. Bostanov et al., 2006]. For exactly the same reasons, specificity cannot be ascertained this way, but 

requires data from which it is known that no signal exists. Sensitivity and specificity of the t-CWT were 

ascertained using simulated EEG data with low SNRs and compared to a peak detection procedure (MAX). 

Sensitivity of the t-CWT was hypothesized to be higher than for the alternative. 

2. Material and Methods 

Calculation of the t-CWT First, the continuous wavelet transform [Mallat, 1999] is calculated for each trial 

and channel using the modified Mexican hat wavelet [Bostanov et al., 2006]. Second, student t-values are 

calculated from the resulting wavelet coefficients, either across all experimental conditions – if one is interested 

in detecting activity different from baseline – or between experimental conditions – if the focus is on differences 

between experimental conditions. Third, local extremes are detected using a 2d-peak detection procedure. 

Fourth, significance of extremes is ascertained via t-max randomization tests [Blair et al., 1993]. 

Calculation of peak detection (MAX) First, the EEG signal is averaged, either across all experimental 

conditions or as the difference between experimental conditions. Second, local extremes are detected using a 1d 

peak detection procedure. Third, significance of identified peaks is ascertained via t-max randomization tests. 

Sensitivity was assessed by creating 400 datasets simulating EEG recordings as might be obtained during a 

simple auditory oddball paradigm (60 "odd" and 60 "frequent" trials). Odd trials showed a deflection (+5µV) at 

350ms, thus simulating a P300 ERP. Signal-to-noise ratio (SNR) was varied in four steps from -18 to -13 dB by 

adding the required amount of noise to the generated signals.  

Specificity was assessed by creating another 400 datasets (as above), in which odd and frequent trials did 

not differ.  

Statistical analysis was based on the F1 score. If no false negatives/positives exist, this measure reaches its 

theoretical maximum of 1, if no true positives exist, the measure reaches zero. Thus, higher F1-scores indicate 

better overall performance. Monte-Carlo simulations [Goute et al., 2005] were used to test whether t-CWT was 

associated with higher F1 scores than the MAX procedure. Type 1 error was controlled at α = .05 for all 

analyses. 

3. Results 

Figure 1 shows the results of the simulation studies. For the two methods, the true positive rate is plotted 

against the false positive rate for four SNRs. The true positive rate for the t-CWT is consistently higher than for 

the MAX procedure, while achieving the essentially same false positive rate (t-CWT: mean α = .0675, MAX: 
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mean α = .05). F1-scores were significantly higher for the t-CWT than for the MAX procedure at all four SNRs 

(-13 dB: 0.92 > 0.87, p < .05; -15 dB: 0.93 > 0.84, p < .01; -16 dB: 0.86 > 0.78, p < .05; -18 dB: 0.76 > 0.60, 

p < .01), indicating higher overall performance of the t-CWT procedure. 

 

 
Figure 1. Results of the simulation studies. True positive rate vs. false positive rate for four signal-to-noise ratios. 

4. Discussion 

Results indicate that the performance of the t-CWT is superior in comparison to a peak detection procedure 

across a range of signal-to-noise ratios. The t-CWT, thus, combines high sensitivity with high specificity. Given 

the low signal-to-noise ratio in brain-damaged patients, these properties suggest a useful role of the t-CWT in the 

analysis of such patients’ data. 
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Abstract. The use of BCI protocols relies on the stationarity of the signals. This assumption may not be hold in 

the real-life situations, where the electrodes may be misplaced, get noisy, or disfunctioned during any 

experiment. Monitoring the EEG signals and quantifying the reliability of the electrodes in order to notify the 

operator could help him to take a counteraction and to improve the BCI performance. In this work, we propose a 

method which monitors changes in the mutual information between the signals of the electrodes, and it is 

counted as the deviation from the expected behaviour. 

Keywords: Anomaly detection, EEG, Mutual Information 
 

1. Introduction 

Bringing BCI outside laboratory needs more care since lay experimenters may not be familiar of using 

devices correctly and on the other hand many factors may affect the EEG signals, such as environmental noise, 

electrode failure and etc [Leeb et al., 2011]. This could degrade the performance of BCI system dramatically. To 

avoid it, there is a need for a systematic approach which monitors signals at run-time and quantifies how much 

the signals deviate from the expected behavior (as observed in a training set). [Sagha et al., 2012] proposed a 

method to monitor data based on the distance of samples to the mean of its conditional distribution giving the 

values of other electrodes. This approach is complex and time consuming which affects the latency of detection. 

Here, we have used another measure based on an information theoretic approach to monitor signals with a faster 

response. 

2. Material and Methods 

We define the deviation of the signal as the difference between the mutual information of a pair of electrodes 

on the test and on the train set. High differences mean the signals do not behave as before. To extract mutual 

information, I, first we filter the signal with a band-pass [4 24] Hz, because this band is usually common 

between most of BCI protocols and experimentally we found that the information in this band is enough for 

anomaly detection. Then the filtered signals are quantized into some predefined bins which could be 

automatically defined [Wand, 1997]. Mutual information between electrodes n and m is computed as: 

 
 



n mbinx biny

nm
ypxp

yxp
yxpI

)()(

),(
log),(         (1) 

At runtime, to compute the deviation, we subtract the I in a window of the data of length L with the I we 

obtained on the training set.  
train

nm

test

nmnm IIDiff            (2) 

To remove the effect of common changes which affects the whole electrodes, the deviation will be computed 

as the distance to the average value of the all differences, Diff , and summed over all the electrodes. 






nm

nmn DiffDiffDeviation
2

)(         (3) 

A moving average window can be used to smooth the values, giving more reliable estimates. The 

computational cost is )(
2

LNO which is quite less than )(
4

enNNO as the cost of the method proposed in [Sagha et 

al., 2012], where N is the number of electrodes and 
enN is the average number of neighbor electrodes of all 

electrodes in the montage. 
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3. Results 

3.1. Swapping Electrodes 

In this experiment we simulate an anomaly by 

swapping two neighbor electrodes. This is to show that 

although the nature of signals is not changing, still the 

method is able to give a high deviation value for the 

swapped electrodes. The experiment is done for 13 

subjects and for each we used two recording sessions, 

one for training and one for testing, then we swapped five 

times randomly two topographically neighbor electrodes. 

The neighborhood could be one of the closest electrodes 

(radius 1) or with an electrode in between (radius 2). The 

used setup is 16-electrode g-Tec system with the 

universal 10/20 EEG cap model. train
I is computed using 

the whole data in the training session. 

The deviation values for the not-swapped (Normal) 

and swapped electrodes are shown in Fig. 1. Sampling 

rate is 256Hz and we set L as 200 samples. The values are the average over the whole session. The deviation 

values are significantly different for the swapped ones are higher than the others.   

3.2. Imposing Electrodes 

In this experiment, we used 64 electrode Biosemi system 

and down-sampled data from 2048Hz to 256Hz. After having 

a 5 minute training data for computing train
I , we recorded 

another 5-minute of data and we imposed anomalies as 

follow: 

1) Normal situation (no anomaly) [30 sec]   

2) Press C4 [30 sec] 

3) Press Cz [30 sec] 

4) Detach FC2 [60 sec] 

5) Detach FCz [60 sec] 

6) Replace FC2 and FCz [60 sec] 

7) Press F5 [30 sec] 

 

The goal of Pressing electrodes is to change the 

conductivity, and for Detaching we are aiming to simulate online disconnectivity.  

 

By counting each of these manipulations as anomalies and setting different thresholds on Deviation  we 

extract the ROC curves. The evaluation is done on all 64 electrodes. The ROC curves for detection of these 

anomalies are shown in Figure 2, for 5 subjects. The skew of the curves toward left shows the low false positive 

rate using any threshold. 

4. Discussion 

Online detection of anomalies in EEG recording is an important issue when BCI goes to clinics and out of 

research labs. The proposed method brings the ability to monitor the signals online and it quantifies the amount 

of abnormality of the EEG streams. This could be counted as reliability of each electrode, and can be combined 

with BCI protocol to improve the performance. We are going to extend this study and investigate the power of 

this method while imposing other kind of noises, such as environmental noise. 
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Figure 1- Deviation value for swapped and 

normally situated electrodes.The topological distances 

of the swapped electrodes are provided in 

parentheses. Top-left: Electrode montage 

 

Figure 2- ROC for the second experiment. 
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Figure 1. Experimental setup, X, Y and Z indicate 
the directions of the axis of the coordinate system. 
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Abstract. Recently published results of a center-out experiment showed the basic feasibility of the 

offline-decoding of hand movements from continuous Electroencephalogram (EEG) recordings. 

However, the decoding accuracy is limited and it is still unclear which conditions may lead to an 

improved estimation of movement parameter. Thus, in the presented work the influence of velocity on 

the decoding accuracy was investigated. The analysis of center-out tasks with different execution 

velocities performed in 5 healthy subjects shows that velocities of the hand are better decodeable, if 

movements are executed with higher velocities. It may be concluded that users of Brain-Computer 

Interfaces (BCIs) based on movement decoding for control of upper extremity neuroprostheses should 

be instructed to use fast movements to improve the decoding accuracy. 

Keywords: Electroencephalogram (EEG), execution velocity, movement decoding, accuracy 

Introduction 

In [Bradberry et al., 2010] it was first shown that offline-decoding of three-dimensional hand 

movements during center-out tasks is basically possible from EEG signals. In the meantime these 

results were confirmed [Antelis et al., 2011; Ofner et al., 2012]. However, accuracy of the decoding of 

movement parameters is limited (range: 0.2 - 0.7) and the influences of the type of feedback or the 

movement execution velocity are unknown. This work aimed at the quantification of the influence of 

execution velocity on the decoding performance. 

Material and Methods 

Five right-handed healthy subjects (3 females and 2 males) participated in the study (age 29 ± 8, range 

22-42). EEG was recorded with 61 electrodes on standard positions of the 10/10 system. The reference 

electrode was placed on the left mastoid, ground on the right. Five synchronized amplifier (g.USBamp, 

g.tec, Graz, Austria) sampled the EEG with 512 Hz. Signals were bandpass (0.01-100 Hz) and notch 

filtered (50 Hz). Upper extremity kinematics were measured with a motion analysis system (Motion 

Analysis Corporation, Santa Rosa, CA, USA). Eight infrared cameras recorded the position of 

reflective markers on the index finger and 32 markers on other anatomical landmarks of the torso/head 

with a sample rate of 64 Hz. The EEG and motion 

measurements were synchronized with a hardware 

clock signal. Processing of the EEG and motion data 

was similar to the methods of [Bradberry et al., 2010]. 

The task was to perform a movement with the fingertip 

of the index finger from a starting position in the center 

to one of 8 fixed targets and to return to the initial 

position (Fig. 1). Range of motion was in X direction 35 

cm in Y 41 cm and in Z 11 cm. Targets were self-

selected and movements were self-initiated. Subjects 

were carefully instructed to gaze at a fixed central point 

and try to avoid eye movements and blinking. For every 

subject 6 runs (5 min. each) were recorded in a fixed 

order: three runs at a low velocity (4 sec. for each 

completed center-out task), two runs at medium 

velocity (2 sec. each task) followed by one run as fast as 

possible. 

Post processing of the EEG data included (1) low-pass filtering (cut-off frequency 30 Hz) (4
th

 order 

butterworth), (2) down sampling to 64 Hz and (3) bandpass filtering from 0.1 to 4 Hz. Post processing 

of the Motion data was low-pass filtering (cut-off frequency 4 Hz) (4
th

 order butterworth). Next, the 

derivations of EEG and motion data were computed and each EEG channel was normalized to a mean 

Y 
X 

Z 
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Figure 2. A: mean correlation coefficient (CC) and standard 

deviation for X, Y and Z velocity components for all runs, X: CC 
for X-direction, Y: CC for Y-direction, Z: CC for Z-direction. Low 

velocity (l), medium velocity (m), fast velocity (f). Colour coding is 

normalized for each subject and velocity component. Normalized 
colour coding was preferred over absolute coding for better 

comparability among subjects. White squares indicate a low mean 

CC, black squares a high mean. 

X 

 

 

Y 

 

 

 

Z 

of 0 and a standard deviation of 1. A linear regression was computed for velocities in X, Y and Z 

direction for the index finger marker in a 8x8 cross-validation using the normalized standardized data 

of all EEG-electrodes of the current sample and the last 7 time lags (~100 ms). 

Results 

Figure 2 shows the correlation coefficient 

(CC) between the computed and the real 

index finger velocity. Mean and standard 

deviation of the CCs for all subjects and 

runs in X-direction is 0.32±0.08, Y 

0.28±0.08 and Z 0.40±0.7 (Fig. 2 A). 

CC increase in every direction with higher 

velocities(Table 1). 

Discussion and Further Steps 

In conclusion, our results confirm those of 

previous studies, that the mean CCs of 

EEG and motion data are in an interval of 

0.2-0.7. In addition, the patterns in Fig. 2 

implies that the velocity components in X, 

Y, Z direction of faster movements are 

better decodeable than slower movements. 

In an additional analysis we reassigned 

EEG data of the subjects to different 

center-out tasks and obtained CCs below 0.01. Therefore, a bias resulting from the intrinsic properties 

of the decoding algorithm can be excluded. In future applications using movement decoding based on 

BCIs for arm neuroprosthesis control users should be the instructed to use fast movements. 

The combination of multi channel EEG and a sophisticated biomechanical model of the upper 

extremity will allow a much more detailed analysis of EEG movement decoding strategies than pure 

end-effector based approaches The next steps in the analysis of the available data will be (1) to 

investigate the correlation between Electroocculogram (EOG) and EEG parameters, (2) to include 

additional features (frequency bands, time windows) and (3) to investigate the accuracy of the decoding 

of other parameters e.g. joint angles, absolute coordinates of body segments or joint moments. 
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Table 1. Correlation coefficient (mean ± 
standard deviation) of real and estimated 

velocity grouped by velocity level and direction. 

 low (l) medium (m) fast 

X 0.22±0.07 0.37±0.08 0.53±0.08 

Y 0.18±0.08 0.33±0.08 0.51±0.07 

Z 0.26±0.06 0.44±0.07 0.73±0.08 

 

 

 

 

A 
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Abstract. Vibro-tactile ERPs were recorded using whole hand stimulation in a classical odd-ball paradigm. Five 

different classification methods applied to single brain responses were compared off-line to perform a sub-

optimal selection of the algorithm for future on-line implementation of a brain-computer interface. 

Keywords: ERPs, vibro-tactile, classification, comparison, odd-ball. 
 

1. Introduction 

Event-related potentials (ERPs) are currently used to assess clinical/cognitive status of paralyzed and non-

responsive patients [Kotchoubey et al., 2003] and to restore basic yes/no communication in severely paralyzed 

patients [Kübler and Birbaumer, 2008]. Recently, the tactile stimulation has been used with stimulator 

placements such as waist, fingertips, foot big toe tip and lip [Brouwer and van Erp, 2010; van der Waal et al., 

2012; Murguialday et al., 2011] because of compromised vision. Restoring basic yes/no communication, 

detection of tactile ERPs was usually performed by arbitrarily selecting the classification algorithm. In this pilot 

study we placed the stimulator for ERPs recording on the palm of one hand (high density of sensory receptors) 

and we investigated the possibility to make a sub-optimal selection of the classification method to be applied to 

single-trial non-target and target brain responses (odd-ball paradigm, [Sutton et al., 1965]). At this aim we 

compared five classifiers for future on-line implementation with feedback: least-squares regression (LS), 

stepwise regression (SWLDA), logistic regression (LG), genetic algorithm (GA) and support vector machine 

(SVM) methods were employed. 

2. Material and Methods 

2.1. Participants 

ERPs measurements were carried out on a group of six healthy volunteers (four  females and two males, 

mean age of 33 years, range 27-50 years) and one Amyotrophic Lateral Sclerosis (ALS) patient (33 years old 

female, ALS-functional rating score 26, [Cedarbaum et al., 1999]). Informed consent was obtained for each 

participant according with the Declaration of Helsinki. 

2.2. Recording Setup and ERP Paradigm 

EEG was recorded using 4 Ag/AgCl scalp electrodes (Cz, Pz, P3, P4) according to the International 10–20 

System, sampled at 512 Hz (band-pass pre-conditioning filter from 0.1 up to 30 Hz; gUSBAmp, g.tec) by 

BCI2000 platform [Schalk et al., 2004]. Vibro-tactile stimulation of the hand was provided by the end-effector of 

a haptic device (Phantom, Sensable). A single stimulus consisted of a sinusoidal force field along the x-axis of 

the end-effector lasting for 600ms. The force field frequency was set to 20Hz for non-target stimuli and 100Hz 

for target stimuli, its magnitude was set to 1.5N for both cases. EEG epochs of 1.25s length synchronized with 

each stimulus (.25s before and 1s after stimulus onset, error smaller than 5ms) were grouped in two classes (non-

target and target). Exploiting the classical odd-ball paradigm, a pseudo-random sequence of non-target 

(probability .7) and target (probability .3) stimuli was presented to each participant with an inter-stimulus 

interval of 2s. Each participant was asked to grasp the end-effector, close his/her eyes and count target stimuli. 

Four sequences of 40 stimuli were presented to each participant (i.e. 160 epochs). 

2.3. Off-line ERPs Analysis 

Off-line classification of brain responses to target and non-target stimuli were performed using the following 

algorithms: LS, SWLDA and LG methods as implemented in BCI2000; GA as described in Dal Seno et al. 

(2008); radial-basis function kernel SVM as described in Joachims (1999). To compare the five classification 

methods, the same set of 32 features was extracted from each single epoch applying the following procedure to 

every single channel separately: low-pass filtering at 8Hz (order 4, zero-phase), direct current adjustment using 

pre-epoch interval (.25s) and down-sampling of the post-stimulus interval (1s) with a factor of 16. For each 

participant a randomly chosen half of the ERPs dataset (i.e. 80 epochs) was used to train the five classifiers, the 

remaining half to test them. The cross-validation procedure was repeated 50 times for each classifier and for 

each recorded channel separately. The mean error was estimated by the averaging of the classification errors 

considering all epochs and repetitions. A two-way ANOVA for repeated measures was performed only on 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

85

mailto:stefano.silvoni@ospedalesancamillo.net


-200 0 200 400 600 800

-20

-10

0

10

20

Time (ms)

P
Z

 (
u

V
)

averaged ERPs (healthy, N=6; ALS, N=1; low-pass 20Hz)

 

 

healthy non-target

healthy target

ALS non-target

ALS target

SVM GA LS SWLDA LG
0

0.1

0.2

0.3

0.4

0.5

0.6

m
e

a
n

 c
la

s
s
if
ie

r 
e

rr
o

rs
 (

c
h

. 
P

z
)

errors on classification of all epochs

 

 

healthy

mean

std

ALS

chance

healthy subjects’ results considering channels and classifiers as factors. ALS patient’s ERPs classification results 

were compared to the healthy subjects’ results by means of single-case test [Crawford and Garthwaite, 2002]. 

Averaged ERPs and mean classification errors evaluated at channel Pz are illustrated in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Healthy and ALS averaged ERPs and mean classification errors on all epochs for each classifier at channel Pz. 

3. Results 

ANOVA of mean errors showed a significant main effect of classifier (F(4,100)=73.6; p<.001), but no 

significant main effect of channels (F(3,100)=.49; p=.69). Contrasts revealed that SVM error estimates were 

significantly lower than the other four classifiers error estimates (always p<.001). Repeated t-test between error 

estimates of each couple of channels and for each classifier showed non-significant results (Pz was used in later 

comparisons). Concerning ALS patient ERPs classification results we found no significant differences between 

error estimates at channel Pz and those of healthy participants (considering each classifier separately). 

4. Discussion 

The first result indicates that a sub-optimal selection of the classifier is possible. The SVM classification 

outperformed all others methods. The second evidence indicates that there is no difference concerning the 

channel selected for feature extraction among the channels used in this experiment since the classification was 

performed for each channel separately with the same procedure. Hence a single channel could be used to record 

and classify this type of ERPs. The third evidence is that ALS patient’s ERPs can be classified with errors 

similar to those of healthy subjects. 
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Abstract. Modeling electroencephalographic (EEG) correlates of mental states of brain-computer interface 

(BCI) users’ can be used to adapt BCI’s operation. It can also serve to develop BCIs not targeted at providing a 

control signal to operate a device, but rather whose main goal is only to monitor users' mental states, e.g. 

attention levels. In this off-line study we test the feasibility of real-time recognition of subject’s sustained 

attention to the visual feedback used in our BCI applications. Cross-validation results indicate usable accuracy.  

Keywords: Brain–Computer Interface (BCI), Electroencephalography (EEG), Attention, Visual System  
 

1. Introduction 

EEG-based BCIs rely on identifying signals that can be intentionally modulated by the user to control a 

device. However, such control signals are superimposed on the fluctuating background of EEG correlates of 

myriad other cortical processes. A way to deal with this issue is to develop algorithms automatically adapting to 

the resulting non-stationarities, regardless of their neurophysiological underpinnings. However, for a well-

defined subset of “background mental processes” it should be more beneficial to explicitly model their EEG 

correlates. This way additional data is gathered on the user’s state, which can provide a more informative 

explanation of a degradation of the control signal. It is debatable, what such subset of modelable “mental states” 

should be. Attention, however, seems to be a good candidate as it is reasonably well developed conceptually and 

experimentally [Knudsen, 2007]. Here we take a pragmatic approach. Since most of our BCI applications rely on 

motor imagery with visual feedback, this makes them a special instance of a visuomotor task. Thus sustained 

visual attention is required to operate them. Lapses in such kind of attention, should therefore be recognized and 

influence BCI’s operation.     

2. Methods 

We recorded 64-channel EEG while subjects (n=8) performed visual and auditory reaction-time tasks. In the 

center of a computer screen we displayed a rectangular bar (identical to the visual feedback used in our BCI 

applications), which moved horizontally changing direction every 3~6 s (random intervals). Subjects were also 

wearing pneumatic earphones through which we played alternating epochs of white and pink noise, switching 

also every 3~6 s, independently of visual stimuli. Visual and auditory streams were played continuously, while 

subjects' attention was cued to one of them by an icon of an eye or a loudspeaker in a fixed location over the bar; 

the icon also served as eye fixation point. Every 40~60 s the subject heard a tone and the cue changed. The 

subjects’ task was to respond as quickly as possible to visual (bar direction changes) or auditory (changes in the 

noise) stimuli by pressing the left mouse button. After every cue change, a mean response time from the 

completed block was displayed on the screen directly above the cue for 2 s to keep the subject engaged in the 

task. If fatigued, the subjects could pause the experiment at any time by pressing the right mouse button; they 

pressed it again to resume. The experiment lasted 30 minutes, excluding breaks taken by the subjects. 

3. Results 

Average results of our experimental manipulations largely confirm the effects of visual attention known 

from basic neuroscience: attenuation of the occipital (“visual”) alpha (8-12 Hz) rhythm (e.g. [Foxe et al, 1998]), 

that is reversed once the attention is disengaged from the visual domain (Fig. 1A). Two of out of eight subjects 

do not demonstrate this effect, and, tellingly, they are the subjects in whose case single-trial classification fails 

(see below). For single-trial classification we used spectra from 10 s non-overlapping epochs of data. 

Discriminant power of the features across subjects was located in alpha and lower beta (13-20 Hz) bands, over 

occipital and parietal cortices (Fig. 1 A, B). We estimated the performance of a two-class LDA classifier on the 

data with leave-one-out cross validation. In every fold the LDA classifier was based on two most discriminant 

spectro-spatial features, based on their Fisher score from the training data (using specifically two features 

generalized well across subjects). Results are presented in Fig. 1C. For six out of eight subjects over 70% of 

samples were correctly classified; for the remaining two subjects classification was unreliably low. 
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Figure 1. (A) Averaged spectra from parietal and occipital electrodes for visual (broken line) and auditory (solid line) 

attention conditions for each subject. Shadings indicate discriminant power (Fisher score) for particular frequencies (see bar 

on the right for scale). Labels in upper-right corner of each plot are subject IDs. (B) Scalp distribution of discriminant power 

in alpha (8-12 Hz) and lower beta (13-20) bands. Plots show grand averages across subjects; data from each subject was 

rescaled to unit scale prior to averaging. (C) Accuracy of classification of visual vs. auditory attention (two-class LDA), 

estimated with cross-validation. Broken line indicates empirically estimated chance level of p=0.05. 

4. Discussion 

In this study we tested the feasibility of recognizing subject’s sustained visual attention, contrasting it with 

auditory attention. We chose auditory attention for the contrast task, instead of rest, to discern processes 

specifically related to visual attention. We do not confound them with other variables, such as cognitive 

workload, motor activity, etc.: they were constant across the conditions. Moreover, due to the neuroanatomy of 

auditory cortices [Weisz et al, 2011], in EEG we expected mostly to see correlates of visual attention – or lack 

thereof – and our results confirm this. The spatial distribution of discriminant features clearly relates to visual, 

but not auditory processes (Fig 1B). Our results suggest there may be two separate EEG carriers of sustained 

visual attention accessible to BCI, with distinct distributions: the occipital (“visual”) alpha and more anterior 

(parietal) beta activity. The first process (i) seems to best lend itself to single-trial recognition presumably 

because of EEG alpha’s broadest dynamic range (best signal-to-noise ratio), and (ii) has relatively clear 

neurophysiological underpinnings (e.g. [Foxe et al, 1998]). Moreover, it should be regarded as fundamental, 

since the absence of alpha modulation seems to exclude any reliable classification (see subjects “f1” and “i6” in 

Fig. 1). The significance of lower beta is less elucidated. If more observed more anteriorly, it is related to motor 

processes [Pfurtscheller et al., 1999], if co-registered with alpha oscillations, it can simply be a harmonic of the 

latter. Its involvement in visual attention in human EEG is controversial, but rarely has been reported as opposite 

to what we observe [Kamiński et al., 2012]. However, theoretical neurophysiological explanation is beyond the 

scope of this communication. Here we specifically used visual stimuli employed in our motor imagery-based 

BCI applications for the purpose of developing these applications to include monitoring of an operationally 

defined, but presumably generalizable attentive state – and in this respect the results seem promising.  
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Abstract. We applied Random Forest (RF) classifiers on electroencephalographic (EEG) data of right hand vs. 

feet motor imagery (MI) and achieved a cross-validation classification accuracy of 79% on average over 10 

participants. Furthermore, we used the intrinsic Gini Index (GI) based feature rating mechanism of the RF 

classifiers to find most discriminative features and compared them to the differences in the event related 

desynchronization/synchronization (ERD/S) maps between the classes. We found mu and beta band measured at 

position C3 most important for classification, which is in line with current state of knowledge. 

Keywords: BCI, EEG, ERD/S, Motor Imagery, Random Forests, Feature ranking 
 

1. Introduction 

One crucial issue to achieve good on-line performance in sensory motor rhythm (SMR) Brain-Computer 

Interfaces (BCI) is the selection of the most discriminative oscillatory components. In this work we study the 

usefulness of the Random Forests (RF) ensemble classifier for classifying electroencephalographic (EEG) motor 

imagery (MI) data. RF classifiers are interesting because in other areas they achieve high classification 

accuracies and they have a built in feature rating mechanism, which can be useful for checking the validity of the 

selected features. Furthermore, RF are robust against outliers and can handle high dimensional input variables. In 

this work, we perform offline analysis of right hand vs. feet MI data and compare the feature rating results with 

event related desynchronization /synchronization (ERD/S) maps. 

2. Material and Methods 

2.1. Random Forests Classifier and Feature Rating with Gini Index 

A RF classifier is an ensemble of many decision trees. Each decision tree contributes a vote for a majority 

decision about the class membership of an ensemble classifier’s input. An ensemble classifier’s accuracy 

depends on two things: High accuracy of the individual tree, and low correlation between the trees [Breiman, 

2001]. For RF classifiers, the correlation can be decreased by using randomness during the training of the 

classifier. The randomness is introduced through an individual bootstrap sample of the training data for each tree 

and through an individual random feature subset for each split in each tree. Decision trees split up the training 

trials into subsets which should be as pure as possible. The purity is measured with the Gini Index (GI) 

[Breiman, 1983]. The GI is a measure of statistical dispersion and is zero if all class labels in a subset are the 

same and one if all class labels in a subset are uniformly distributed. The ratio between GI before and after the 

split is calculated and that feature is chosen which decreases that ratio at most. As there are many different 

decision trees in a RF classifier the average decrease in GI among all trees caused by a feature can be calculated. 

High average decrease means that this feature is often found to be the best selection to produce pure subsets, 

which is equivalent to the statement that this feature contains information about the class membership and is 

therefore important [Breiman, 2001]. 

2.2. Paradigm and Data Processing  

EEG recorded by a standard cue-based paradigm with 4 s time periods of right hand and feet MI was 

analyzed [Müller-Putz, 2010]. Laplacian derivations of the positions C3, Cz and C4, according to the 

international 10-20 system, were divided into overlapping (0.5 s) windows with a length of 1 s. A fast Fourier 

transform (FFT) was applied to each window. We limited the frequency range from 5 to 40 Hz at a frequency 

resolution of 1 Hz. Absolute values of the 108 frequency bins (36 freq. at 3 channels) were used as features for 

the RF classifiers. Classifier’s settings: 1000 trees, the bootstrap sample’s size was equal to the number of 

training trials, 10 random features for each split in each tree. We used artifact free trials (up to 80 per class; 

visual inspection) of a participant, to calculate 10x10 fold cross-validation (CV) accuracies for each time 

window and each participant independently. Further, we calculated the GI based feature ratings, and the ERD/S 

time/frequency maps for each class [Pfurtscheller, 2001]. To validate whether features GI ratings and differences 

in ERD/S maps relate, we computed the correlation coefficients between the GI ratings and the significant 

differences of ERD/S maps. Significant means where the 99% confidence intervals of the ERD/S maps values 

did not overlap. 
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3. Results 

The CV results and the correlation coefficients of each participant are presented in Table 1. Figure 1 shows 

one example of the calculated maps and the average GI feature rating over all participants. 

Table 1. Peak cross-validation accuracies of RF classifiers and correlation coefficients between RF classifiers feature 

rating and significant (99% confidence interval) differences of ERD/S time/frequency maps of the classes right hand vs. 

feet (n.s. not significant). 

Participant S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean 

RF 94% 70% 75% 86% 91% 64% 70% 85% 74% 80% 79% 

Corr. coeff. (p<0.001) 0.45 n.s. n.s. 0.34 0.16 0.44 n.s. 0.17 0.12 0.71 0.34 

 

 
Figure 1. 1a) GI rating map for right hand vs. feet MI of participant S10. Each time segment was individually analysed. 1b) 

difference of ERD/S time/frequency maps between right hand and feet MI for participant S10. 1c) average GI 

ranking average over all participants. Note: Color coding of the maps is not compareable, because the color was 

normalized to the maximum value of the respective map. 

4. Discussion 

RFs were successfully applied to EEG data for single trial classification of MI. We computed an average 

peak accuracy of 79%. For comparison DSLVQ achieved 81% [Müller-Putz, 2010]. The training of the classifier 

and the calculation of the ratings was reasonable fast with about 1 s per classifier. The time for classifying one 

sample was less than 0.05 s. The top rated features for MI were in average the frequencies in the mu and in the 

beta band of channel C3 (Fig. 1c). Moreover, in average there were important features on the ipsilateral side 

(C4), which is in line with literature [Pfurtscheller, 1997, 2001]. Although there is a noticeable similarity 

between the GI rankings (Fig. 1a) and the differences of ERD/S maps (Fig. 1b), the computed correlation 

coefficients (Tab. 1) were low. A possible cause is that significant differences of ERD/S maps were rather spots 

than sustained due to the low resolution of the maps and the assessment of ERD/S differences to certain 

frequencies can slight vary between ranking and difference maps due to the dissimilar calculation methods (FFT 

vs. band passing). 

Summing up, Random Forests classify motor imageries in EEG and are able to find neurophysiological 

reasonable features. We are currently working on an online study using RFs and first results are promising. 
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Abstract: Among classical rehabilitation techniques for patients with stroke, there is insufficient evidence to state that a 

specific approach is more effective in promoting recovery than other. Only combination of different rehabilitation 

strategies seems to be more effective than conventional therapy alone. Currently  robotic devices for nurorehabilitation 

are based on a Bottom-Up approach. We have developed a new tool based on a Top-Down Approach, in terms of 

kinematic and electromiographic (EMG) feedback for the recovery of ankle mobility and the treatment of ankle muscle 

spasticity. Positive results were found in terms of spasticity reduction and increment of agonist vs. antagonist activity. 

This feasibility study supports the idea that a Top-Down approach can be effective in neurorehabilitation, for reducing 

spasticity and improving EMG activation pattern in stroke subjects. 

Keywords:Stroke, ankle, rehabilitation, EMG, kinematics  

1.Introduction  

The key point of TOP-DOWN (TD) rehabilitation approach is to control and 

enhance patient collaboration and attention  [Langhorne, 2011] during 

physiotherapy (PT) in order to enhance TD control and improve motor 

function and brain reorganization. This approach represents a significant 

change from the traditional bottom-up (BU) approach that relays more on 

peripheral intervention over peripheral reflexes and proprioceptive 

stimulation [Belda-Lois et al, 2011] . We applied TD concept by means of 

kinematic and electromyographic visual biofeedback training using a new Ankle-Foot Orthosis (AFO) for ankle 

rehabilitation in stroke subjects. 
Figure 1: AFO tool and EMG sensors 

 

2. Material and Methods  
The AFO, showed in Figure 1, was formed by a specifically designed exoskeleton for the ankle, allowing for dorsi-

plantar flexion movements, containing a set of sensors for on-line and off-line analyses of ankle joint range of motion 

(ROM - °) and ankle joint angular velocity (SPEED - °/sec.) in sagittal plane. AFO also contained 4 electromyographic 

electrodes record EMG activities of dorsiflexor (Tibialis Anterior - TA, Extensor hallucis longus - EHL) and 

plantarflexor (Gastrocnemious - G, Soleus - S) ankle muscles.  Five sub-acute stroke subjects were enrolled into 

experimental group (EXP) and matched according to clinical and epidemiological features with other 5 subjects 

enrolled into CTRL group (CTRL). For EXP and CTRL group mean (sd) age, time from lesion and aetiology were 

respectively: 60.8 (15.96) – 66.2 (14.60) years; 64.8 (35.73) – 88.2 (30.16) days; 80% ischemic - 20 % aemorragich 

aetiology. Both groups underwent 6 weeks treatments, 5 times a week, 60 minutes each day in a lying down position 

with knee and hip flexed and with AFO tool and EMG sensors applied (Figure 1). For CTRL group whole treatment 

was devoted to conventional rehab training (i.e. proprioceptive exercises, passive and active tasks of 

dorsiflexion/plantarflexion movements) but without vBFB. EXP patients underwent 40 minutes of the same CTRL 

group treatment, followed by 20 minutes of vBFB training. 2 PC monitors were placed in front of EXP patients for real 

time vBFB monitoring (ankle angle and angular velocity on the first screen, and EMG patterns of TA, EHL, S and G on 

the other screen). vBFB training: 8 minutes of passive movements performed by physical therapist in which patients 

had to maximize proprioception and maintain muscles relaxed, 2 minutes of pause, 10 minutes of active movements in 

which we asked patient to gradually increase angular velocity. When EMG signals showed characteristic EMG patterns 

of spasticity the exercise was interrupted, and subsequently restarted. For both groups assessment was performed at 

beginning of the study (T0), after 15  (T1) and 30 rehabilitation days (Tend).  Clinical evaluation: active and passive 

ankle dorsiflexion and plantarflexion ROM, Modified Asworth Scale (MAS). Instrumental assessment: ankle SPEED, 

EMG activities recorded during 5 tasks of active and passive dorsiflexion movements. Instruction gave to subjects for 
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passive movements were to stay relaxed without helping physical therapist, while for active movements were to try to 

move as fast as possible the ankle. Data provided by the AFO tool were adequately processes, in order to obtain for 

each subject mean values of 5 active/passive peaks of SPEED used for dorsiflexion movements. We evaluated EMG 

activity by using a Coactivation index CI= (TA+EHL)/(S+G) defined as ratio between sum of flexor muscles and sum 

of extensor muscles. A CI equal to 0 represents a co-contraction of agonist and antagonist muscles. Rehab target is to 

achieve positive CI values. For each patient we analyzed and averaged 5 maximum peaks of CI corresponding to the 5 

EMG activity peaks during dorsiflexion movements of T0, T1 and Tend assessments.  

3. Results 

Clinical and instrumental assessment results are reported in Table1. Statistical differences between groups at T0, T1 and 

Tend, reported as grey cells in Table1, were assessed in order to point out outstanding results by means of Independent t 

test. At T0 clinical features were comparable between groups (p>0.05).  In order to stress progressive improvements 

due to training, an ANOVA analysis was performed for each group between T0, T1 and Tend. Significant results among 

training steps were obtained only for EXP group: at Tend, in comparison to T0, it was observed a significant reduction 

in MAS and increments in Active Velocity and CI (p<0.05 for all indexes).  
 

 
Table1: Results of clinical and instrumental assessments. Grey cells indicate significant comparisons between EXP and CTRL groups  

at T0, T1 and Tend (p<0.05) 

EMG % of improvement obtained by means of trainings were also assessed for each group, and reported in Table 2. 

Statistical comparison between groups underlined statistical differences for TA, G and S (*: p<0.05).  

 
Table 2: EMG muscles improvements, indicated as Tend vs To improvements 

(%); “-” represents a reduction in EMG activity 

 

4. Discussion 
The use of AFO tool in association with vBFB suggests the idea of the 

efficacy of a tool based on a TD Approach in neurorehabilitation. These 

preliminary data on TD approaches supports the implement of BCI based rehab tools. Present results seem to indicate 

the AFO as a valuable tool to exploit efficacy of BCI integrated robotic rehab devices. Kinematic and 

electromyographic vBFB addition to the conventional rehabilitation protocols seems to be more effective than 

rehabilitation alone for improving ankle spasticity, angular velocity and EMG activation in stroke subjects. These 

results are in line with the EMG % of improvements, obtained especially in EXP group.  
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T0 T1 Tend T0 T1 Tend T0 T1 Tend T0 T1 Tend T0 T1 Tend T0 T1 Tend T0 T1 Tend T0 T1 Tend

EXP1 3,0 2,0 1,0 80,0 90,0 95,0 90,0 95,0 95,0 135,0 135,0 135,0 135,0 135,0 135,0 29,1 26,8 18,0 25,7 25,9 18,9 43,5 30,8 37,9

EXP2 3,0 2,0 0,0 90,0 95,0 95,0 90,0 95,0 97,0 90,0 95,0 140,0 140,0 140,0 140,0 16,9 11,2 13,7 0,0 0,0 0,0 2,1 1,3 2,2

EXP3 4,0 3,0 1,0 80,0 90,0 95,0 95,0 95,0 95,0 135,0 135,0 140,0 135,0 135,0 140,0 19,8 5,3 27,4 17,5 6,1 34,1 3,2 5,3 5,1

EXP4 3,0 1,0 0,0 95,0 90,0 95,0 95,0 95,0 95,0 95,0 95,0 135,0 135,0 135,0 135,0 9,5 12,2 10,5 0,0 6,1 4,2 1,3 5,8 8,3

EXP5 4,0 2,0 4,0 80,0 92,0 90,0 85,0 88,0 85,0 100,0 110,0 115,0 120,0 120,0 120,0 10,4 15,8 21,1 3,5 3,8 5,7 2,2 1,8 14,3

MeanEXP 3,4 2,0 1,2 85,0 91,4 94,0 91,0 93,6 93,4 111,0 114,0 133,0 133,0 133,0 134,0 17,1 14,3 18,1 9,3 8,4 12,6 10,5 9,0 13,6

SDEXP 0,5 0,6 1,5 7,1 2,2 2,2 4,2 3,1 4,8 22,2 20,1 10,4 7,6 7,6 8,2 7,1 7,1 5,9 10,4 9,0 12,5 16,5 11,1 12,8

CTRL1 2,0 2,0 1,0 70,0 70,0 95,0 95,0 70,0 80,0 120,0 120,0 120,0 120,0 120,0 120,0 14,2 14,2 16,8 12,3 3,5 4,7 2,4 2,6 1,8

CTRL2 4,0 4,0 4,0 115,0 115,0 100,0 85,0 85,0 90,0 120,0 120,0 110,0 120,0 120,0 120,0 22,1 18,9 19,7 11,6 0,9 2,6 13,5 1,4 1,7

CTRL3 3,0 3,0 3,0 80,0 95,0 105,0 80,0 80,0 80,0 120,0 120,0 110,0 120,0 120,0 120,0 17,9 15,0 17,3 0,4 0,0 0,3 2,6 3,3 3,1

CTRL4 4,0 3,0 3,0 110,0 85,0 100,0 85,0 85,0 85,0 110,0 105,0 120,0 120,0 120,0 120,0 24,7 30,5 17,0 0,5 16,4 6,7 0,6 6,8 18,2

CTRL5 2,0 1,0 1,0 75,0 80,0 80,0 60,0 75,0 80,0 110,0 110,0 125,0 110,0 110,0 125,0 24,6 26,2 32,0 11,8 15,6 26,5 7,1 9,5 8,4

MeanCTRL 3,0 2,6 2,4 90,0 89,0 96,0 81,0 79,0 83,0 116,0 115,0 117,0 118,0 118,0 121,0 20,7 20,9 20,6 7,3 7,3 8,2 5,2 4,7 6,6

SDCTRL 0,9 1,0 1,2 20,9 17,1 9,6 12,9 6,5 4,5 5,5 7,1 6,7 4,5 4,5 2,2 4,1 6,4 5,8 5,6 7,2 9,4 4,6 3,0 6,3

PlantiFlexAct PlantiFlexPaxMAS DorsiFLexAct DorsiFLexPax Coactivation IndexActive VelocityPassive Velocity
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Abstract. This study presents results of an offline experiment comparing brain computer interfaces of varying 

complexity over a sample of 10 subjects. The aim of this experiment is to determine the optimal number of 

intentional control tasks that can be used by subjects to maximise the usability of the interface. Despite various 

levels of proficiency from the remaining users, the 3-class problem (2 intentional control tasks and a no-control 

state) led to the highest bit-rates for all non-illiterate users. 

Keywords: Motor-Imagery, Brain-switch, System-paced BCI. 

1. Introduction 

Brain switches based on the event related (de)synchronisation (ERD/ERS) complex have been investigated 

recently due to their simplicity in terms of setup, calibration and usage [Pfurtscheller and Solis-Escalante, 2009]. 

However, these interfaces suffer from low information transfer rate (ITR), as only a single bit is transmitted per 

trial and each trial has a minimum duration of 3-4s, due to the time required to perform motor imagery (MI) and 

the manifestation of the ERS following MI. As such, their application has been predominantly relegated to an 

on/off switch to enable the user to engage with a more effective BCI [Pfurtscheller et al., 2010]. 

One application which is often linked to MI based BCI is the navigation of a space. Indeed, a control 

interface has been proposed to allow a BCI with a single intentional task (IC) to navigate a space [Velasco-

Alvarez et al., 2010]. However, such an system requires an intermediary interface to translate the basic control 

signal (is the subject performing MI) into the desired action in the 2-dimensional space (turn left, turn right and 

walk). As such, utilizing more IC tasks would be beneficial to reduce the need for an intermediary interface and 

render the navigation more seamless to the user, such as in Scherer et al. [2008] where rotation direction was 

controlled by each hand and forward movement was controlled by foot or tongue MI. The drawback of using 

multiple IC tasks with an ERD based BCI is that the subjects typically require numerous calibration and training 

sessions in order to achieve acceptable control of the interface. 

Here, we investigate an ERD/ERS based BCI which is based on similar principles as brain-switches, but can 

discriminate between multiple IC tasks as well as the no-control (NC) state. The performance of the BCI as a 

function of the number of IC tasks discriminated is evaluated over 10 subjects to determine the optimal number 

of tasks to maximise the usability of the system, measured here by the ITR rate. 

2. Material and Methods 

2.1. Experimental setup and data acquisition 

A total of 10 subjects were recruited to perform MI without feedback. Subjects watched a monitor showing a 

fixation cross, and at random intervals one of three cues appeared corresponding to right hand, left hand or foot 

MI. The duration of the cue was 2s, and the subjects were instructed to perform MI only while the cue was on-

screen. For each subject, a total of 100 presentations were obtained for each IC task, and longer inter-cue breaks 

were used to obtain NC data (150 trials). 

2.2. Transducer design 

The BCI transducer investigated here is based on ERD/ERS features [Thomas et al., 2012]. Only 3 channels 

are used: C3, Cz and C4. The EEG is bandpass filtered between 4-40Hz, and decimated from 512Hz to 128Hz. 

Each trial is represented by the spectrograms of each channel based upon the short time Fourier transform with 

non-overlapping windows of 0.25s. Thus, each coefficient represents activity in a particular channel spanning 

over 0.25s and 4Hz. The original feature vector is composed of all the coefficients corresponding to 8-30Hz and 

0-4s with respect to the cue onset.  

Three different systems are compared corresponding to the different number of IC tasks classified. For a 

single IC task vs NC, the optimal IC task is determined in training, feature selection is performed via paired t-

tests of all spectrogram coefficients and a linear support vector machine (SVM) is used for classification. For the 

2 IC tasks and NC case, a similar pipeline is used: the optimal pair of IC tasks is computed in training via t-tests, 

and 2 optimised feature sets are used with 2 SVMs (NC vs both tasks, and task1 vs task2). For the 3 IC tasks and 

NC problem, a genetic algorithm is used to determine a single optimal feature set for the 4-class problem and a 

multiclass linear discriminant is employed for classification. 
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3. Results 

 The results presented here were calculated via nested cross-validation using 5 contiguous blocks for the 

testing folds, and 5 randomised nested blocks for the validation stage in which the parameters were selected. 

Table 1 shows the results obtained in terms of information transfer rate (ITR), as this metric allows for 

comparison between BCIs with different numbers of classes. We note that all but one subject achieve the highest 

ITR in the 3 class problem. It can also be seen that 2 of the subjects (S7 and S9) appear to be BCI illiterate, as 

even the simplest BCI paradigm yields extremely low ITR. The mean values are presented for both the entire 

subject set and the for only the subjects considered non-illiterate. 

Table 1. Results in terms on ITR (bit/min). Subjects considered BCI illiterate have been marked by an asterisk. 

Subjects 1 IC vs NC 2 ICs and NC 3 ICs and NC 

S1 9.9 12.6 10.6 

S2 6.8 10.1 7.9 

S3 4.3 5.5 2.1 

S4 3.5 9.6 7.2 

S5 4.5 5.9 4.1 

S6 7.2 10.4 9.5 

S7* 0.3 0.8 1.1 

S8 7.6 7.8 4.3 

S9* 1.1 1.5 0.8 

S10 10.7 12.2 11.4 

Mean 5.6 7.6 5.9 

Mean non-illiterate 6.8 9.3 7.1 

 

The specificity of the NC class for the non-illiterate subjects was 81% for the 2 class problem, 80% for the 3 

class problem and 69% for the 4 class problem. The mean task specificity was 91% for the 2 class problem, 73% 

for the 3 class problem and 52% for the 4 class problem 

4. Discussion 

Several conclusions can be drawn for the results presented in table 1. First, it can be seen that certain 

subjects (S7 and S9), deemed BCI-illiterate, achieve ITR rates too low for useful control of the interface, 

regardless of the simplicity of the task. However, for the remaining subjects 2 IC tasks and a NC state result in 

the largest ITR values. This is particularly interesting as the non-illiterate group is comprised of both high 

performers (S1, S2, S4, S6 and S10) and average performers (S3, S5, S8). 

One noteworthy aspect of the results is that the specificity of the NC state remains high for both the 2-class 

problem (81% specificity) and the 3-class problem (80% specificity). Thus, the addition of a second IC task does 

not decrease the ability of the BCI to identify the NC state, and the reduction in task specificity (91% to 73%) is 

acceptable due to the overall increase in ITR. 

In conclusion, for the presented processing scheme, 2 IC tasks and a NC state can be discriminated to give 

the largest ITR. This suggests that for all subjects in which the ERD/ERS is observable and can thus be 

classified, employing 2 motor effectors rather than a brain-switch will lead to higher ITR, and thus more useful, 

and natural BCI paradigms. 

 It should be noted that the results here represent the performance of the offline transducer rather than that of 

the overall BCI in an online self-paced scenario. Furthermore, the inclusion of subject training and the 

availability of more data could result in higher ITR for more complex paradigms. 
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Abstract. We present a novel selection mechanism for binary input channels such as motor imagery EEG, which 

is robust to very high noise levels and biased inputs. This technique makes otherwise weak channels usable for 

interaction, and closely approaches theoretical optimal performance, while retaining a simple, clear interface.  

Keywords: Motor imagery, error correction, bias, spatial selection 
 

1. Introduction 

Motor imagery based EEG is a widely-used paradigm for BCI control, which is distinctive in that is not 

externally evoked. However, it is slow, supports few output classes and noise levels tend to be very high. 

Although some individuals may perform reliably, even sophisticated binary motor imagery BCIs often have 

reliabilities <80% for many users [Blankertz et. al. 2008].  Conventional user interfaces (e.g. backspace or undo) 

cannot cope with error rates at this level. We show how a simple user interface can be built around probabilistic 

feedback error-correcting codes, which facilitates interaction at very close to the theoretical optimum. 

2. Method 

Our approach uses posterior-matching feedback error-correction codes to facilitate input. Because BCI is highly 

asymmetric, with a very low bandwidth input channel and a high-capacity feedback channel [Williamson et al, 

2006], we can take advantage of effectively instantaneous and noise-free feedback (such as a visual display) to 

perform efficient error-correction with very short code lengths. In our system, the decoding algorithm maintains a 

probability density over the unit interval [0,1], which is initially uniform. The input the user is trying to 

communicate is mapped onto this interval as a value xt (e.g. by arithmetic coding). Interaction proceeds by 

repeated bisection, where the median value m of the distribution is displayed to the user, and the user 

communicates whether xt>m or xt<m at each time t. This is displayed spatially so that each step the user makes a 

left/right choice on a number line. 

 

If this were trivial binary bisection, there would be no tolerance for errors. By maintaining a complete probability 

density over the interval throughout selection, and distorting this density appropriately after each input, any level 

of error tolerance can be achieved [Shayevitz and Feder 2007]. Moreover, this tolerance is very close to the 

theoretical capacity of the input channel. By adjusting the distortion function, the decoder is also near-optimal for 

asymmetric channels (i.e. where there is bias – which is often the case with motor imagery). This decoder 

requires accurate knowledge of the channel statistics of an input channel – the true noise level and bias 

distribution - but we have constructed an adaptive variant of the algorithm which can track these statistics 

continuously without additional input overhead. 

 

We have built a user interface around this algorithm, in which users zoom in upon a two-dimensional target. 

Selection is performed by alternating between two of these robust decoders, one for each spatial dimension. The 

result is a target reticule which gradually contracts around the intended target; errors automatically result in the 

reticule backing off. The interaction is carefully tuned to minimize visual disturbance, by intelligently rendering a 

selection reticule of constrained minimum size and zooming only as required, and by rotating the unit square by 

45
o
, such that dimension alternation can still be mapped to direct left/right input (see Fig. 1a). 

3. Results 

We have performed detailed offline simulation to evaluate the performance of the algorithm, along with proof-of-

concept tests with online simulators and live motor-imagery BCI. The performance of the decoder is determined 

by two main factors: the length of a message before decoding is finalized, and the matching of the true channel 

statistics to estimated channel statistics. Longer messages are more efficient but are more difficult for humans to 

deal with, as they require “bundling” input into longer chunks. While this makes sense for tasks such as selecting 

a word from a dictionary or indicating a region on a map, it is unsuitable for real-time interaction as would be 

required to control a robot. We have found that good performance can be achieved for message lengths as short 

as 16 bits. Fig 1b shows the empirical performance of the decoder in simulated trials for 16 bit blocks.  
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Figure 1.  (a) The selection interface for selecting 2D regions with minimal visual disturbance. In this case, the user would 

try and execute a “left” command for the next input (b) The performance of the decoder, shown as inputs per 

correct bit communicated, against channel reliability. ● simulated performance for a symmetric noisy channel; ♦ 

completely biased noisy channel (i.e. Z-channel – bit flips can only occur from 0->1). The Shannon symmetric 

channel bound is shown as --, and the Z-channel bound as +.  

Tests with online simulation, where a user interactively controls an input with BCI-like signal properties using a 

simple keyboard interface, have very similar performance to that seen in the offline automated simulation. We 

have also performed a single-subject 1 hour-long BCI trial with the interface as part of an on-going study, and the 

performance, although obviously inconclusive from such a small test, suggests that the simulation models are an 

accurate model of true performance. Table 1 shows results for various block lengths averaged over channel 

reliabilities from 60% to 90%. 

Table 1. Performance in simulated trials, with known channels statistics. Results are the average of 500 symbol selections 

for 20 channel reliabilities in the range [0.6, 1.0]. Performance is given as a multiple of the Shannon bound. 

Symbol length (bits) Relative performance  

24 

16 

1.182 

1.254 

8 1.421 

4 1.491 

4. Discussion 

Existing user interfaces for BCIs are often frustrating and break down completely with reliability  <80%. But this 

is often the level of performance which is achieved for a broad range of subjects. Our results show that the 

transparent encapsulation of robust probabilistic error-correcting codes in an visually simple user interface can 

provide reliable and efficient input for these low-reliability channels. It still remains to be seen how well the 

adaptive algorithm can cope with real BCI variability in channel statistics. 
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Abstract. BCI systems may be employed in stroke rehabilitation to monitor and reinforce EEG patterns 

generated by motor imagery (MI). In the rehabilitative path of a stroke patient, therapists would encourage and 

reinforce any residual (or recovered) execution of the MI trained hand movements. For this reason, a hybrid 

BCI-driven rehabilitative device was proposed in order to boost motor recovery of the upper limb in stroke 

patients. This system would employ brain signals generated from motor attempt and reinforce voluntary 

contraction reflecting correct muscles activation as recorded by surface electromyography (EMG). The aim of 

the present work is to provide an EMG classification method that would be compliant with the current 

rehabilitation principles.  

Keywords: BCI, EEG, EMG, FES, Post-stroke rehabilitation 
 

1. Introduction 

In BCI applications for stroke rehabilitation, sensorimotor (SMR) based BCI systems are used in order to 

provide patients with an instrument that is able to monitor and reinforce EEG patterns generated by motor 

imagery (MI). This task-specific training is meant to improve motor recovery by exploiting the activity-

dependent brain plasticity phenomena [Pichiorri et al., 2011]. A further implementation of rehabilitative 

protocols can be achieved by employing motor-related brain activity to supplement impaired muscular control. 

In the rehabilitative path of a stroke patient, therapists encourage and reinforce any residual (or recovered) 

execution of the MI trained hand movements, yet ensuring that this does not induce unwanted contractions and 

spasticity. In this regard, a hybrid BCI-driven rehabilitative device was proposed in order to boost motor 

recovery of the upper limb in stroke patients (Fig. 1a). The communication between system modules was 

realized using the Tobi interfaces [Breitwieser et al., 2012].  In this hybrid approach, the patient’s motor intent is 

recognized (EEG patterns) and the muscle contraction is produced via FES only if his/her specific EMG features 

of the patient’s voluntary motor attempt are recognized as “correct” [Aricò et al., 2012].  

Here, we performed a feasibility study over two subject, with the aim of identify and classify the specific 

muscular patterns which must be reinforced (and/or suppressed) depending to the specific required movement, 

according to the current rehabilitation principles. 

2. Material and Methods 

Two post-stroke patients were involved in this study; residual strength in distal segments of the stroke 

affected upper limb was 4 according to the Medical Research Council scale for muscle strength. EMG signals 

were recorded (8ch g.USBamp, gTec, Austria, 256Hz) from 4 positions (finger flexor and finger extensor, biceps 

and triceps). Subjects were asked to perform two simple hand movements (grasping and finger extension) with 

the affected hand. The experiment was carried out in the presence of rehabilitation experts who were asked to 

label each motor task as “correct” or “incorrect” according to current rehabilitation principles. For each type of 

movement, patient had to perform the movement, until there were at least 10 correct trials labeled as good by the 

expert (in this study, ~20 trials were performed for each task). In an offline stage, we evaluated and tested a 

classification method that would reflect the “human decision”. In this regard, we used different rules (in 

agreement with the neurorehabilitation experts and compliant with the current rehabilitation principles), which 

could provide information on the quality of the movement, according to the required task and the patient’s 

clinical state (spasticity, residual strength, etc.). In this regard, for the finger extension, the EMG patterns were 

considered as correct when the signal amplitude of the target muscles (finger extensor and triceps) was higher 

than the amplitude of their antagonist (finger flexor and biceps). As for the grasping movement, the attempt to 

grasp may cause unwanted (involuntary) recruitment of the biceps muscle, due to an increase in flexion 

spasticity. Therefore, classification patterns were considered successful when the signal amplitude on the finger 

flexor was higher than the biceps. These principles were translated into mathematical expressions, and used to 

classify the required movement using the EMG patterns. In order to obtain a signal directly correlated with the 

contraction strength, we evaluated the EMG (filtered between [20-80] Hz and rectified) linear envelope. 
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Furthermore, maximum voluntary contractions (MVCs) for each muscle and the rest EMG value (extracted at 

the beginning of the experiment) were included in the classifier, in order to normalize the EMG scores between 0 

and 1. We evaluated the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) curves 

calculated over the classified trials, in order to estimate the correspondence of our method results  to the 

neurorehabilitation expert labeling procedure. Additionally, we introduced an automatic procedure to update the 

rest values of the EMG score for each trial during the experiment (continuous recalibration), in order to make the 

classification process more robust to the patient’s posture changes during the experiment.  

 

 
 

 

 

Figure 1. (a) Hybrid BCI controled FES application for post-stroke motor rehabilitation; (b) AUC of the classifier for each 

patient and task, with and without recalibration;(c) example of “correct” and “incorrect” trial and threshold 

chose through ROC curves evaluation. 

3.  Results 

AUC values reveal that automated classification of EMG patterns show a good match with the experts’ 

evaluation. Moreover the adaptive classification method allows to achieve higher (but not significant, p>.05) 

AUC values with respect to the classification method which does not provide a continuous recalibration of the 

EMG value related to resting state. Considering continuous recalibration the accuracy of the system reached on 

average 80%. 

4. Discussion 

The aim of the proposed study was: i) to evaluate a classification method for EMG signals that would be in 

agreement with the neurorehabilitation experts and compliant with the current rehabilitation principles (accuracy 

of the system); ii) to evaluate the accuracy of the system applying an adaptation of the resting value trial by trial, 

in order to make the system more robust to the changes of the patient posture over time. Preliminary results, 

showed that the proposed classifier reflects with an high accuracy (~ 80%) the judgment criteria of the 

neurorehabilitation experts. Furthermore, continuous recalibration of some system parameters (e.g. rest values), 

improves the accuracy of the classifier. The proposed system has been installed in a rehabilitation hospital ward 

and is currently under testing with the participation of post-stroke patients and rehabilitation experts. We expect 

to generate a generalized model of EMG classifiers (based on the algorithmic implementation of rehabilitation 

expert knowledge), empowering the physiotherapist’s ability to evaluate the correctness of the patient’s residual 

motor activity and thus, improving the patient’s functional motor recovery.  
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Abstract Motor imagery-based brain machine interfaces (BMIs) have been shown to be a promising substitute 

when the body's own peripheral motor system fails. However, not all users are able to achieve a sufficient degree 

of control of such systems and there is an open debate on the underlying causes of this phenomenon. In this 

study we use ultra-high-field magnetic resonance imaging (MRI) to investigate whether anatomical and 

functional characteristics of the brain explain proficiency of BMI control. 

 

Keywords: BCI performance, Functional Magnetic Resonance, Kinesthetic motor imagery 
 

1. Introduction 

Principal non-invasive BMI approaches utilize various signals registered with scalp electroencephalography 

(EEG), particularly desynchronization and synchronization of cortical oscillations accompanying imagined 

movement. Many users have successfully used such systems for controlling devices like wheelchairs [Carlson 

and Millán, 2012] or telepresence robots [Tonin et al., 2011]. The development in the field over the last decades 

has progressively contributed to transfer the technology from controlled laboratory conditions to real-life 

environments. Nevertheless, there is evidence that a significant percentage of the population is not able to attain 

proficient control of a typical BMI system. To explain the reason behind proficiency, several studies attempted 

to identify psychological and neurophysiologic features as predictors of BCI performance [Blankertz et. al., 

2010; Halder et al., 2011; Hammer et al., 2012]. In this preliminary study we investigated whether, and to what 

extent, the inter-subject variability in the control of motor imagery-based BMI systems is explained by 

functional and anatomical characteristics of the brain. We used ultra-high-field MRI to measure differences in 

brain activation during imagery of movements in trained BMI users.  

2. Material and Methods 

Three subjects took part in this pilot study (p1, p2, p3). Participants were selected from a sample of BMI 

users within our laboratory. All of them had previous experience with motor imagery-based BMI.  

Subjects were visually cued to imagine – performing kinesthetically – three motor tasks: repetitive 

flexion/extension of the (i) right hand (RH), (ii) left hand (LH), and (iii) simultaneously both feet (FT) with a 

control condition of – similarly visually cued – No-Imagery (No-IM). The experimental protocol consisted of 

three imagery runs, each containing five 10-second trials of each of the above tasks in random order.  

Imaging was performed on a 7T Magnetom Siemens scanner, and all images were acquired using a 32 

channel head coil. Three-dimensional anatomical scans were acquired with high-resolution 1 mm (3D 

MP2RAGE sequence (Marques et al., 2010), repetition time (TR) 5500 ms, echo time (TE) 2.84 ms). Functional 

T2*- weighted images using echo planar imaging sequence (EPI) were acquired using the following parameters: 

TR 2500ms, TE 26 ms, flip angle 75 degree from Anterior Commissure-posterior Commissure (ACPC), 46 

oblique slices with 1.5mm gap,1.5×1.5×1.5 mm
3
 voxel size, covering the whole motor strip. 

SPM8 (http//:www.fil.ion.ucl.ac.uk/spm) software package was used to preprocess and analyze the 

functional data. Images were realigned to correct for head movements, whereupon they were co-registered with 

each subject’s anatomical MRI and subsequently normalized to the Montreal Neurological Institute’s (MNI) 

reference brain. The voxels were spatially smoothed with an isotropic Gaussian filter of 3 mm full width at half-

maximum. A linear regression model (General Linear Model - GLM) was fitted to the fMRI data to obtain the 

brain regions more correlated to each motor imagery task (height threshold T=3.10, p<0.001 uncorrected). 

3. Results 

To find functional brain areas activated during kinesthetic motor imagery that reflect the EEG features in 

BMI control, we contrasted the activity of imagery tasks to No-IM. As shown in Fig. 1.a, p1 had activations in 

multiple sensorimotor areas in all the three conditions. This subject achieves 100% accuracy by modulating EEG 
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features of left hand versus feet, or hands versus feet. Subject p2 had less activity in sensorimotor areas (Fig. 

1.b). This subject has BMI session accuracy on average 80% modulating right hand and feet. Subject p3 had the 

smallest activation in primary sensorimotor areas (Fig. 1.c). Specifically, the spatial location of the Precentral 

Gyrus activation (z=25) might explain the p3's poor BMI performance (less than 60%) since it is anatomically 

less readily accessible by EEG. 

 

 
 

 
Figure 1. a) High proficiency in all the BMI classes; b) Reasonable proficency in one class (i.e right hand versus feet 

imagery);  c) No profiency in any of the BMI classes. 

As shown in Table 1 other non-primary motor regions within the motor imagery network [Decety, 1996] 

were activated in at least one imagery condition.  

Table 1. Specific activation during foot and left hand motor imagery  

Contrast Anatomical Region Subject         Cluster size  

(T=3.10, p<0.001, uncorrected) 

FT > No-IM 

 

 

 

 

 

LH > No-IM 

Middle Frontal Gyrus_L 

Superior Frontal Gyrus_L 

Middle Frontal Gyrus_R 

Inferior Frontal Gyrus_R 

Inferior Parietal Lobule_L 

Medial Frontal Gyrus_L 

Inferior Frontal Gyrus_R 

p2, p3 

p2, p3 

p2 

p2 

p1,p2 

p2 

p1 

369,70 

64,164 

101 

369 

203,591 

322 

271 

4. Discussion 

Our preliminary study reveals a direction to pursue in explaining a long-standing question of the causes of 

failures in BMI control. Although this pilot's small sample does not allow us to statistically compare the results 

with previous literature, they suggest that the brains of proficient motor imagery-based BMI users have 

functional and spatial features that predispose them to such proficiency. An upcoming full-scope study will 

verify this claim on a larger sample. In addition, an ongoing brain morphometry analysis is also testing the 

hypothesis that brain structure is a factor affecting BMI performance. 
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Abstract. Non-invasive brain-computer interfaces (BCIs) are limited by a low signal-to-noise ratio and a 

consequent high error rate. Error correction mechanisms based on Error-related Potentials (ErrPs) have been 

studied extensively but reliably detecting such potentials in single trials has proven to be a challenge. We 

propose a new detection strategy based on the extraction of time- and frequency-domain information with a dual-

tree complex wavelet transform (DT-CWT). Different classification techniques are evaluated and the stability of 

DT-CWT features is demonstrated, thus advancing toward reliable and efficient error-corretion mechanisms in 

BCI. 

Keywords: EEG, Error-related Potential, Single-trial analysis, Complex Wavelet Transform 
 

1. Introduction 

Over the years, non-invasive brain computer interfaces have become increasingly accurate, yet errors are 

still frequent and bound to occur. The implementation of error correction mechanisms in general, and via the 

detection of error-related EEG potentials in particular, has the potential to provide significant improvements in 

both the usability and reliability of BCI systems. This requires accurate recognition of ErrPs in single trials. In 

particular, care should be taken to avoid false positives as they dramatically reduce the BCI bitrate by 

introducing spurious error correction. 

In the current paper we present a novel approach to the detection of ErrPs by exploiting the frequency-

domain information obtained with the Dual-Tree Complex Wavelet Transform [Kingsbury et al., 2005] in 

addition to time-domain values. This transform, notable for being computationally efficient (similar to the 

discrete wavelet transform) and shift-invariant, yields stable features for ErrP patterns as detailed below. Several 

classification strategies based on these features are evaluated and compared, notably with regard to the overall 

decrease in errors across the BCI communication channel. 

2. Material and Methods 

2.1. Datasets 

The approach to ErrP detection presented in this paper has been evaluated on two datasets. Both datasets are 

based on the ‘Dancing Robot’ protocol [Ferrez and Millán, 2008; Chavarriaga and Millán, 2010]. Each dataset 

contains recordings of six subjects on two separate days (several weeks or months apart). The two datasets have 

five subjects in common. In the ‘Interaction’ dataset, the user is led to believe he’s controlling a square displayed 

on the screen through motor imagery. The square moves in discrete steps toward a ‘target’ position but 20% of 

the steps go in the opposite direction, thereby eliciting an error-related potential.  In the ‘Monitoring’ dataset, the 

same events take place on the screen but the subject is only instructed to monitor the movement of the square, he 

doesn’t feel responsible for its behavior. 

2.2. Methods 

All processing on the datasets was carried out offline but the processing architecture is designed for real-

time execution and the results thus reflect the expected online performance. The EEG signal is acquired over 64 

electrodes (10/20 configuration) at 512 Hz. It is re-referenced to common average reference, low-pass-filtered 

below 17 Hz (Chebyshev II, order 6), down-sampled to 64 Hz and high-pass-filtered above 2 Hz (Chebyshev II, 

order 4). The dual-tree complex wavelet transform is then applied to the signal and the band power computed 

over the following frequency bands is kept: 1-2 Hz, 2-4 Hz, 4-8 Hz, 8-16 Hz. In parallel, time-domain features 

are obtained by further filtering the signal below 12 Hz (FIR, order 20). Fisher’s discriminant is then computed 

for a one-second window, over all channels and features (both time and frequency domain). The 100 most 

discriminant features are retained. The classifier is then trained on the data from one day of recording and tested 

on the other. Two classification algorithms, noteworthy for their simplicity and speed, have been evaluated: 

LDA and k-NN (k=15, obtained by cross-validation). Two ‘reference’ classifier performance indices were used: 

LDA-T (i.e. LDA over time-domain features only) and LDA-F (DT-CWT features only). The LDA decision 

boundary was chosen in all cases so as to minimize the number of errors along the communication channel, 

knowing a priori the 20% error rate in the protocol. This favors high specificity at the expense of sensitivity. 
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Figure 1. Left: discriminant power (Fisher’s criterion) on data for electrode Cz. Right: Topography of the discriminant 

areas for bands 8-16 Hz (a) and 4-8 Hz (b), 390ms after stimulus. Few channels provide most of the information.  

3. Results 

The frequency-domain information extracted by the complex wavelet transform provides consistent and 

stable features, with high discriminative power in compact sets of features (see Fig. 1). These features enable the 

classifiers to perform moderately well in terms of sensitivity whilst achieving very high specificity.  

The ‘Interaction ErrP’ dataset benefited most from the error-correction methods proposed herein. With 

respect to the initial 20% error rate of the dataset, the BCI errors were decreased by 28.3% by using the LDA 

classifier and by 38.6% with the k-NN classifier, as opposed to a mere 12.7% decrease with LDA-T and 15.8% 

with LDA-F. It should also be noted that none of the subjects experienced an increase in error rate because of the 

error-correction mechanism we implemented, whereas one did with LDA-F (+24.2%) and three of them did with 

LDA-T (up to +20.7%). 

Results are, however, less conclusive with the ‘Monitoring ErrP’ dataset. Its very low signal-to-noise ratio 

makes the detection of ErrPs less reliable. In particular, the features for two subjects have low discriminability 

both in time and frequency domain. In this dataset, the reference LDA-T classifier increases the error rate on the 

BCI channel by 2.2% on average. Nonetheless, LDA-F manages to reduce errors by 6% and the LDA exploiting 

both time- and frequency-domain features reaches a decrease of 9% on the number of errors (25% excluding the 

two low-performance subjects). On the other hand, the k-NN demonstrates high variability in performance 

between subjects (from -45.8% errors to +53.4%) which results in no statistically significant effect.  

Table 1. Average classifier performance over the two datasets. ‘Interaction ErrP’ is left, ‘Monitoring ErrP’ is on the right. 

Classifier Sensitivity Specificity AUC ΔError Sensitivity Specificity AUC ΔError 

LDA-T 63.1% 87.4% 75.3% -12.7% 40.3% 89.4% 64.8% 2.2% 

LDA-F 53.8% 90.5% 72.2% -15.8% 34.8% 92.8% 63.8% -6.0% 

LDA 67.8% 90.1% 79.0% -28.3% 38.0% 92.8% 65.4% -9.0% 

kNN 52.5% 96.5% 74.5% -38.6% 41.4% 89.7% 65.5% -0.1% 

4. Discussion 

We have presented the use of the Dual-Tree Complex Wavelet Transform for the detection of Error-related 

Potentials. The results are encouraging and these features could be considered for other kinds of evoked 

potentials. Whilst complex wavelet transform cannot substitute the use of time-domain information in ErrP 

classification, it does provide complementary information that may lead to higher accuracy. Further work would 

be aimed at leveraging the statistical relations between features for classification purposes as well as evaluating 

and extending these tools to Error-related Potentials generated in asynchronous protocols, where time-domain 

features aren’t sufficient to achieve reliable detection. 
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Abstract. Psychological factors such as users' ability to concentrate on a task and their visuo-motor coordination 

ability have been identified to predict performance in sensorimotor rhythm based Brain Computer Interfaces 

(SMR BCI). The present study investigated if performance can be enhanced by active intervention prior to BCI 

usage. N=59 healthy, naive subjects took part in one of three different interventions (two-hand coordination 

training, Jacobsen’s progressive muscle relaxation training and BCI-related book chapter reading) before 

performing an SMR BCI session. Preliminary results indicate that relaxation exercise has a positive effect on 

performance, and relaxation level of the user could be a predictor of SMR-BCI performance. 

Keywords: Brain Computer Interfaces (BCI), Sensorimotor rythms (SMR), Relaxation 

 
 

1. Introduction 

Sensorimotor-based Brain-Computer Interfaces (SMR BCI) allow a user to control a device by modulation 

of motor cortex signals resulting from imagined localised body movements. Current systems are constantly 

improving thanks to hardware and software development. However, we are still facing a phenomenon called 

“BCI inefficiency” stating that 10% to 50% of users do not achieve accurate control over the interface [Kübler et 

al., 2011].  

Psychological variables have been found to correlate with SMR-BCI performance [Hammer et al., 2012]. (1) 

The score achieved in a visuomotor coordination task (guiding a visually displayed point in a two-dimensional 

track utilizing a controller with separate horizontal and vertical controls). (2) The “attentional impulsivity” value 

from the Barrat Impulsiveness Scale (BIS), and (3) Attitude Towards Work (AHA). Visuomotor task (1) depicts 

a person’s motor related ability whereas questionnaires (2) and (3) display a person’s ability to concentrate on a 

task. Guided by these results, the current study investigated if BCI performance could be increased by a prior 

(non-BCI) training intervention. Subjects participated in a relaxation exercise, or a visuomotor coordination 

training. The control group did not participate in such trainings but was reading BCI related literature instead. 

2. Material and Methods 

The preliminary results presented in this abstract are from N=59 healthy, BCI-naïve participants (17 male, 

aged 23.3, SD=4.7). The intended sample size of this study will be N=162 participants. EEG was recorded from 

64 active electrodes (BRAIN PRODUCTS ActiCAP system, 10-20 system) with dense electrode coverage of 

motor areas. 

 

2.1. Pre-BCI Intervention 

Subjects were randomly assigned to one of the three groups. (1) in the “Relax" group, subjects were 

instructed to listen and follow a 23 min audio recording of Jacobson Progressive Muscle relaxation, which 

consists of an alternation between maintained contraction of groups of muscles and relaxation. (2) The “2Hand” 

group was given a knob controller for each hand. The left knob controlled vertical movement and the right knob 

horizontal movement of a point that had to be accurately steered on several narrow paths displayed on the screen. 

(3) The “Information” (control) group read a text about current BCI Technology for the same amount of time. 

 

2.2. BCI Session 

The BerlinBCI software system with co-adaptative calibration was used in this study [Vidaurre et al., 2011]. 

The session started with a three minute “eye open, eye closed” recording. Then, each run followed the same 

scheme : At 0s, a fixation cross appeared in the middle of the screen, at 1s a directional arrow appeared, 

instructing subjects about the target movement (left hand, right hand or feet movement) they had to 

kinesthetically imagine. As a feedback, the fixation cross changed color and moved in the direction interpreted 

by the classifier during 3s, then a 2s break followed. During calibration runs, independent adaptive LDA 

classifiers indicated “positive-only” feedback for each movement imagery. After 120 trials, frequency bands 

were chosen and subject-specific LDA classifiers were trained with extracted features using Common Spatial 
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Filters. The two imageries that were best discriminated were chosen for the online runs, which comprised 80 

trials each. Performance depended on the subject’s ability to move the cross in the correct direction.  

2.2. Psychological Tests 

Several psychological tests were administered, but only results of a visual analog scale (VAS) to coarsely 

assess relaxation are reported here. The VAS ranged from 0 (not at all relaxed) to 10 (maximally relaxed) and 

was filled out by the subjects immediately after the intervention. 

3. Results 

Average level of correct SMR modulation was M=72.6%. The Relax group had a higher mean M=78.1%, 

compared to 2Hand group M=71.9% and Information control group M=68.0%, as detailed in Table 1.  

A 3 (group) by 4 (run) repeated measures ANOVA yielded significant interaction between group and time, 

F(5.26, 147.22)=2.61, p≤.025. Post-hoc pairwise comparisons revealed that in runs 1 and 2 the Relax group 

performed significantly better than the Information group (both p≤ .05). Correlation between performance and 

relaxation VAS score was significant for all runs, r(57)=.289, p≤.014. 

 

Table 1. Performance means for all run and all intervention groups (1). Correlation between relaxation Visual Analog 

Scale value after intervention and performance across all intervention groups for each online run (2). 

Online 

run 

(1) Feedback performance[%] (2) Correlation 

Relaxation 
N=19 

2Hand 
N=20 

Information 
N=20 

Total 
N=59 

performance and 
relaxation VAS value 

Mean STD Mean STD Mean STD Mean STD r Sig(1-tailed) 

1 79.3 15.5 72.5 19.8 63.8 14.5 71.8 17.7 .256 .026 

2 76.2 14.4 71.2 16.9 66.0 10.2 71.0 14.5 .232 .040 

3 79.4 13.1 72.3 16.9 71.1 13.0 74.2 14.7 .295 .012 

4 77.5 16.5 71.6 16.4 71.1 13.7 73.3 15.6 .299 .011 

All 78.1 14.9 71.9 17.5 68.0 12.9 72.6 15.6 .289 .014 

4. Discussion 

Relaxation exercise seems to positively influence performance in an SMR controlled BCI, however, its 

effect decreases with time. The Progressive Muscle relaxation technique centers subject’s thoughts on body 

sensations and might help them to concentrate, thus possibly allowing them to better kinesthetically imagine the 

movement. The relaxation level of the subject could thus possibly serve as a performance predictor for SMR-

BCIs. Visuomotor coordination training did not show any significant effect on performance. Visuomotor 

coordination, however, is a skill that may develop with longer training. Short-term intervention may only have a 

negligible effect on this predictor. More data will be acquired, to further corroborate our results or reject our 

hypotheses. 
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Abstract. We develop a simple algorithm that uses the backspace key to recalibrate a standard P300 speller 

during use. We show it to be efficient in a series of computer simulations mimicking an electrode breakdown, 

where the spelling accuracy is shown to recover in about 50 trials.  

Keywords: grid-based P300-speller, adaptive BCI's, failure detection, online recovery  
 
 

1. Introduction 

The “Backspace” key of the standard computer keyboards is interesting to consider from the perspective of 

adaptive BCI P300-spellers. It may indeed provide an information (or a guess) about the correctness of the 

previous spelling, and thus allow to decipher between valid letters and invalid letters in the current series of 

spelled characters. We developed a specific algorithm where (i) a training set, containing only the most recent 

examples, is maintained during use and (ii) the device recalibration is allowed only when the rate of correct 

spelling is too low (typically 3 successive failures). 

2. Material and Methods 

2.1 Algorithm: Online Recalibration using the “Backspace” key  

In principle, it is possible to recalibrate the device every time a letter is not followed by a backspace, which 

is obviously too resource-consuming. Here we propose to recalibrate the system only when a significant 

performance drop is observed. Our algorithm relies on a very simple (and quite coarse) online estimation of the 

spelling performance, based on the number of failures observed in the last trials. The device update is allowed 

when an unexpected series of failures is observed. For that, a counter fail_counter is used for counting the 

number of failures since the last success. Two global parameters need to be set: TRAINING_SET_SIZE sets the 

maximal size of the training set and FAIL_MAX the maximum number of failures allowed since the last success. 

  

1 training_set ← training_session() 

2 spatial_filter, classifier ← calibrate_device(training_set) 

3 fail_counter ← 0  

4 (feature_vectors_set, letter) ← extract_last_example(training_set) 

5 loop 
6     (previous_feature_vectors_set, previous_letter) ←  (feature_vectors_set, letter) 

7     feature_vectors_set ← vectorize_and_filter(EEG_input, spatial_filter) 

8     letter ← classify(feature_vectors_set, classifier) 

9     if letter is a backspace then 

10         fail_counter ← fail_counter + 1 

11     else  

12         if previous_letter is not a backspace then 

13             fail_counter ← 0;  

14             training_set ←add_new_example(previous_feature_vectors_set, previous_letter) 

15             training_set ←delete_oldest_examples_if_needed(TRAINING_SET_SIZE) 

16         end if 

17     end if 

18     if (fail_counter = FAIL_MAX) then 

19         spatial_filter, classifier ← calibrate_device(training_set) 

20         fail_counter ← 0; 

21     end if 

22 end loop      

2.2. Dataset and Simulations 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

105

mailto:emmanuel.dauce@univ-amu.fr


 For our simulations, we use an EEG dataset from a P300 experiment reported in [Maby et al., 2010].  There 

was no backspace key in the initial experiment, but a standard 6x6 grid. This dataset contains 20 different 

subjects, each subject having had to spell out 220 letters where every row and every column was flashed 5 times 

per letter. The correct response is known for every trial and every subject.  

For every subject, we run 1000 different simulations. For each simulation, we shuffle the 220 trials, take an 

initial training set of 25 examples, calculate an xDAWN spatial filter [Rivet et al., 2009] and a LDA classifier 

[Krusienski et al., 2008]. Then we test the online recalibration from trial #26 to trial #220. At trial #101, the EEG 

signal from one electrode taken at random is replaced by a white noise, causing a drop in the rate of successful 

recognition. The spelling correctness is measured at each trial by comparison with the expected response 

recorded in the dataset.   

3. Results  

Just after training, the average spelling accuracy is around 84%, which is a typical performance for a five 

repetitions P300 setup. Then, as there is no backspace key in the initial experiment, we introduce artificial 

backspace hits in the series.  Considering the 70% lower bound in spelling accuracy after training (which is true 

for all subjects except for one), we use 30% false positive backspace hits (irrelevant hit when the spelling is 

correct), and 30% false negative (no hit when the spelling is incorrect).  
 

 

 

 

 

 

 

 

 

 
Figure 1 : Online recovery using automatic recalibration, with 30 % erroneous backspace hits, and an electrode 

breakout taking place at trial # 101 (*). The average spelling accuracy is calculated at each time step over 20 subjects x 1000 

simulations. The horizontal dotted line gives by comparison the spelling accuracy attained when no recalibration is made. 

Trials #1 to #25 are used for the initial training . TRAINING_SET_SIZE = 25, FAIL_MAX = 3. 
 

After running 1000 x 20 experiments, the average spelling accuracy is calculated at each time step and reported 

on Fig. 1. The effect of a single electrode break (out of 32) appears quite strong, with a big drop from almost 

85% correct to less than 72% correct.  There is no improvement (and possibly a slight decrease) up to trial 100, 

then, after the electrode breakout, the spelling accuracy is found to almost recover to its initial level in about 50 

trials. 

4. Discussion 

The spelling error information contained in a backspace hit has been shown useful for the device adaptivity 

to unexpected changes. We have proposed an easy take-home adaptive algorithm that should now be validated in 

real-world experiment and compared and/or combined with other adaptive algorithms proposed in the literature.    
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Abstract.  

Event-related potentials (ERPs) are frequently used to support clinical assessment of patients with disorders of 

consciousness (DOC). Usually, patients are told to passively “just listen” while ERPs are recorded. However, 

comparative data from healthy particicpants is needed and this data is usually recorded under different, mostly 

active, conditions. Here, we investigated whether the passive listening of tone streams and semantic stimuli can 

result in misleading ERP responses. Healthy participants performed three different attention tasks (divided, 

passive and focus attention). Preliminary results revealed that the ERP responses are modified in respect to the 

attentive modulation regardless of the perceived subjective effort. 

Keywords: MMN, N400, attention, EEG, event-related potentials 
 

1. Introduction 

In clinical assessment of DOC patients ERPs have been proven to be a successful tool to detect residual 

cognitive functions [e.g. Kotchoubey et al. 2005]. In research, ERP components related to specific brain 

processes could be extracted (e.g., mismatch negativity (MMN) and N400). Those components could also be 

found in DOC patients. When applying such paradigms in DOC patients, they are hardly ever provided with an 

instruction beyond “just listen”, viz. the paradigms are passive. In healthy participants this passiveness can lead 

to drowsiness, inattentiveness and eventually frustration which then results in undistinguishable ERP responses. 

However, comparative data from healthy participants are indispensable if the ERP data of DOC patients should 

be interpreted in terms of cognitive processing.  

Research in attentive modulation of MMN and N400 responses has a long history. To this research we 

append the investigation of the effect of passiveness on ERPs. Based on the well-studied MMN [Sussmann, 

2007] and N400 component [Kutas & Federmaier, 2011] we investigated whether reduced levels of attentive 

awareness lead to a continuous attenuation of these components. Most importantly, we wish to clarify how 

passive listening, commonly used in patients, is mastered by healthy participants compared to active tasks.  

2. Material and Methods 

The sample included seven participants (one male, mean age = 36.1 yrs, SD = 9.2). EEG was recorded with 

a 32 active electrodes system (Brain Products, Germany) with a sampling frequency of 512 Hz. The experiment 

consisted of three different pseudo-randomly presented attention tasks. In the divided attention task (I) 

participants watched a movie during auditory stimuli presentation and pressed a key when a certain scene 

appeared. In the passive attention task (II) participants were required to carefully listen to the auditory stimuli. 

And finally, in the focus attention task (III) participants were required to indicate with a specific key the odd in 

the oddball paradigm or to use two different keys for semantically congruent and incongruent stimuli. Auditory 

stimulation was realized in three different paradigms: (1) an oddball with 1000 harmonic tones (900 frequents 

with a duration of 50 ms, 100 odds of 25 ms), (2) a word-prime paradigm with 200 word pairs (100 semantically 

related, 100 unrelated) and (3) a sentences paradigm (100 semantically congruent, 100 incongruent). A scale for 

subjectively experienced effort ranging from 0 to 220 [Eilers et al., 1986] was administered after each paradigm. 

EEG data were band-pass filtered between 0.1 and 25 Hz and segments from 0 to 500 or 1000 ms depending 

on the paradigm were averaged. Finally, grand averages were obtained. 

3. Results 

We only analysed the mean amplitude values of the relevant ERP components (MMN between 100 and 220 

ms, N400 between 200 and 600 ms) by performing a repeated measures ANOVA including three factors 

(divided, passive and focus attention). 

Results reveal that an MMN was elicited in all three tasks. The differences between deviants and standards 

varied significantly according to the task (F(2,5) = 20.1, p = .000) with the difference being largest in (II) and 
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smallest in (III). In the word-prime paradigm an N400 was only elicited in (III). The differences between related 

and unrelated word pairs varied significantly according to the task (F(2,5) = 14,5, p = .001) with the difference 

being largest for (III) and smallest for (II). In the sentence paradigm an N400 was elicited in (II) and (III). The 

differences between congruent and incongruent sentence endings did not differ significantly depending on the 

task (F(2,5) = 1,54, p = .254). 

 

 
 

Figure 1:  Brain responses to standards and deviants (congruents/related and incongruents/unrelated) and the respective 

differences recorded at Cz for each paradigm and task  
 

Subjective ratings for experienced effort indicate (I) as the least tiring task (M = 36.7, SD = 42.7 over all 

paradigms). Tasks (II) (M = 84.7, SD = 47.7) and (III) (M = 79.1, SD = 53.3) were by trend perceived as broadly 

more effortful. 

4. Discussion 

Both, MMN and N400 are modulated by the attention tasks. The found attenuation of the MMN component, 

especially in the focus attention task, seems to contradict previous research showing no MMN alternation 

following divided attention or even an enhanced MMN in focussed attention [Sussmann, 2007]. Keeping in mind 

we talk about preliminary data, we suspect the attenuation to be caused by the elicitation of the following P300 

component in the passive and focus attention task.  

As expected, there was no N400 elicited when attention was drawn away from the stimuli [McCarthy & 

Nobre, 1993]. Interestingly, in the passive attention task an N400 was not elicited when participants only 

listened, even though the subjectively perceived effort was as high as in the focus attention task. These results 

are contrary to our expectation because we expected mere listening to be less effortful than pressing a key.  

Critically, we need to analyse more ERP components to ensure no overlapping effects influencing the 

attenuation of our expected components. To obtain clearer results more participants need to be recorded.  
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Abstract. In this paper we present the preliminary results of a pioneering attempt to predict the timing of steering 

actions in a driving task. The subjects drove a car at constant speed on a simulated highway in a Driving 

Simulator. The EEG activity during periods of straight driving and during lane change actions has been recorded. 

Classifiers were build on the signals recorded from the motor cortex area for straight and pre-steering periods. 

The onset of the steering actions was detected 641 ms before the action with 68.8% true positive rate. 

Keywords: Car simulator, motion related potential, classification, steer timing prediction 
 

1. Introduction 
Brain-computer interfaces (BCI) provide means of interaction by decoding brain signals correlated with 

certain tasks or cognitive states. We are trying to develop a BCI especially taylored for facilitating the 

interactions between drivers and intelligent cars. The cognitive state of the driver or the intentions for future 

actions could be used to create an easier to control interface with the vehicle, leading to less stress and improved 

safety. Several in the lab studies aimed at detecting movement intention showed encouraging results (Lew et al., 

2012). While attention level detection has been studied both in real and simulated driving environments (Ito et. 

al., 2006) only few attempts have been made to predict drivers’ motion while driving  (Haufe et. al., 2005). 

While most of the previous motion timing detection studies have been performed in simplified protocols, this 

study aims at detecting steering action movements from non-invasive EEG measurements in a natural driving 

task performed in a realistic driving simulator. 

  

2. Material and Methods 
 

2.1. Experimental protocol 

A simple but realistic driving simulator was used for this experiment. It simulates one of the highways in 

Switzerland. 6 subjects were instructed to drive at constant speed and to do a lane change to the left and another 

one to the right on certain parts of the course. The timing of the lane changes was self paced. Steering and pedal 

positions, vehicle dynamics as well as 10/20 extended 64 EEG channels have been recorded together.    

 

 
Subject sitting in the driving simulator (a) and the visual field while driving (b) 

2.2. Signal processing and preliminary analysis 

The EEG signals have been preprocessed using CAR, filtered between [0.1Hz 1Hz] and the mean value has 

been substracted from each channel.  

3 types of epochs have been defined and any time the driver changed the lane was defined as a trial. Periods 

of 4 seconds on straight lines with no large steering actions are called Straight Epochs. Periods of 4 seconds 

before the start of the steering action are called Preparation Epochs and the 4 seconds after the start of the 

steering called Steering Epochs. For this study, left and right steering actions were considered together, while the 

comparison was done between the Preparation Epochs and the Straight Epochs.  

LDA classifiers were trained on windows of Preparation and Straight trials data. In order to see the influence 

of the training data position in time, the training window has been chosen in 6 different positions (ending 800ms 

before the onset of the movement, until 300ms before movement in steps of 100ms). Also two lengths of the 

window were chosen, 250 ms and 500 ms. In total 12 different classifiers were trained. Each of them were then 

applied at each 10ms time points of the 4s trials. True Positive Rates (TPR) for each time point were calculated 

) ) 
b) a) 
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in a 5-folds cross-validation process. Here TPR is calculated as the percentage of test samples from Preparation 

data that have been correctly classified as Preparation.  

 

3. Results 
Figure 2(a)  shows the grand averages for the 3 types of epochs on Cz, C1 and C2 for one subject. In average 

there were about 60 epochs of each type per subject. For the preparation trials a negative potential builds up 

more than 1 s. before the onset of the movement, in line with Motion Related Potential reports. 

(a)EEG averages of C1 Cz C2. 0s is the onset of 

the steering action. The grand averages for the Straight trials show no significant time locked activity. In the 

second half or Preparation a negative potential locked on the onset of movement builds up and recovers in the 

first half of Steering   (b) TPR for different training intervals and window lengths. Blue line is chance level and 

green line is TPR at that time on all the Preparation Epochs. 

Figure 2(b) shows the TPR at each time point for the 12 classifiers. The ones trained on a 250 ms window 

(w=250) are up and 500ms window ones are down (w=500). Each plot represents a different time of interest for 

which the classifier was trained (e.g., t=-0.8 means that the training window ends 800 ms before the onset) and 1 

means 100% correct classification.  

We aggregated the results from each subject based on 3 types of criteria 

1) Fastest TPR Peak: the classifier with the fastest peak was chosen for each subject. The average for 

the detection time was  -668±136 ms with a TPR of 66.3±3.5 % when a 250 ms window was used 

2) Highest TPR Peak: the classifier with the highest peak was chosen for each subject. The average for 

the detection time was  -494±152 ms with a TPR of 71.8±4.5 % when a 250 ms window was used 

3) Highest mean TPR: the classifier with the highest average TPR between -750ms and -250 ms  was 

chosen for each subject. The average for the detection time was  -641±94 ms with a TPR of 68.8±6.6 

% when a 500 ms window was used 

 

4. Discussion 
It is important to stress the fact that the data has been recorded during driving which means the subject has 

been performing not only movements of limbs as in previous in lab studies, but has been involved in several 

cognitive processes like attending the continuous visual input and controlling the vehicle. Considering this 

situation, the fact that our classifiers were able to predict the onset of steering 641 ms earlier with a TPR of 

approx. 69% is rather promising. We have also seen that there are no large differences when using a shorter 

window which leaves the door open to lower computational means.  

A natural line for future works is to try to classify not only the onset of the movement but also the direction 

of the movement. Another line is obviously to come up with online detection methods and to develop a real 

interaction method. Having such a system in place is also essential in answering another open key question: 

What is the required accuracy for such a system for the driver to feel comfortable in the interaction? 
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Abstract. In this study the usabilty of a hybrid-P300 BCI communication application was evaluated by four 

severely motor restricted possible BCI end-users. The P300 BCI was combined with EMG for error correction 

(see also abstract Riccio et al.). The prototype was evaluated in terms of effectiveness (accuracy), efficieny (time 

needed to complete task) and end-user’s satisfaction. In two copy-spelling tasks accuracy was high (M=92.5% 

and M=98.75%), but lower in the free-spelling sentence (M=85.02%) and email task (M=75.34%). The hybrid 

letter correction could be used by all end-users and improved efficiency. Overall, end-users were moderately to 

highly satisfied with the BCI, but least satisfied with the adjustment (M=3.25 of 5), effectiveness (M=3.25 of 5) 

and aesthetic design (M=3 of 5) of the BCI, as assessed with the Extended Quest 2.0. One end-user could 

imagine using the BCI in daily life.  

Keywords: Hybrid-BCI, P300, EMG, evaluation, usability, motor-restricted end-users   
 

1. Introduction 

The hybrid approach in BCI research aims to increase efficiency and effectiveness, enabling the end-user to 

use not only EEG activity, but also EMG activity as input channel for the BCI. The present study investigated 

the feasibility of a hybrid P300 BCI system, which is the second prototype of the P300-Qualilife communication 

prototype, evaluated by end-users in the study of Zickler and colleagues (2011). The new hybrid prototype 

includes a new P300-stimulation, with bigger central dots or grid stimulation, a pause mode and the undo-option 

based on electromyographic (EMG) activity, enabling to delete wrong selected letters in the matrix. Based on the 

findings of Zickler et al. (2011), showing that low speed, low effectiveness and complex adjustment were the 

main obstacles for BCI use, the current hybrid prototype includes (1) individual adaptation of flashing 

sequences, (2) EMG-undo letter correction, (3) easy-to use active EEG-cap. The P300 hybrid BCI including 

EMG is the first to be evaluated by patients.  

2. Material and Methods 

2.1. Subjects 

Four patients (age: A:47, B:41, C:26, D:52, 3 male) participated in this study. End-user A was diagnosed 

with brainstem stroke, end-user B with muscular dystrophy (Duchenne), end-user C with spinal muscular 

dystrophy (SMA), end-user D with ALS (spinal form). Patients were severely motor restricted, with only 

residual muscular control, therefore they were considered as potential end-users for the hybrid-P300-BCI. 

2.2. Hybrid-P300-BCI application 

EMG was recorded from two active electrodes, which were placed individually, depending on the end-user’s 

residual movements (A, C, D: hand; B: face). 8-channel-EEG was recorded from scalp positions Fz, Cz, P3, Pz, 

P4, Po7, Po8, Oz with a 16-channel amplifier (g.tec, Austria). 

2.2. BCI Protocol 

BCI protocol consisted of three sessions on three separate days: In the first session (S1) a screening was 

performed, in which the best stimulus modality (least number of sequences needed) and number of sequences 

(necessary to reach 100% offline) were identified (results of S1 not shown in this paper). In the second session 

(S2) end-users completed a copy-task, in which the EMG was used for error correction and compared to BCI. 

End-users had to copy-spell two 8-letter words and delete the last character with either the BCI (CP-BCI), or the 

EMG (CP-EMG), and respell the letter again. In session three (S3) end-users had to write a sentence in the free-

spelling mode with 10 characters using the EMG-correction for wrong selections and choose the pause mode 

(Sentence; 14 selections). Next, this text had to be sent by email, after terminating the pause mode (Email; 11 

selections). 
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2.3. Evaluation  

According to ISO 9241-210:2010 the BCI device was evaluated in terms of its effectiveness, efficiency and 

satisfaction. Effectiveness was defined as the percentage of correct responses achieved with BCI (accuracy). 

Hybrid-accuracy included error correction. Efficiency was defined as the time needed to complete tasks. End-

users’ satisfaction regarding different aspects of the BCI (Dimensions, Weight, Adjustment, Safety, Comfort, 

Ease of use, Effectiveness, Professional services, and reliability, speed, learnability and aesthetic design) was 

assessed with the Extended Quest 2.0 [Demers et al., 2000, Zickler et al., 2011]. End-users rated their 

satisfaction with the EMG vs. BCI correction with a visual analogue scale (from 0 to 10; VAS Satisfaction). 

3. Results 

3.1. Effectiveness and Efficiency 

See table 1 for accuracy (% correct) and time needed to complete the tasks, number of sequences and 

stimulus type for each end-user: 

Table 1.  Accuracy and time (in seconds) for end-users A-D, for S1:CS-EMG and CS-BCI and S2: Sentence and Email. 

*End-user D could not finish the task due to lack of control and exhaustion, only last selection is missing. 

End-User Stimulus Sequences CS –EMG CS-BCI Sentence Email 

A grid red  5 100 (223.63) 100 (244.90) 100 (302.95 ) 100 (142.25) 

B dot red 6,7 90 (257.39) 100 (282.38) 81.82 (533.92) 85.71 (230.86) 

C grid red 9 100 (358.64) 100 (394.92) 78.26  (687.91)  67.74 (739.19)  

D dot green 10 80 (392.40) 95 (432.38) 80 (831.58)  47.89* (1781.55) 

Mean   92.5  98.75  85.02  75.34  

 

3.3. Satisfaction (Extended Quest 2.0 and VAS Satisfaction) 

Overall, end-users A and D were highly satisfied with the BCI (M=4.13 to 4.5), B and C were moderately 

satisfied (M=3 to 3.75). End-users were least satisfied with the adjustment (M=3.25 of 5), effectiveness (M=3.25 

of 5), and aesthetic design (M=3 of 5). They were moderately satisfied with speed (M=3.5 of 5). End-users were 

quite satisfied with ease of use (M=4 of 5). End-users were highly satisfied with both letter correction methods 

(BCI: M=8.25, EMG: M=8.50, VAS Satisfaction). 

4. Discussion 

The results show that end-users achieved high effectiveness, comparable to the results of Zickler and 

colleagues (2011), even with lower sequences, and thus in less time (in 3 of 4 end-users). End-users reported that 

they had problems selecting items in the sentence and email task, because the symbols (dot/grid) were too close 

to each other. This resulted in lower performance in this task. The copy-spelling tasks revealed that the hybrid 

approach is more efficient meaning that less time is needed to correct erroneous selections, especially for end-

users with high number of sequences. However, from the end-users perspective, main reasons for dissatisfaction 

remain, i.e. complicated adjustment, low speed and low effectiveness. Only ease of use has been rated better than 

that of the first prototype [Zickler et al., 2011]. Despite these obstacles, one end-user could imagine using the 

BCI communication device in her daily life (end-user D).  
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Abstract. In recent years, there has been increased interest in using steady-state visual evoked potentials 

(SSVEP) in brain–computer interface (BCI) systems. The SSVEP approach currently provides fast and  reliable 

communication. Processing and detection methods suitable to be implemented in a SSVEP based asynchronous 

BCI application are proposed. A well-known Spatial Filter processing methodology has been implemented, and 

two novel SSVEP  detection methods, which are compared in this paper, have been successfully developed. The 

most successful one has been integrated within the assistive technologies free open source platform AsTeRICS
1
, 

where it can be used for the deployment of new applications based on this BCI modality. 

Keywords: EEG, SSVEP, Enobio, BCI, AsTeRICS 
 

Introduction 

Brain-computer interfaces (BCIs) constitute the ideal paradigm to develop technologies oriented at assisting or 
repairing human cognitive or sensory-motor functions. Steady state visual evoked potential (SSVEP) is a 
resonance phenomenon arising mainly in the visual cortex when a person is focusing the visual attention on a 
flickering light source. When SSVEP is elicited, it is manifested as oscillatory components in the user's EEG, 
particularly in the signals from the primary visual cortex, matching the frequency of the stimulation and its 
harmonics. Due to their fast and reliable communication, SSVEP based BCI paradigms have been widely used in 
the recent years. Our approach relies on an asynchronous BCI application where the subject decides voluntarily 
when to interact with the application. This document presents the methods to be used in a SSVEP based 
application. We have conducted the performance comparison described in the following sections, and successfully 
implemented the outperforming one in the AsTeRICS assistive technology platform. We first describe the main 
stages of the system, namely for processing through spatial filters the occipital EEG channels, and for detecting 
the VEP on the resulting signal spectra. 

Material and Methods 

2.1. Processing: Spatial Filtering 

Processing parameters are calculated from a set of training signals acquired during N non-stimulation 

periods duration Tn followed by N stimulation periods duration Ts where the visual stimulus is presented at a 

frequency fs. Spatial filters are calculated at each stimulation period according to [Friman et al.  2007]. Each 

calculated spatial filter is applied to the entire training signal and the SSVEP energy in the stimulation and non 

stimulation periods extracted. The area under the ROC curve (AUC) is calculated where the stimulation periods 

are marked as the positive class and the non-stimulation periods as the negative class. The spatial filter with the 

largest AUC  is chosen to be used in the detection process of the stimulation frequency fs. 

2.2. Detection 

It has been acknowledged that the frequency spectrum of measured brain signals shows a decrease in power 

with increasing frequency. This spectral behavior may lead to difficulty in distinguishing event-related peaks 

from ongoing brain activity in the electroencephalographic (EEG) signal spectra. SSVEP spectral response is 

characterized by a peak at the stimulation frequency and/or its harmonics, entailing that the energy at the 

frequencies where the response appears is larger than in the surroundings. A window based spectral analysis has 

been performed to detect the stimulation frequency (fflicker) responsible of eliciting the evoked potential. We 

compute the following N frequency features f(w) within each stimulation period: 
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Detection Method 1 

An average of f(w) at each stimulation frequency under evaluation is calculated. The stimulation frequency 

selected as the one responsible of eliciting the evoked potential is the one with the largest average. 

                                                           

1 http://www.asterics.eu/index.php?id=26 
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Detection Mehod 2  

The weight factor W computes the number of windows where the feature f(w) is larger than 1. The average of 

the frequency features f(w) is multiplied by the calculated weight factor W. The stimulation frequency chosen as 

the one responsible of eliciting the evoked potential is the one that maximizes this weighted sum value. 

2.3. Experimental Procedure 

Five male caucasian subjects S1 to S5 aged 32, 29, 31, 31, 30, respectively participated in six recording 

sessions. Oscillatory visual stimuli were presented at 12, 14, 16, 18, 20 and 22Hz. Visual stimulus was rendered 

using an array of flickering light emitting diodes (LEDs) through a diffusing panel of 100 squared cm. EEG was 

acquired using 3 Enobio® channels. Channels used were placed in O1, Oz and O2. Each recording session 

consisted of two independent recordings (test and training) per stimulation frequency. In each recording Ts=4s 

and Tn=8s . 5 sequences of stimulation/non-stimulation periods were used for training, and 10, for testing. 

Results 

The goal of this study is to evaluate if the proposed processing and detection methods are suitable to be 

implemented in a SSVEP based asynchronous BCI application. For each subject and stimulation frequency 

spatial filters are calculated in the training measurements. The detection process is carried out in the test 

measurements, after its corresponding spatial filtering, at each stimulation period. The following table shows the 

percentage of positive detection for both method 1 (M1) and 2 (M2). Detection method 2 detects with perfect 

accuracy 18 out of the 30 evaluated test recordings versus 9 of method 1. The average detection of method 2 is 

larger for every subject at every stimulation frequency. Detection accuracy for the best 2 and 4 stimulation 

frequencies (suitable to be used in a BCI application with respectively 2 and 4 degrees of freedom) is better in 

method 2 for every subject at every stimulation frequency (last two columns). 

Positive detection percentage rate for detection method 1 (M1) and 2 (M2)  

 12Hz 14Hz 16Hz 18Hz 20Hz 22Hz Best 2 Avg Best 4 Avg 

 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

S1 50 70 100 100 40 100 40 100 90 90 100 100 100 100 85 100 

S2 50 80 90 80 70 40 70 90 100 90 90 100 95 100 87.5 90 

S3 100 100 80 100 70 90 70 80 20 80 50 60 90 100 80 92.5 

S4 60 100 90 100 90 100 90 100 100 100 90 100 95 100 92.5 100 

S5 90 100 100 100 100 100 100 100 100 100 90 90 100 100 100 100 

Avg 70 90 92 96 74 86 74 94 82 92 84 90 96 100 89 96.5 

Discussion and future work 

Two real-time and very reliable detection methods have been presented. They deliver an excellent detection 

accuracy as shown in the described tests. The proposed method 2 has been integrated in an asynchronous binary 

(2 stimulation light sources) BCI application in the AsTeRICS platform. This study is based in one stimulation 

light source, so the effect of background stimulation light sources shall be evaluated in further studies.  
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Abstract.  Methods for detection of a movement before it happpens may lead to new BCI applications. Previous 

studies have shown the possibility of detection with high performances using slow cortical potentials (SCPs) 

with non-causal filtering methods in the range of [0.1 1]Hz. In this study, we evaluate the feasibility of the 

realtime detection of SCPs by using causal filtering methods, which is the prerequisite for online realtime 

implementation. We recorded EEG from 6 subjects while driving a car simulator.The protocol is a variant of the 

contingent negative variation (CNV) with Go and No-go conditions. The results presented here support the 

possibility of realtime detection of the anticipatory SCPs with an average of 0.80±0.11 in area under the curve 

(AUC), yielding better average performance than using non-causal filtering methods.  

Keywords: EEG, Car simulator, CNV, SCP, Online 
 

1. Introduction 

Monitoring driver‟s cognitive state by analyzing his brain signals could enhance driving experience with 

intelligent cars. Predicting driver‟s forthcoming actions would help the controller of such a car to make decisions 

in-line with the driver's intention. Recently, some studies reported the realtime detection of movement intention, 

in particular from EEG. [Niazi et al., 2011] as well as [Lew et al., 2012] have exploited slow movement-related 

cortical potentials, or readiness potentials, to predict a forthcoming self-paced movement 66.6±121ms and 

around 500 ms before the action onset respectively. In our case, we analyze SCPs to decode anticipatory brain 

activity in preparation to an imperative stimulus that people can predict (e.g., a traffic light turning red or green). 

Previously we achieved high offline single trial detection of anticipatory SCPs, average of AUC 0.76±0.12 using 

non-causal filtering in the range of [0.1 1] Hz [Khaliliardali et al., 2012]. In this study, we focus on the 

possibility of the realtime detection of anticipatory SCPs filtered in the same spectral range with causal filtering 

to predict brake and accelerate actions.  

2. Material and Methods 

      EEG signals (64 channels) were recorded from 6 subjects (24-32 years, 1 female) while driving a car 

simulator in front of a projector screen. The task is to drive a virtual car along a highway and either to brake 

(Brake trial) or to drive (Drive trial) depending on the visual stimulus --a countdown (4-3-2-1 and 'Go'/'Stop' at a 

rate of 1s) that appeared at the center of screen. This protocol is similar to classical CNV protocol [Walter et al., 

1964] but with sequential warning stimuli. Hence all epochs are No-go except the last one that is a Go epoch in 

which subjects are supposed to do specific action after cue ([Khaliliardali et al., 2012] for more details). EEG 

was preprocessed using CAR and then filtered in [0.1 1] Hz (Buttterworth, order 4), as this is the most 

informative frequency range of CNV potentials [Garipelli et al., 2011]. The goal is to discriminate between Go 

and No-go epochs on a single-trial basis using QDA classifier. Separate classifiers were built for Drive and 

Brake trials. For each epoch, the Cz potentials at six equally spaced time points (i.e., at -0.84s, -0.670s, -0.52s, -

0.37s, -0.22s, -0.07s) are used as a feature vector. This number of features reported to sufficiently represent the 

evolution of CNV potentials in 1s [Garipelli et al., 2011].  

3. Results 

      The grand average of Cz for one subject is shown in Fig. 1. The onset of the appearance of „Go/Stop‟ cue on 

the screen is defined as 0s. As it can be seen, the CNV potentials are prominent during the Go epoch no matter 

whether the signal is unfiltered or filtered with a causal/non-causal filter. This CNV potential is a negative 

deflection in the signal with a maximum peak around the imperative stimulus. In the case of using a non-causal 

filter (black line), we can observe a clear difference between Go and No-go epochs (increasing negativity for Go 

and almost flat or slightly positive response for all the other No-go epochs).  
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Figure 1. The grand averages of Cz potentials for Drive trials—green: signals without filtering, red: using causal filtering, 

black: using non-causal filtering. In Go epoch; subjects did an action correspondingly after ‘Go/Stop’ sign. In No-go epoch; 

subjects did nothing after the cue (4, 3, 2, 1). This plot is for the best subject, the same phenomena observed for the others. 

 

In the case of using a causal filter (red line), we observe the same characteristics of the signal, although the 

highest peak is slightly delayed (as expected for this kind of filter). Table 1 summarizes the results of single-trial 

classification, expressed as the AUC, for the three kind of EEG --either unfiltered, or filtered in a causal and 

non-causal way. The AUC values in the table using non-causal filtering correspond to the offline analysis. The 

values with causal filtering evaluate the feasibility of realtime detection of these potentials. According to Table 

1, the classification performance using causal filtering yields better average performance than with using non-

causal filtering and also than without using any spectral filtering. This could be because of the positive phase 

response of this filter design which consequently lead to negative delay and prediction of the signal especially 

when there is no change (i.e. for the DC and ramp) [Castor-Perry, 2012]. This characteristic of this prediction 

filters would compensate for the expected delay when they are applied causally.  

Table 1. The performance of classification (AUC) withoutspectral filtering, with causal ,and non-causal filtering.  

 Without filtering Non-causal filtering Causal filtering 

 Drive Brake Drive Brake Drive Brake 

Sub 1 0.82 0.93 0.87 0.96 0.90 0.99 

Sub 2 0.80 0.82 0.90 0.92 0.90 0.95 

Sub 3 0.65 0.63 0.69 0.83 0.77 0.87 

Sub 4 0.64 0.57 0.66 0.68 0.70 0.66 

Sub 5 0.48 0.57 0.53 0.74 0.64 0.80 

Sub 6 0.76 0.65 0.73 0.78 0.75 0.73 

Mean±SD 0.69±0.12 0.69±0.14 0.73±0.13 0.81±0.10 0.77±0.10 0.83 ±0.12 

4. Discussion 

Detection of SCPs before the action onset has been demonstrated for offline analysis (using non-causal 

filtering methods in the range of [0.1 1] Hz), however the realtime implementation of these methods is the main 

requisite for online applications. In this study, we investigated the possibility of the realtime detection of these 

potentials during simulated car driving. The results confirm that it is feasible to detect these anticipatory SCPs 

with an average of 0.80±0.11 in AUC in realtime (using causal filtering). We will test these methods in online 

experiments with more subjects in the simulated car driving setup. This is a preliminary step before moving to 

testing in a real car.   
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Abstract. We propose to cluster class-wise covariance matrices in order to identify different groups of 

covariances contributing to the same condition. Each cluster represents a different brain pattern 

associated with one class. Further, we present Clustered Common Spatial Patterns, a new algorithm 

that applies this technique prior to CSP. We show that CCSP can outperform CSP in a binary imagery 

movement task. Although in this work we consider only the case of CSP, this clustering technique 

could also be used to improve other feature extraction methods. 

Keywords: Brain Computer Interface, Feature Extraction, Spatial Filters, Common Spatial Patterns, Clustering.  

 

1. Introduction 

The traditional training of CSP filters [Ramoser et al., 1998] uses the class spatial covariance 

matrices,  and , to construct  spatial filters (SF). We will denote this operation as 

. In situations where more than one covariance structure contributes to a class, such as 

in presence of spatial shifts of the informative channels,  or  might over-represent the covariance 

structures from which more samples (trials) were observed. This can affect the generalization 

performance of the SF if covariances associated with infrequent trials become typical in the testing 

phase. Here we describe a new methodology to address this problem, Clustered Common Spatial 

Patterns (CCSP), and show that this technique has the potential to outperform standard CSP.  

2. Clustered Common Spatial Patterns (CCSP) 

CCSP performs per-class clustering of covariance matrices and combines the learned clusterings to 

learn SF. We illustrate the algorithm using K-means clustering [Bishop, 2007] and propose a simple 

way of combining the cluster centroids to construct the SF. 

Consider a set of trials , where  indexes the class 

label,  is the amount of trials of class ,  the number of electrodes and  the number of time samples 

per trial. Define two sets of  spatial covariance matrices , where 

 is the covariance matrix of . Given , CCSP applies -means clustering to   

resulting on  cluster centroids . CCSP performs CSP by replacing the per-class co-

variance matrix by the per class mean cluster centroids. In other words, CCSP is equivalent to 

. 

3. Results 

We use EEG data consisting of 70 train and 70 test trials from 8 subjects performing imagery 

movement collected using a 64 electrodes Biosemi system. The data were downsampled at 250 Hz, 

linearly detrended and bandpass-filtered in the frequency band 8-30 Hz. An automatic variance based 

routine was applied to remove noisy trials and channels from the train set.  

In Fig. 1 we illustrate the idea of clustering the covariances. The training set covariance matrices 

from class 2 of one subject are projected onto their first two PCA components [Bishop, 2007] as small 

squares.  
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Figure1. Training set covariance matrices of class 2 projected onto their first two PCA dimensions (small squares) 

for one subject.The big squares represent 3 cluster centroids learned from the train covariances. The x-

axis shows a histogram of the data projected onto the first PCA dimension. 

 

Using  we identify a clustering structure and we represent the learned cluster centroids as 

big squares. On the x-axis we present a histogram of the first PCA dimension of the plotted data. Note 

that the top cluster represents trials with a higher variance wrt to both dimensions which most probably 

can be identified as outliers. The lower clusters represent two groups of covariances with different 

number of elements that can be associated to two types of covariances corresponding to class 2.   

Next we compare CCSP with CSP. For both methods we used the log-variance of the data project-

ed onto 6 filters as features for classification. As classifier we used a SVM [Bishop, 2007]. Table 1 

shows the classification results for CSP and CCSP with   and .  

 

Table1.Columns indicate subject number. Rows show the percentage of correctly classified test trials for CSP and 

CCSP with   respectively. 

 

We can see that for this choice of parameters CCSP improves wrt CSP for 6 out of 8 subjects. In 

some cases (subjects 3 and 7) the increase in performance is notable. On the other hand, for subjects 2 

and 5, CCSP performance decreases wrt CSP. We can conclude that clustering the train covariances 

can help us to learn better filters, and as a result CCSP can provide an efficient improvement wrt CSP.  

4. Discussion 

Clustering covariance matrices is not an easy task due to the high dimensionality of the space. To 

alleviate this problem, in this work we used the projection of the vectorized upper triangular parts of 

the covariance matrices onto their two first PCA dimensions as input to the clustering algorithm. Fur-

ther, to avoid local minima, each clustering solution was chosen as the most likely out of 20 solutions 

obtained with different initializations. 

There are several lines of ongoing research. First, we are studying how the quality of the clustering 

affects the learned filters (choice of , local minima, dimensionality reduction previous to clus-

tering). Further, alternative ways of learning the filters after clustering are being investigated. For in-

stance, one could learn one CSP filter for each cluster centroid and select the ones maximizing the var-

iance between classes. Alternatively, one could learn filters using only the most dense clusters. Prelim-

inary results suggest that these choices could improve the presented CCSP. 
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Abstract. A brain-computer interface (BCI) can be used to control a limb neuroprosthesis with motor 

imaginations (MI) to restore limb functionality in paralyzed persons. However, existing BCIs lack a natural 

control and need a considerable amount of training time or may use invasively recorded brain signals. A new 

approach is the direct decoding of movements which has already been shown non-invasively for executed 

movements. In this work we show indirectly that algorithm principles used in decoding executed movements can 

also be applied when decoding imagined movements. Healthy subjects performed rhythmic arm movement 

imaginations in the transverse and sagittal plane. We were able to classify the correct movement plane with an 

average classification accuracy of 69 % considering only significant results. This shows that the classification of 

movement imaginations with the same hand in two different planes is possible. 

Keywords: EEG, movement decoding, motor imagery 
 

1. Introduction 

A brain-computer interface (BCI) measures biosignals originating in the brain and uses them to control 

devices. One important application of a BCI is the restoration of upper limb functionality of paralyzed persons. 

The ideal solution is to detect the actual movement imagination (MI) in a non-invasive way and then naturally 

and continuously control an arm neuroprosthesis. Naturally means here that the arm neuroprosthesis movement 

corresponds exactly to the movement imagination . This would enable the user to control the paralyzed arm with 

the same motor commands as someone with a non-paralyzed arm would use. Sensorimotor rhythms (SMR) 

based BCIs detect power modulations in certain frequency bands in the EEG resulting from MI which can be 

used as control signals for neuroprostheses. However, SMR based BCIs have the disadvantage that they can only 

detect the process of MI, but not the MI itself. That leads to an artificially assignment of imaginations to 

neuroprosthesis movements (e.g. foot MI correspond to an arm extension). However, there exist evidences that 

low frequency EEG components in the time-domain carry valuable information. For example, [Bradberry et al., 

2010] showed a direct and continuous 3D velocity decoding of executed arm movements using low-frequency 

electroencephalographic (EEG) signals. Our group showed in [Ofner et al., 2012] the velocity and position 

decoding of executed arm movements using a similar decoder. In this work we tried to prove that the decoder 

used in [Ofner et al., 2012] can also be used to decode MI. This would be a further step towards a natural, non-

invasive arm neuroprosthesis control using MI. However, as we noticed in preliminary experiments, the 

correlation coefficient when decoding MI is quite low (< 0.4). Furthermore, the decoder is easily influenced by 

eye movements. Thus, we setup a paradigm which prevents eye movements and subjects imagined rhythmic 

movements based on a metronome. 

2. Material and Methods 

Nine healthy, right-handed subjects were comfortably seated in an armchair and were instructed to imagine 

waving the extended right arm in front of the upper body either in the transverse or in the sagittal plane. We 

asked subjects to do natural, round (not jaggy) rhythmic imagined movements and to perform kinesthetic MI. A 

trial started with a short beep tone and a cue visible for 0.5 s. This cue was in form of an arrow pointing right or 

up, corresponding to MI of the arm in the transverse or sagittal plane. Subsequently a cross was shown for the 

rest of the trial in the middle of the screen. Subjects were instructed to fixate the gaze on the cross to suppress 

eye movements. 1.5 – 2.5 s after the trial start a metronome started to tick for 20 s with a frequency of 1 Hz and 

subjects were instructed to imagine arm movements according to the beat of the metronome. Here, a beat 

corresponded to an end position of the rhythmic MI (left and right or up and down, respectively). Thus, the MI 

itself was performed with 0.5 Hz. We recorded 8 MI runs, each with 5 trials per class in random order. In total 

80 MI trials were recorded for each subject. A session started with one run consisting of 5 trials per class 

performing motor execution, so that subjects got used to the movement. We recorded the EEG using 68 

electrodes covering frontal, sensorimotor and parietal areas. Reference was placed on the left ear, ground on the 

right ear. In addition, the electrooculogram (EOG) was recorded with 3 electrodes. Signals were acquired with 

g.USBamp amplifiers (g.tec, Graz, Austria) with 256 Hz sampling frequency after band-pass filtering between 

0.01 Hz and 100 Hz with an eighth-order Chebyshev filter and applying a notch filter at 50 Hz. After recording, 

we removed linear trends from trials. To reduce the computational effort, we filtered all signals with a 5 Hz zero-
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phase, fourth-order, low-pass Butterworth filter and down sampled data to 16 Hz. Afterwards we removed the 

influence of eye activity on the EEG using the EOG channels and a linear regression method. We decoded the 

x/y position of the imagined arm movement with a decoder similar to [Bradberry et al., 2010; Ofner et al., 2012]. 

First, we applied a fourth-order, zero-phase band-pass Butterworth filter with cutoff frequencies at 0.3 Hz and 

0.8 Hz. To decode positions, we used two linear models – one for each coordinate – consisting of data from all 

EEG channels and three time lags in 60 ms intervals. We found the parameters of the linear models with multiple 

linear regressions. Here, we assumed that subjects imagined movements according to a sine oscillation with a 

frequency of 0.5 Hz within the transverse (x) or sagittal plane (y). To classify at trial, we decoded movement 

positions between second 2 and 17 relative to the start of the metronome, correlated the decoded movements 

separately for each coordinate with a sine oscillation of 0.5 Hz and assigned the trial to the coordinate (i.e. plane) 

with the higher correlation. We applied a 10x10-fold cross-validation and reported the mean value and standard 

deviation of the accuracies across validation folds for each subject. 

3. Results 

Mean values and standard deviations of classification accuracies are shown in Table 1. Classification 

accuracies are significant above 0.59 with α = 0.05 [Billinger et al., 2012]. A classification based solely on EOG 

channels yield significant classification accuracies for subjects s7 (62 %), s8 (71 %) and s9 (77 %), and between 

41 % and 57 % for all others. The mean classification accuracy over the remaining subjects with significant 

decoding accuracy (s1, s2, s4, s5, s6) is 69 %. The grand average is 70 % with a standard deviation of 10 %. 

Table 1. Mean values and standard deviations of classification accuracies for all 9 subjects, significant classification 

accuracies are written bold 

subject s1 s2 s3 s4 s5 s6 s7 s8 s9 grand average 

mean value[%]  71  67 55 82 65 59 70 82 78 70 

std. dev.[%] 17 15 16 13 15 17 15 13 14 10 

4. Discussion 

Eight out of 9 subjects show significant classification results. Three subjects show also significant 

classification results when using solely EOG signals. Although we removed eye activity from the EEG, it still 

cannot be guaranteed that there is no residual eye activity left in the EEG which was mistakenly classified. Thus, 

at least 5 subjects showed significant classification results due to EEG activity when classifying arm MI in two 

planes. Filter properties of the skull, etc., may lead to a dependency of the classification accuracy on the 

imagined movement frequency. A possible triggering of evoked potentials through the metronome would not 

have impaired the classification results, because the external influence of the metronome was the same in both 

classes. As we used the same decoder principles as in [Ofner et al., 2012], we showed indirectly that movement 

decoding is also feasible with MI. Also [Bradberry et al., 2011] demonstrated an MI decoder, however eye 

movements were not prevented and results could also be reaching with a random decoder [Poli et al., 2011]. 
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Abstract. 

 EEG based brain-computer interfaces (BCIs) are mostly using evoked potentials (P300), steady state visual 

evoked potentials (SSVEP) or motor imagery (MI) as control strategy. Recently it was shown that P300 and 

SSVEP based system reach high accuracies for almost all users after short training intervals. In this study it was 

investigated if comparable accuracies can be reached with a motor imagery based BCI using Common Spatial 

Patterns (CSP). Measurements on twenty healthy people were performed, and an overall accuracy was calculated 

(80.7% grand average). The reached accuracy levels as well as the time needed for one session and the number 

of used electrodes are compared.  

Keywords  Motor-Imagery, ERDS, P300, SSVEP, EEG. 
 

1. Introduction 

There are three popular noninvasive BCI approaches: The Motor Imagery based BCI, the P300 approach and 

the approach via steady state visually evoked potentials (SSVEP). Both, the P300 and SSVEP require an external 

stimulus and are therefore called synchronous BCIs. In contrast, motor imagery (MI)-based BCIs do not need an 

external stimulation source and can be controlled asynchronous, but mostly a trigger signal is used to indicate a 

time point when the BCI system makes the decision., for example the MI approach normally requires more 

training and has a lower accuracy but is well suited e.g. for rehabilitation purposes [Ang et al, 2010]. 

2. Material and Methods 

20 healthy users participated in the study. For spatial filtering the method of Common Spatial Patterns (CSP) 

[Müller-Gerking et al., 1999] was used, followed by an LDA that classified the normalized variance of the 

spatial filtered EEG. 7 runs were performed for each session. The first run was performed for creating a first set 

of CSPs and classifier. With this first set, another four runs were performed while giving online feedback to the 

user. The merged data of these four runs were used again to set up a second set of CSPs and a classifier that used 

a higher number of trials and was thus more accurate. Finally, to test the online accuracy during the feedback 

sessions, two more runs were done. One trial lasted eight seconds, the cue appeared after three seconds, feedback 

was given from 4.25 seconds until the end of the trial. 

Table 1. Accuracies of the current MI measurements and two studies evaluating the P300 and the SSVEP approach 

  MI-BCI (N=20) P300 (N=81) SSVEP (N=53) 

Percentage of users with accuracy level above 90 % 30 72.8 86.7 

Percentage of users with accuracy level below 80 % 45 11.1 3.8 

Chance level in percent 50 1/36 1/4 

Number of electrodes 64 10 10 

Assembling time in minutes and type of EEG electrode 10 (active) 2 (active) 2 (active) 

Recording time for classifier setup in minutes 4x6 5 5 

 

3. Results 

Table 1 summarizes the reached accuracy levels and also provides results from two other studies, evaluating 

the control accuracy of a P300 paradigm [Guger et al., 2009] and an SSVEP based BCI [Guger et al., 2012]. The 

levels of 90% and 80% were chosen for a better comparability to the results of the two other studies. The higher 

percentage of users with accuracy levels above 90% was reached with the SSVEP and P300 approaches, 

compared to the MI-based BCI. The accuracy results of the MI-BCI study reflect the performance of the last two 

runs of each subject. The grand average result of the MI-BCI was at 80.7%. 
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4. Discussion 

The overall accuracy of BCI users is better with P300 or SSVEP, compared to MI. Hence, when creating 

BCIs for communication or control, the MI-task may not be the best choice. Comparability of the performance of 

different BCI approaches is always difficult, when looking at the bit-rate a MI-approach will always be worse 

compared to P300 or SSVEP. But there are several special application that can be only done with a MI-based 

BCI, e.g. when using the BCI for motor rehabilitation [Ang et al, 2010]. At the end the choice which approach is 

used to run the BCI depends on the device that should be controlled. Also the combination of several approaches 

into one BCI could be of interest, creating a hybrid BCI [Allison et al. 2012]. The time for performing one 

session with the CSP based approach is also considerable long; at first it takes more time to mount 64 electrodes 

on the user’s head, and then we took five runs before setting up the final classifier. If time is critical one could 

choose a minimal setup, resigning the advantages of spatial filtering and also reduce the amount of training runs. 

In this case though one has to expect a lower classification accuracy [Guger et al, 2003] compared to the 

methods used here. Additionally, the assembling time could be reduced even more when taking advantage of 

new, dry electrodes.  

Acknowledgements 

This work was funded by the EC projects Vere, Better, Brainable, Decoder and ALIAS. 

References 

Müller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task, Clin. 

Neurophysiol. 110: 787–798, 1999. 

Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F. Edlinger G. How many people are able to control a P300-

based brain-computer interface (BCI)? Neuroscience Letters 462: 94-98, 2009. 

Guger C, Allison BZ, Grosswindhager B, Prueckl R, Hintermueller C, Kapeller C, Bruckner M, Krausz G,  Edlinger G. How many people 

could use an SSVEP BCI? Frontiers in Neuroscience, accepted for publication, 2012. 

Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller, G. How many people are able to operate an EEG-based brain-computer 

interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng 11: 145-147, 2003. 

Ang KK, Guan C, Chua KSG, Ang BT, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H. Clinical study of neurorehabilitation in stroke using 

EEG-based motor imagery brain-computer interface with robotic feedback, In Conf Proc IEEE Eng Med Biol Soc, 2010, 5549-5552, 2010. 

Allison BZ, Brunner C, Altstätter C, Wagner J, Grissmann S. Neuper C, A hybrid ERD/SSVEP BCI for continuous simultaneous two 

dimensional cursor control, J Neurosci Methods, 209(2): 299-307, 2012. 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

122



 

 

Designing Wearable BCIs: A Software Framework 

A. Ottaviani
1
, C. Breitwieser

2
, A.Kreilinger

2
, M. Tavella

3
, M. Rohm

4
, M. Schreuder

5
, 

R. Leeb
3
, J.d.R. Millán

3
, G.R. Müller-Putz

2
, R. Rupp

4
, and F. Cincotti

1,6
 

1
Sapienza Univ. of Rome, Italy;

 2
Graz Univ. of Technology, Graz, Austria; 

3
École Polytechnique Fédérale de 

Lausanne, Switzerland; 
4
Univ. Hospital, Spinal Cord Injury Center, Heidelberg, Germany;  

5
Berlin Inst. of Technology, Berlin, Germany; 

6
Fondazione Santa Lucia, Rome, Italy. 

Correspondence: F. Cincotti, Fondazione Santa Lucia, via Ardeatina 306, Rome, Italy. E-mail: f.cincotti@hsantalucia.it  
 

Abstract. Endowing Brain Computer Interfaces with specific functionalities may require developing custom 

software. The Tobi Architecture was introduced with the aim of maximizing reuse of code, by supporting 

interoperation of diverse processing modules. Here we describe the design of a portable motor-imagery based 

BCI-switch, to be included in an assistive system aimed to restore grasping in SCI patients. A lightweight Single 

Board Computer was used as processing hardware, on which software modules compliant with the Tobi 

Architecture were installed. Absence of a keyboard/monitor user interface, and reduced computational power, 

motivated us to introduce two innovations in the original software framework. As a result, a hardware prototype 

with minimalistic user interface, and with reduced computational power is available for user testing. We 

demonstrated that existing modules, general purpose modules and dedicated modules can be interconnected in an 

efficient software tool, running on a wearable hardware platform. 

Keywords: Embedded PC, software architecture, motor imagery, BCI switch 
 

1. Introduction 

Applications of BCIs outside a research laboratory demand specific non-functional properties of the system, 

including robustness, usability, and portability. In this respect, the use of a personal computer to run BCI 

software applications may impose limitations, e.g. when the BCI is designed to control a prosthesis. On the other 

hand, developing software customized for an embedded hardware platform limits the possibility of rapid 

prototyping. In the context of the TOBI project, we proposed a versatile software development framework, based 

on a set of definitions, that provides a standardized data flow for real-time biosignal processing [Müller-Putz, 

2011; BCIStandards, 2012]. This approach facilitates portability of the application across operating systems, and 

across hardware platforms. Effectiveness has already been demonstrated with the implementation of a distributed 

application, whose modules, coded in different programming languages, ran on a network of 7 personal 

computers. Exploiting the properties of the standard framework, with limited coding efforts, a BCI prototype 

running on a PC can potentially be ported to an embedded hardware. 

Here we describe a solution to realize a BCI switch controlled by motor imagery, running on a Single Board 

Computer (SBC), designed to support FES-based (Functional Electrical Stimulation) motor restoration in Spinal 

Cord Injured (SCI) patients. 

 
Figure 1. Logical architecture of the wearable BCI switch for FES control. White blocks correspond to separate 

processes. The acquisition hardware is virtualized by the Signal Server. An optional display (external to the embedded 

hardware) of the internal data flow is available for debugging purposes. The hardware user interface and the FES device 

are virtualized by the respective drivers. Events and configuration settings are distributed through dedicated buses. Inter-

process communication is supported by TCP connections, or System V message queues. 
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2. Material and Methods 

The BCI is designed as a brain-controlled switch for SCI patients [Rohm 2012], to select between two types 

of grasps (lateral, palmar) or a pause mode. Hand muscles contraction is induced by Functional Electrical 

Stimulation (FES), whose intensity is controlled through a shoulder joystick. 

2.1. Hardware 

The system runs on a Single Board Computer (ACME Systems FOX Board G20, ARM9@400Mhz Atmel 

CPU, Debian 6.0 Linux, 107×82×37 mm) with serial ports and network connectivity. Serial ports provide the 

communication with the EEG acquisition (gMobilab, GTec, Austria) and FES (MotionStim, Medel, Germany) 

hardware. A separate, hardware display console (see example in Figure 2) is connected through a custom data 

link; it features a LCD display for user feedback and operational instructions, LEDs to monitor the system’s 

state, buttons and potentiometers to provide user inputs to the BCI.  

2.2. Software 

The BCI Transducer is implemented as a set of modules (processes) developed in C++, which communicate 

through the TOBI Interfaces [BCIStandards, 2012]. These interfaces provide a standardized format for data 

blocks, and a transport layer for Inter-Process Communication based on TCP. Figure 1 shows an overview of the 

processing pipe. A Control Interface is responsible of defining state transitions between grasp modes, to deal 

with the hardware user interface, and to send commands to the FES device. 

In addition to previously described features of the TOBI Architecture, this system features: (i) a 

configuration facility (BOSS), eliminating the need for user interaction to start and configure the processing 

pipe; (ii) a second IPC channel, based on System V message queues, reducing the CPU resources required for 

transport of messages. 

Performance was evaluated by measuring the average CPU share of processes connected to a client and a 

server when the system is operational (all processes are using the IPC channel to convey data and events). 

3. Results 

The BOSS allows the BCI system to start 

automatically shortly (~40s) after power is supplied. 

An operator can choose between calibration or 

operation modes by pressing a switch on the console; 

the classifier bias is changed by turning a knob. The 

new IPC transport layer reduced the average CPU load 

per process in the pipe from 11±2% to 4±2%. 

4. Discussion 

The Tobi Architecture supports the development of 

a wide range of implementations. Previous results 

showed that they support interconnection of pre-

existing BCIs, regardless of programming language, 

and distributed solutions over LAN, independent of 

operating system. 

In this work we introduced new features to the Tobi Architecture to simplify configuration and to improve 

performance of communication between processing modules. With this improvement of the framework, existing 

modules (such as the Signal Server), general purpose modules (e.g. bank of frequency filters) and dedicated 

modules can be interconnected in an efficient software tool, implementing BCI functionalities on a wearable 

hardware platform. 
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Figure 2. Hardware user console. Near the top, an LCD 

display shows feedback during a training trial. Buttons 

near the bottom are used to interact with the BOSS. The 

knob on the right sets the LDA classifier’s bias. 
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Abstract. The effects of continuous classifier adaptation in Motor Imagery (MI)-based Brain-Computer 

Interaction (BCI) on a subject's ability to improve and stabilize his BCI performance through feedback learning 

have been largely neglected in favor of gains in online classification accuracy. In this work, we investigate the 

influence that adaptation intensity may have on the subject's ability to learn and consolidate a MI strategy. 

Preliminary results with one disabled and two healthy subjects show that there exists a natural trade-off between 

online accuracy maximization and subject learning which needs to be carefully accommodated by supervised 

BCI adaptation methods. 

Keywords: BCI adaptation, adaptation intensity, Motor Imagery, Mutual Learning 

 

1. Introduction 

The benefits of online classifier adaptation in Motor Imagery (MI) Brain-Computer Interfaces (BCIs) have 

been established by an abundance of recent adaptation methods whose common ground is the attempt to cope 

with lack of robustness by continuous classifier parameter re-estimation. 

Viewed from a control  perspective, adaptation algorithms act as controllers performing simultaneously: a) 

set-point tracking, by updating the classifier parameters to better account for the recent history of the non-

stationary brain patterns, and b) disturbance rejection, by avoiding abrupt parameter changes in fear of adapting 

to noise. These conflicting goals are traded-off through some algorithm-dependent parameter reflecting the rate 

of convergence to the most recent brain patterns, which  is called hereby adaptation intensity and is explicitly or 

implicitly present in all adaptation algorithms (e.g. parameter η in [Vidaurre et al., 2011]). 

The selection of the value of adaptation intensity is rather underestimated, either being fixed through 

experimenter's intuition or calculated on calibration data to maximize classification performance. In this work 

we investigate its importance regarding not only the effects on online accuracy improvement, but also on the 

ability of the adaptive scheme to generalize over future data and reinforce gradual performance improvements, 

which we consider a sign of graceful, well co-ordinated mutual learning between the machine and the subject. 

Our preliminary results with three subjects where the adaptation intensity has been varied in a supervised 

protocol suggest that moderate adaptation intensity should be preferred in order to avoid possibly misleading 

online accuracy improvements that do not generalize well and thus may not reflect actual underlying learning. 

2. Materials and Methods 

We perform online experiments with a 2-class MI BCI, by means of a gUSBamp amplifier (gTec, Austria) 

and 16 active electrodes over the sensorimotor areas. Power spectral density (PSD, Welch method) features are 

extracted from the last 1 sec-long window, every 62.5 msec (16 Hz output rate), based on pre-calculated feature 

selection on calibration data [Galán et al., 2007]. A hard classification decision is performed with a Quadratic 

Discriminant Analysis (QDA) classifier on each extracted brain pattern, driving accordingly a feedback bar 

left/right by a predefined step, until a visually marked trial-decision threshold is reached. 

We propose a generative adaptation framework for continuous estimation of the MI class distributions' first 

two moments (means μ, covariance matrices Σ) in a buffer of the last N acquired samples, xk, as:  
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, i =1,2, and t discrete time index. 

The sample at time t is classified by QDA based on the updated mean and covariance matrix estimates at t-1. 

This framework essentially implements online Maximum Likelihood (ML) parameter estimation on N latest 

observed samples of each class, replicating the current estimates N-bi times to cover for currently missing 

samples of class i in the buffer, so that that parameter N is the single, constant factor affecting the adaptation 

intensity. Among the advantages of this approach are its natural extension to the unsupervised case through 

Expectation-Maximization-based ML estimation, the inherent ability to gradually estimate any kind of feature 

distribution variation (shift, rotation, scaling), the low computational complexity and ease of implementation, as 

well as its applicability to different kinds of classifiers with slight modifications and any number of classes. 
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Three subjects (S1-S3) performed 8 MI runs with varying adaptation intensity (where small buffer sizes 

indicate high intensity), as well as a final run without adaptation. Each run consisted of 15 trials of each class (10 

for S3) with 10 second trial timeout in a cued protocol. All runs started from the same initial classifier, which for 

S1 (experienced BCI subject) and S3 (severely paralyzed end-user) was based on calibration data collected 

several months/weeks ago, respectively; for S2 (novel BCI subject) it was trained on the same day. 

3. Results 

We extract single-sample classification performances employing the Matthews Correlation Coefficient  

(MCC, where 1=perfect, 0=random classification), which accounts for both accuracy and bias simultaneously. 

Online performance gains through adaptation for each run are evaluated as the difference MCConline – MCCinitial, 

where  MCConline is the performance observed by the user during online operation of the adaptive method and 

MCCinitial is the offline simulated performance using the initial classifier without adaptation.  

Assuming that the feature distributions of the final, non-adaptive run reflect the subject's currently learned 

and consolidated MI strategy, we evaluate the ability of our algorithm to capture this state for the different 

adaptation intensities  used. To do so, we compute offline the differences MCCN – MCCinitial, where MCCN is the 

performance achieved when the resulting classifier of the adaptive run with buffer size N is applied on the last, 

non-adaptive run, and  MCCinitial is the equivalent metric for the initial classifier applied on the last run's data. 

Figure 1.  a) MCConline – MCCinitial on each adaptive run                (b) MCCN – MCCinitial on final run  
Legends refer to buffer size N = inverse of adaptation intensity  

 

In accordance with the literature, Fig. 1(a) illustrates that online adaptation outperforms the initial classifier, 

the trend of improvement being proportional to the adaptation intensity. However, Fig.1(b) reveals that the 

adaptive runs' results in general yield little (S2) or no improvements (S3) over the initial classifier, while mild 

improvements are demonstrated for S1. Intense adaptation (small buffers N=100--400) results seem to be the 

most inadequate in terms of generalization capability, while the effects of adaptation intensity on generalization 

seem to be less significant for milder intensities. Moderate intensity (N=1000, buffer size of latest 1000/16=62.5 

seconds of data) seems to optimally accommodate the trade-off between online performance improvement and 

generalization across all subjects. It should be noted, nevertheless, that the poor effectiveness of adaptation for 

S2 and S3 could also be the result of confusing the subject through the continuously alternating feedback 

behavior (by modifying the adaptation intensity at each run), or of random performance variations. 

4. Discussion 

Long-term experiments with more subjects should be carried out to derive more reliable conclusions. 

Despite that, our results, although preliminary, point towards two main conclusions. Firstly, online performance 

can largely overestimate the actual learning benefits of continuous adaptation, as it overfits the latest generated 

MI patterns to yield high online accuracy but poor subsequent generalization. This undesirable effect naturally 

correlates with adaptation intensity advocating against intense adaptation. Secondly, the class of feature-tracking 

adaptation frameworks (like the one we apply here) can recover performance loss associated with feature 

distribution alterations occurring among BCI sessions (case of S1). However, there is little evidence that it can 

actually assist and guide the subject's learning process towards improved and stable performances (at least in the 

short-term), thus hardly qualifying as co-adaptive, mutual learning methods. The establishment of a novel BCI 

adaptation framework targeting these goals will be the subject of our future work.  
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Abstract. The purpose of this study was to investigate whether attentional features correlate with P300-based 

brain–computer interface (BCI) performance in people with amyotrophic lateral sclerosis (ALS). Six participant 

with ALS used a P300-spelling application in copy mode and performed a rapid serial presentation task (RSVP), 

aimed at investigating selective attention. Preliminary findings showed a significant correlation between 

performance reached in the attention task and the amplitude of the P300 elicited in the BCI task. A tendency to a 

significant negative correlation was found between the performance reached in the attention task and the number 

of stimulus sequences needed for correct character classification. We speculated that attentive processes would 

influence P300-based BCI performances. 

Keywords: Brain computer interface, Amyotrophic Lateral Sclerosis, attention, P300,  
 

1. Introduction 

Reasons for performance variability across subjects reported in BCI studies are unclear. Performance 

predictors of P300-based BCI were not fully investigated. Mak and coll. (2012) identified some 

electroencephalographic (EEG) features as predictors of P300-based BCI performance. However, the knowledge 

about the cognitive capabilities reflecting a successful use of P300-based BCI is limited. People suffering from 

Amyotrophic Lateral Sclerosis (ALS) are included in the range of potential users of BCIs. Cognitive 

dysfunctions, mostly regarded as attention, concentration and verbal fluency were reported in association with 

motoneuron failure in ALS (Ringholz et al., 2005). In this study we investigated the influence of the attentive 

features of ALS patients on P300-based BCI performances. We hypothesized that the attention capacity in the 

ALS group would influence the P300 elicited during a P300-based speller BCI (P300-Speller, Farwell and 

Donchin, 1988) task and consequently the performances in controlling such kind of BCI.  

2. Material and Methods 

2.1. Participants 

Six participant (2 women; mean age=57.5) with ALS diagnosis were included in the study. One participant 

was discarded from the analysis for a technical problem in the data acquisition. 

2.2. Experimental Protocol  

The experimental protocol consisted of two sessions:  

i) participants had to copy spell seven predefined words (5 characters each), by controlling a P300-Speller. 

The EEG was recorded using 8 active electrodes (g.LADYbird, g.tec, Austria - Fz, Cz, Pz, Oz, P3, P4, Po7, 

Po8). All channels were referenced to the right earlobe and grounded to the left mastoid. EEG was amplified 

using 8 channels EEG amplifier (gMobilab, g.tec Austria)  and recorded by the BCI2000 software. 

ii) temporal attention capacity of participants were screened by using a rapid serial visual presentation 

(RSVP) task (Fig. 2): two targets were embedded in a stream of distracter stimuli, all presented at central fixation 

on a monitor with a white background, at a presentation rate of 100ms each. Distracters were black capital 

consonants. The first target (RSVP-T1) was a green letter, which could either be a vowel or a consonant. The 

second target (RSVP-T2) was a black capital “X”. In 20% of trials RSVP-T2 was not present, whereas it followed 

RSVP-T1 with no (lag 1), one (lag 2), three (lag 4) or five (lag 6) intervening distractors in 20% of trials for each 

condition. After stimulus presentation two successive screens appeared asking to the subject to decide whether 

the green letter was a vowel and whether the black X was contained in the stimulus stream (Kranczioch et al. 

2007). Due to the motor disabilities, the subjects were asked to give a binary response (yes or no) to the operator 

with the residual communication channel. A total of 20 practice trials were conducted before the start of the 

experiment and followed by 160 trials presented in randomized order (32 trials for each of the five conditions). 

 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

127

mailto:a.riccio@hsantalucia.it


 
Figure 1. Response toTarget(red) and Non Target(blue) of the participants with the worst (a) and  best (b) accuracy in 

RSVP-T1identification over an exemplary channel (Cz).    

Figure 2. RSVP task trial with two target and T2 presented at lag 1. T1 is the green “U” and T2 the following black “X”. 

2.3. Data Analysis  

ERP data was reorganized in 800ms long overlapping epochs and, starting at the stimulus onset, segmented 

epochs were then averaged for Target (T) and Non Target (NT). Target P300 peak amplitude was determined as 

the maximum (positive potential) voltage in a defined time window (300-600ms) at Cz electrode for T stimuli 

(T-amp). For NT stimuli the amplitude was determined as the voltage at the T peak latency (NT-amp). The NT-

amp was subtracted to the T-amp (T-NTamp). A Stepwise Linear Discriminant Analysis (SWLDA) was applied 

to select the most relevant features in discriminating between Target and non-Target stimuli. We performed a 7-

fold cross-validation, in order to calculate the number of sequences needed to reach a classification accuracy of 

at least 70% (S-70%). For the RSVP task analysis, mean accuracy for RSVP-T1 (defined as the percentage of 

trials in which the participant correctly identified RSVP-T1) and RSVP-T2|T1 (defined as the percentage of trials 

in which the presence of RSVP-T2 was correctly reported when RSVP-T1 was correctly identified). A correlation 

analysis (Pearson's correlation) between T-NTamp, the RSVP task data and S-70% was performed. 

3. Results 

The mean amplitude was 0,25μV for T-NT. Mean accuracy was 78% RSVP-T1 and 71% for RSVP-T2. A 

significant positive correlation was found between RSVP-T1 accuracy and T-NTamp (r=.98, p<0.01) showing 

that subjects with higher RSVP-T1 accuracy had a larger T-NTamp. A strong yet, no-significant negative 

correlation was observed between RSVP-T1 accuracy and S-70% (r=-.85, p=0.07) indicating that participants 

with higher RSVP-T1 accuracy possibly needed a reduced number of stimulus sequences for correct 

classification, which improves P300-Speller performance. Figure 1 shows that the Tamp at Cz for the participant 

with the lowest RSVP-T1 accuracy (a) was lower in comparison with Tamp at Cz of the participant with the 

highest (b) RSVP-T1 accuracy.  

4. Discussion 

These preliminary findings support our initial assumption. Considering RSVP-T1 accuracy as a parameter 

reflecting the selective attention, the positive correlation observed between RSVP-T1 and the T-NTamp and the 

tendency to a significant negative correlation between RSVP-T1 and S-70% lead us speculate that attentive 

processes, likely to be impaired as a consequence of ALS, would influence P300 elicited during a P300-speller 

task and consequently the P300-based BCI performances. This study may contribute to the effort of developing 

BCI paradigm adaptable to ALS user capabilities. We are currently increasing the number of observations in 

order to consolidate these preliminary results. 
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Abstract. To design appropriate rehabilitation strategies and neuroprostheses for severely paralyzed patients, it is 

imperative to firstly achieve a deeper understanding of the information that can be extracted from the cortex of 

healthy subjects during locomotion. Chronic recordings from ensembles of cortical neurons in the sensorimotor 

cortex of healthy female Lewis rats were used to predict offline limb kinematics (low-level information) and gait 

phases (high-level information) during a range of bipedal locomotor tasks. The obtained results suggest that 

high-level locomotor states rather than limb kinematics can be robustly and effectively extracted from motor 

cortex during bipedal walking. 

Keywords: Sensorimotor cortex, rat, decoding, locomotion, spikes 
 

1. Introduction 

So far, only a few studies have investigated to what extent it is possible to decode locomotor-related 

information from neural activity in the brain of both animals and humans, and they exclusively focused on 

treadmill walking [Fitzsimmons et al., 2009; Song et al., 2009; Presacco et al., 2011]. Here, we investigated the 

amount of high- and low-level information that could be extracted during a range of bipedal locomotor tasks in 

healthy rats. 

2. Material and Methods 

Female Lewis rats (n = 6, R1-R6) were trained to walk in a bipedal posture while supported vertically and 

medio-laterally by a robotic postural neuroprosthesis [Dominici et al., 2012]. After training, the animals could: 

(1) step continuously on a treadmill, (2) walk overground along a straight runway, (3) along a curved path, and 

(4) climb a staircase. After completion of training, the rats were chronically implanted with a 32-microwire array 

that spanned the entire extent of left hindlimb sensorimotor cortex. To isolate single- and multi-units from raw 

neural data, we developed an automatic method based on a wavelet detection algorithm [Nenadic et al. 2005; Citi 

et al., 2008] and the superparamagnetic clustering technique [Quiroga et al., 2004] with wavelet coefficients as 

inputs. To confirm the quality of sorted units, we analyzed spike waveform and interspike interval histograms 

(ISIHs) to distinguish stable units. We only considered units with a reproducible waveform and exhibiting stable 

ISIHs across all trials (within a task) for decoding analysis [Dickey et al., 2009]. By using support vector 

machine (SVM)-based nonlinear decoders [Chang and Lin, 2011], we first sought to extract phase-dependent 

tuning. Next, we aimed at decoding changes in skeletal landmark positions and hindlimb joint angles. 

3. Results 

We found that high-level information was readily extracted from ensemble cortical modulations in all rats 

for all tasks. The reconstruction of low-level information in our study (see Fig. 1, central panel) outperformed 

prior studies in rats, which obtained R-sq
 
~ 0.4, on average, for the best decoded variable [Song et al., 2009]. 

However, decoding performance in the medio-lateral axis was generally poor. For all tasks, the decoding 

performances increase as a function of neuronal sample size, and model-training time. However, in comparison 

with direct kinematics decoding, high-level state variables, such as gait phases, were more reliably decoded (R-

sq > 0.9, see Fig. 1 bottom panel). 
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Figure 1. Decoding Low-level and High-level information. (Top panels) The four bipedal tasks analysed: treadmill 

(BipTM), curved runway (BipCRW), runway (BipRW), and staircase (BipSTAIRS).(Middle panels) Results for decoding 

low-level information in the four tasks (expressed as squared Pearson's correlation coefficient, R; values averaged 

across all kinematic variables). Predicted (red) and actual (black) hindlimb configurations are shown for a typical gait 

cycle. (Bottom panels) Results for decoding high-level information in the four tasks: confusion matrices showing 

obtained performances for decoding the stance and swing phase of the gait cycle (expressed as % correct).   

4. Discussion 

Overall, the obtained results suggest that high-level locomotor states rather than limb kinematics can be 

robustly and effectively extracted from motor cortex during bipedal walking. High-level motor states are discrete 

descriptors of motor actions and are well suited for prosthetic applications where the user selects quickly from 

individual categories, e.g. during standing-to-walking switching [van den Brand et al., 2012], or where discrete 

motor goals can be translated into kinematic control signals by an external controller [Kim et al., 2006]. Our 

study contributes to this concept, suggesting that high-level states instead of kinematics would yield a more 

robust and effective control system of lower limb neuroprostheses for the rehabilitation of paralyzed patients. 
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Abstract. Highly paralyzed people have only a few residual motor functions that can be used for 

control of conventional assistive devices (ADs). These devices can be extended to accept input from a 

Motor-Imagery-Brain-Computer Interface (MI-BCI) to make them accessible for such individuals. 

However, it is still unclear to what extend disabled individuals are able to control an MI-BCI. In this 

study, the outcomes of MI-BCI training sessions with ten high spinal cord injured (SCI) subjects are 

presented. Only one subject achieved a performance greater than 70%, three subjects were around 70%. 

The average performance of all subjects was 70.5%, which is significantly lower than in healthy 

subjects. 

Keywords: EEG, BCI, Motor Imagery, tetraplegia, performance 

Introduction 

Individuals with a spinal cord injury (SCI) suffer from restricted limb functions depending on the 

level of lesion. [Zickler et al., 2011] have shown that the main needs of highly paralyzed individuals 

are manipulation and communication. However, in highly lesioned tetraplegic subjects only a few 

residual motor functions are preserved that can be used for control of conventional assistive devices 

(ADs). For this purpose non invasive Brain-Computer Interfaces (BCI) exploiting the subject’s 

electroencephalogram (EEG) are combined with standard interfaces of ADs offering a new opportunity 

for access. In even higher lesioned subjects in whom residual movements are mostly absent, the BCI 

remains the last option for control. 

However, it is still unclear to what extend highly disabled individuals are able to control a Motor-

Imagery-Brain-Computer Interface (MI-BCI). In this study, the outcomes of MI-BCI training sessions 

with ten SCI subjects are presented. 

End user and BCI-training description 

The participants are ten high spinal cord injured individuals with a level of lesion at C4/5 

(characteristics and neurological status listed in table 1). They have been trained with the Graz-BCI and 

EPFL-BCI in offline and online training sessions. Offline training consisted of a three-class paradigm 

(right hand vs. left hand vs. feet), the online sessions of a two-class-paradigm without a resting state. 

For the Graz-BCI training 13 EEG electrodes (Laplacian montage over C3, C4 and Cz) were used. 

All channels were referenced to the left mastoid and grounded to the right mastoid. Impedances were 

below 10 kΩ. The EEG was amplified with a g.tec USB amplifier (g.tec, Graz, Austria), bandpass (8
th
 

order butterworth) filtered between 0.5 and 100 Hz and sampled at 512 Hz. A proprietary offline 

analysis software developed in Matlab was used to perform Distinction Sensitive Learning Vector 

Quantization (DSLVQ [Pregenzer et al., 1995]). Subject specific spatio-frequency features that 

maximize the separability between the different mental tasks have been obtained for online training. 

For the EPFL-BCI, 16 electrodes at similar positions were used and a Gaussian Classifier was 

calculated after analysis of the offline data. 

Results 

In table 1 the number of recorded runs and the achieved online performance is listed. Only 

evaluable online runs were taken into account (free of artefacts, no speech during runs). 

HE11IM was trained with the Graz-BCI, but no online runs were recorded. These offline runs 

suggest a high performance (~90%), which was not seen in the EPFL-BCI online runs. The reason for 

this remains unclear. A similar behaviour could be seen in GU26HE, who was extensively trained with 

the Graz-BCI and achieved an average performance of 70% (training since August 2011; performance 

varying over time). However, the EPFL-BCI suggested a performance below 60% after 27 offline runs. 

In GE26EN EEG signals were generally contaminated with EMG artefacts. The main difficulty is 

that this subject became tired very quickly during BCI training sessions. 
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The inhomogenity in the number of runs arises from the fact that some subjects were visited more 

often due to the distance of their home, their availability and their involvement in further studies. 

Both online and offline runs consisted of 30 trials/run except for GU26HE (24 trials/online run). 

Subject description and results (SD=rounded standard deviation). *Due to low information content in the offline 

data, the online classifier was difficult to train. 

Subject 

ID 

S 

e 

x 

Level 

of 

Injury 

Date 

of 

injury 

ASIA 

impair-

ment scale 

Age Handed-

ness 

Number 

offline 

runs 

Number 

online 

runs 

Average of 

online per-

formance 

S

D 

GU26HE m C4 2009 AIS B 41 right 57 415 70% 12 

HE08RF m C3 2010 AIS B 42 right 37 51 81% 17 

UL23EN m C3 2007 AIS B 21 right 36 25 69% 14 

HE11IM m C4 2002 AIS A 32 right 15 5 68% 12 

GI21EN f C5 2008 AIS B 49 right 5 1 30%(*) 0 

MA26ER m C4 2004 AIS A 53 right 10 13 65% 12 

GE26EN m C5/6 1991 AIS B 38 right 16 10 60% 6 

PA19MI m C5 2006 AIS A 34 left 11 15 66% 8 

SI07CH m C5 2008 AIS B 23 right 3 4 61% 8 

IR26IM  m C4 2011 AIS A 52 n/a 9 6 51% 9 

Discussion 

Only one out of 10 SCI subjects achieved an average performance greater than 70% which is in 

line with results from [Pfurtscheller et al., 2009]. In [Onose et al., 2012] the course and performance of 

an MI-BCI training with the goal of controlling a robotic arm in chronic SCI subjects has been 

investigated. The authors have included two C4, three C6 and four C7 end users, who – like our end 

users – achieved an average performance of 70.5%, which is also in line with our results. This is in 

contrast to the mean classification accuracies of healthy, BCI-naive subjects who achieve between 

80.0% and 83.3% for left versus right hand MI and hand versus feet MI [Alkadhi et al., 2005]. A low 

correlation of 0.18 between time since injury and BCI performance in our end users indicates that the 

low performance is not associated to negative long term plasticity. If the moderate performance is 

sufficient for AD control was not in scope of our study nor to compare different BCI systems. 

The reason for the low average performance of tetraplegic user is unclear. It can be speculated that 

the missing sensory loop restricts the vividness of the imagined movements and therefore the 

performance [Pfurtscheller et al., 2008]. More investigations in a larger population of individuals with 

high SCI are necessary to gain more insights in SCI induced changes on brain oscillations. 
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Abstract. Providing adaptive shared control for Brain-Computer Interfaces (BCIs) can result in better 

performance while reducing the user’s mental workload. In this respect, online estimation of speed of command 

delivery is an important factor. This study aims at real-time differentiation between fast and slow trials in a 

motor imagery BCI. In our experiments, we refer to trials shorter than the median of trial lengths as “fast” trials 

and to those longer than the median as “slow” trials. We propose a classifier for real-time distinction between 

fast and slow trials based on estimates of the entropy rates for the first 2-3.5 s of the electroencephalogram 

(EEG). Results suggest that it can be predicted whether a trial is slow or fast well before a cutoff time. This is 

important for adaptive shared control especially because 61% to 71% of trials (for the five subjects in this study) 

are longer than that cutoff time. 

Keywords: BCI, Shared control, EEG, Entropy 
 

1. Introduction 

In order to have an effective control for brain-computer interfaces (BCIs), the level of assistance provided by 

these systems should be adaptive so as to complement the user’s capabilities which change over time. During 

online operations, non-stationary nature of EEG can lead to changes in the accuracy and the speed in delivery of 

mental commands. Our goal is to study the possibility of detecting slow trials well before reaching a cutoff time. 

This will allow us to define the level of assistance provided for the user accordingly. To tackle this issue, we 

have used an information theoretical approach to characterize the signal. 

2. Material and Methods 

In our BCI system, the users voluntarily modulate EEG oscillatory rhythms by executing two motor imagery 

tasks. Each EEG channel was then spatially filtered with a Laplacian derivation before estimating its power 

spectral density (PSD) in the band 4-48 Hz with 2 Hz resolution over the last second. A statistical Gaussian 

classifier was implemented to estimate the probability distribution over the mental commands given an EEG 

sample [Millán et al., 2004].  

Five subjects were recorded in a two-class motor imagery. In our experiments, we refer to trials shorter than 

the median of command delivery time as “fast” trials and to those longer than the median as “slow” trials. In 

order to predict whether a trial is slow or fast, Shannon entropy as a measure of information content of a signal 

was calculated for fast and slow trials. To take into account the temporal structure, we estimated the entropy rate 

of the signal by considering the conditional entropy of sample i, given the previous m samples. For reasonable 

m, a reliable estimate of this conditional entropy is computationally expensive. To alleviate this problem, we 

employ a linear model and instead estimate an approximate version of the desired conditional entropy [Saeedi et 

al., 2012]. An autoregressive model of the original signal was built. Then, Shannon Entropy of the residuals was 

calculated for each trial using Maximum Likelihood estimation [Hausser et al., 2008]. 

The autoregressive model was estimated using Yule-Walker method. In this study, we tried to consider the 

optimal order for this model, looking at “reflection coefficients” which indicate the time dependence between 

y[n] and y[n-k] after subtracting the prediction based on the intervening k-1 time steps. According to that an AR 

model of order 5 seems to be appropriate for the five subjects in this study. Also, we studied the AR model of 

order 10 for comparison. For each order, two different cases were considered: first, building an AR model per 

trial and second, considering a single AR model for all the trials. For the latter, the AR coefficients were the 

average of AR coefficients in the first run. 

For measuring the entropy rate, we considered the first T s of data in each trial, where T = 2 + 0.5 x i; 0≤ i ≤ 

4. If the length of trial was less than T s, entropy was estimated for the whole trial. The entropy values for the 16 

channels constructed the features for classification of fast vs. slow trials. A Linear Discriminant Analysis (LDA) 

classifier was used for discrimination between the two classes (slow and fast trials) and ten-fold cross-validation 

was used to assess the performance. The performance is assessed only for trials longer than T. 
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3. Results 

Table I shows the area under the ROC curve (AUC) for classification of fast vs. slow trials considering two 

different orders (5 and 10) for the AR model. Assuming AUC around 0.7 to be reasonable for our application 

(highlighted numbers in table I), the model of order 5 seems to perform better for all the subjects, except S3. The 

important point here is that considering a single AR model of order 5 for all the trials, the classification 

performance gets better for S3 and S2, while it remains almost the same for the others. On the other hand, 

considering a single AR model of order 10 for all the trials does not improve the performances.  

Among the different cases in this study, considering a single AR model with order of 5 for all the trials 

yields the best performance for the subjects. In this case, 2s of data in the beginning of a trial for S2 is sufficient 

to make a reliable prediction about being fast or slow. The same prediction can happen having 2.5s of data for 

S1, S3, S4 and 3.5s of data for S5. This is really important as the required time for having reliable prediction is 

less than median delivery time.  In a more quantitative way, a reliable prediction of being fast or slow can be 

achieved for more than 60% of trial (69%, 63%, 61%, 71%, and 66% for S1-5 respectively).  

 

Table 1. The performance of classification (AUC) between fast and slow trials considering the first T s of data in two 

cases for each AR model order (5,10):an AR model per trial and a single AR model for all trials. 
 

 An AR model per trial , Order = 5 An AR model per trial , Order = 10 

Subject Median Time  2s 2.5s 3s 3.5s 4s 2s 2.5s 3s 3.5s 4s 

S1 3.31 0.55 0.68 0.81 - - 0.55 0.68 0.84 - - 

S2 2.78 0.64 0.82 - - - 0.61 0.77 - - - 

S3 3.34 0.58 0.71 0.78 - - 0.66 0.77 0.88 - - 

S4 4.25 0.53 0.72 0.81 0.81 0.70 0.48 0.56 0.59 0.80 - 

S5 5.9 0.64 0.62 0.65 0.72 0.70 0.62 0.57 0.56 0.64 0.59 

 An AR model per trial , Order = 5 An AR model per trial , Order = 10 

Subject Median Time  2s 2.5s 3s 3.5s 4s 2s 2.5s 3s 3.5s 4s 

S1 3.31 0.55 0.69 0.74 - - 0.55 0.66 0.48 - - 

S2 2.78 0.69 0.77 - - - 0.50 0.50 - - - 

S3 3.34 0.63 0.78 0.91 - - 0.69 0.80 0.93 - - 

S4 4.25 0.55 0.75 0.80 0.85 0.75 0.53 0.65 0.68 0.78 0.56 

S5 5.9 0.54 0.54 0.60 0.69 0.66 0.54 0.50 0.53 0.63 0.68 

4. Discussion 

This study aims at real-time differentiation between fast and slow delivery of commands in a motor imagery 

BCI. The mentioned results reveal that it is possible to predict whether a trial is slow or fast well before a cutoff 

time (2- 3.5 s), based on measuring the entropy rate of the filtered EEG signal. Estimation of the entropy rate 

was done by assuming an AR model of two different orders for the EEG signal. According to the classification 

results, an AR model of order 5 is appropriate for our application while a model of order 10 seems to overfit the 

data. For the former case, we got better results even by considering a single AR model for all the trials, which 

reduces the computational cost. As 61% to 71% of trials take longer than the cutoff time, this method seems to 

be a good predictor of the time efficiency for delivering BCI commands. In fact, all slow trials can reliably be 

captured within the first 2-3.5 s of the trial. This prediction is very important, as it makes it possible to regulate 

the shared control parameters accordingly.  

References 

Millán JdR, Renkens F, Mouriño J, Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Transaction 
Biomedical Engineering, 51(6): 1026–1033, 2004. 

Saeedi S, Chavarriaga R, Gastpar MC, Millán JdR. Real-time prediction of fast and slow delivery of mental commands in a motor imagery 

BCI: an entropy-based approach." In Proceedings of the  IEEE International Conference on Systems, Man, and Cybernetic, 2012. 

Hausser J, Strimmer K. Entropy inference and the james-stein estimator, with application to nonlinear gene association networks. Journal of 

Machine Learning Research, 10(), no. December, p. 18, 2008. 

Proceedings of TOBI Workshop IV Sion, Switzerland, 2013

134



The Concept of ECG-based Hybrid BCI  

S. Shahid, A. Ramsay, M. Quek, R. Murray-Smith 
School of Computing Science, University of Glasgow, Glasgow, Scotland. 

Correspondence: S. Shahid E-mail: shahjahan.shahid@glasgow.ac.uk 
 

Abstract. Traditional BCIs rely primarily on EEG signals. Due to the non-stationary and non-linear 

characteristics of these signals, BCIs often suffer from limited accuracy in psycho-cognitive tasks. Also, some 

users are unable to produce distinct EEG features for different mental tasks and as such are unable to achieve 

reasonable control of such a BCI system. In order to address these limitations, this paper introduces a hybrid-

BCI (hBCI) based on a combination of ECG and EEG signals. The hBCI uses a power spectrum based technique 

for feature extraction, and Fisher's linear discriminant analysis for classification. Compared with a traditional 

BCI, the hBCI provides higher performance during offline analysis. The hBCI is also successfully being used in 

an online task. We report on both the offline and online performance of the hBCI system. 

Keywords: Motor Imagery, ERD/ERS phenomena, ECG Recording, RR Interval, Power spectral density,  Fisher’s LDA.  
 

1. Introduction 

The most widespread approach to BCI utilizes only EEG as its input. As EEG signals typically exhibit non-

stationary and non-linear characteristics, in addition to a low signal-to-noise ratio, such BCIs often perform 

poorly in terms of accuracy and interaction speed. Recently, [Pfurtscheller et al., 2010] introduced the concept of 

the hybrid-BCI (hBCI) and suggested several potential implementations of such a system.  

The impact of locomotor imagery on autonomic responses was demonstrated in [Decety et al., 1991]. The 

mean heart rate and blood oxygen content increase with mental effort during movement tasks. [Scherer et al., 

2007] used the property of increased heart rate during motor imagery in self-initiation of BCI. In the design of an 

ECG-based hBCI [Shahid et al., 2011], concurrent EEG and ECG were considered and an enhanced offline 

classification accuracy was reported. In this paper, we investigate the impact of the combination of ECG and 

EEG on online classification performance.  

2. Method 

Since ECG is known to be correlated with motor imagery-related EEG [Pfurtscheller et al., 2008], we 

implemented the idea of simultaneous processing [Pfurtscheller et al., 2010] in our ECG-based hBCI. 12 EEG 

channels and 3 channels of augmented unipolar ECG were taken as input. The EEG electrodes were placed at Fz, 

FC3, FCz, FC4, C3, C1, Cz, C2, C4, CP3, CPz, and CP4 (with reference to Fpz and ground to earlobe). The 

unipolar ECG electrodes were placed at left arm (LA), right arm (RA) and left leg (LL) (with ground to earlobe 

as above).  Signals from all locations were sampled at 512Hz and recorded through a gUSBamp. 

As is common with BCIs, the recorded signals were processed in two stages: feature extraction and feature 

classification. For each channel, 16 Hz features were extracted from 2-second windowed (buffer) signal. The 

feature was computed from the ratio of “total log-power of band-passed buffer signal” and “total log-power of 

buffer signal”. For ECG we used a fixed 2-15 Hz band-pass filter. But, with EEG we searched for the band-pass 

filter that provided highest Classification Accuracy (CA) in the training stage. To estimate CA, we used a 5-fold 

cross-validation technique where 80% of data were used to establish Fisher’s linear discriminant analysis 

(FLDA) method [Duda and Hart 2001] that estimates a hyper-plane in the feature space to separate the features 

into the two different classes. The remaining 20% of the data were used for performance analysis (estimation of 

CA). 

To find the “best” band-pass filter, our training system first computed CA with each of 19 band-pass filters 

(8-12Hz, 8-13Hz, , 8-30Hz); and found the filter band (called the usable band) for which the highest CA 

was obtained. The training system afterward split the usable band into 2 groups and recomputed CA with 2 

band-pass filters. This leads to a higher dimensional feature space, i.e., 2 channels of features were extracted 

from each channel of the EEG. Lastly, the system found an effective filter band (single or double) which resulted 

in the highest CA in training. The training system returned the parameters of the “best” band-pass filter and the 

corresponding FLDA classifier (offline-mode analysis). These parameters were then used in the online mode. 

3. Experiment Setup 

In order to test the concept of proposed hBCI, we recruited 5 healthy subjects who had some experience of 

using a motor imagery (MI) BCI. Each subject first performed one offline session (= 60 trials) of a typical 2-

class binary paradigm (2 s rest and 8 s MI), while 12 channels of EEG, 3 channels of ECG and one channel of 

breath monitoring signal were recorded. After a short break (while we performed offline analysis), each subject 
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Figure 1. (a) Distribution of ECG bandpower over training trial period.  

(b) Distribution of Classification Accuracy over trial period. 

then proceeded to operate the hBCI in online mode (employing continuous feedback) with a newly trained 

classifier.  

4. Results and Analysis 

In designing our hBCI, we first 

examine the frequency domain features of 

ECG in offline recordings. Fig 1(a) 

displays a typical characteristic of ECG 

band-power in training time course. The 

sum of log band-power decreases or 

increases from rest state when subject 

performs motor imagery. To obtain similar 

characteristics some subjects may need 

different band-pass filters. As described in 

Sec 2, we then look for the set of optimal parameters. The instantaneous CA is plotted over the entire trial period 

(Fig. 1(b)), and the highest CA marked as “expected CA”. The CA starts rising from 2
nd

 second of motor 

imagery and peaks at around 9 seconds. The distribution of 2 seconds feature dataset around the highest CA time 

point should be consistent. Table 1 compares the offline performance of the hBCI to a traditional BCI with 

differing numbers of channels. The offline and online accuracies were computed from 60 and 30 trials 

respectively. With the exception of p008, the offline CA of the subjects increased when they used the hBCI. 

They also attained more than 90% accuracy in online mode. In particular, S02 showed huge improvements in 

offline mode performance with hBCI. The offline CA of p008 was high with traditional BCI yet this subject did 

not perform well in online operation, possibly due to a non-optimal EEG electrode placement for left hand vs. 

right hand imagery.    

Table 1. Traditional BCI vs hBCI: performances of different types of BCI. 

Subjects 

(motor 

imagery)φ 

Offline Accuracy Online Accuracy with hBCI 

16 Chnls EEG  12 Chnls EEG hBCI(12 EEG+3 ECG)  Hit - Miss - Ignore - Performance 

p008 (L/R) 83 % 69 % 75 % 16 - 12 - 2 - 53% 

p017 (L/F) 92% 76% 100%  30 -  0 - 0 - 100% 

p025 (L/F) 88% 90% 92% 27 - 3 - 0 -  90% 

S02 (R/F) 65% 67% 84% 26 - 0 - 4 -  86% 

S01 (L/F) 90% 84% 96% 29 - 0 - 1 -  96 % 
φ LLeft Hand, RRight Hand, FFoot.     Accuracy was computed from 30 online trials 

5. Discussion 

Brain cells become active (fire) in motor imagery state and so need more oxygen. The need to supply more 

oxygen leads to an increased heart rate [Decety et al., 1991]. Likewise, we found a notable difference in 

frequency domain characteristics of ECG (Fig 1(a)) in rest vs. motor imagery. We used this concept in designing 

an ECG-based hBCI. The extra channels of ECG increase offline performance compared to a traditional BCI. In 

general we also see improved online performance in accordance with the increase in offline CA.  
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Abstract. Decoding of limb kinematics from the scalp electroencephalogram (EEG) is receiving empirical 

support, but feasibility of on-line application in a brain-machine interface (BMI) is yet to be resolved. 

Presumably, however, any real-time operation would be imperfect, i.e., prone to incorrect recognition of user's 

intent and erroneous movement of any limb avatar. It is therefore necessary to understand EEG correlates of the 

user's perception of such errors in order to: (i) account for their confounding influence on the signal, and more 

interestingly (ii) tap into any additional information they may provide about the user's intent. Here we investigate 

the feasibility of single-trial recognition of error-related potentials induced in subjects operating today's most 

ubiquitous upper limb avatar: the computer mouse, while we distort the mapping between the cursor and the 

hand (mouse), simulating imperfect operation of a kinematics-decoding BMI.  

Keywords: Brain–Machine Interface (BMI), Electroencephalography (EEG), Error-related Potentials, Self-paced Movement  
 

1. Introduction 

Real-time reconstruction of limb kinematics directly from cerebral neuronal activity is receiving increasing 

interest - particularly for the benefit it could bring to prosthetic devices. Some success in non-human primates 

[Velliste et al., 2008] and in human subjects [Hochberg et al., 2012] has been achieved in control of robotic 

limbs with invasive electrophysiology. EEG so far has not been shown to be capable of such applications. 

However, the possibility of decoding upper limb movements from EEG is now receiving empirical support 

[Bradberry et al., 2010; Lew et al., 2012], primarily in the most fundamental paradigm: center-out reaching. We 

assume that if neural decoding were ever to achieve the reliability required for a real-time arm avatar application, 

the decoding would never reflect the precision afforded by the biological limb. Consequently, some movements 

of the avatar would be incongruent to a degree with the subject's motor program. It is therefore necessary to 

understand the EEG correlates of such incongruences in order to: (i) account for their confounding influence on 

the signal when perceived by the user (error- potentials, compensatory efforts), and (ii) take advantage of any 

information they may provide on user's intent. 

2. Methods 

We recorded 64-channel EEG while subjects (n=7) performed a motor task. Four circular targets were 

displayed on the screen in a square arrangement. As one of the targets changed color, the subjects were 

instructed to wait at least 2 s and then move the mouse cursor towards it in their own time and manner. After 1 s 

of reaching the target, another target was indicated and the procedure was repeated. 500 such trials were 

recorded. In 25% of the trials the hand-to-cursor mapping was randomly off-set by 20°, 40° or 60°, simulating 

imperfect operation of a kinematics-decoding BMI. This perturbation was removed after 0.5 s of the subjects 

commencing their movement. The purpose of this was (i) to allow the subjects to reach the target without motor 

adaptation (out of the scope of this study) while (ii) simulating a correction on the part of the BMI.  

3. Results 

Averaged EEG epochs, time-locked to movement onset, showed typical negative deflection over central 

electrodes preceding self-paced movement (readiness potential [Shibasaki and Hallett, 2006]). In perturbed trials 

the readiness potentials are followed by a tri-phasic waveform (Fig. 1A). The morphology of this waveform is 

consistent with our previous research on error-related potentials (ErrP) [Chavarriaga and Millán, 2010]. 

(Interestingly, the average amplitude of the waveform clearly follows the degree of the perturbation.) We 

performed single-trial classification of non-perturbed vs. perturbed trials. Since in this study ErrPs are not time-

locked to a discrete sensory event, but depend of the subjects' perception of error varying with their spontaneous 

speed of movement in a given trial, etc., we used spectral features, assuming they are more robust to temporal 

jitter than the time-domain course of the waveform (tests with time-domain features yielded worse accuracy). 

Additionally, apart from the ErrP waveform whose spectral signature lies in the theta band, non-phase locked 

theta has been also reported to reflect error-processing [Trujillo and Allen, 2007]. In our study, discriminant 

features across subjects were clearly located in 4~8 Hz (theta) band, starting from around 200 ms post-movement 

onset over vertex electrodes (Fig. 1B, C), which we thus found physiologically plausible. 
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Figure 1. (A) Grand averages across the subject group of 2 s EEG epochs from the vertex electrode, time-locked to 

movement onset. Trials with different degrees of motion perturbation, or no perturbation, were averaged separately. (B,C) 

Spatial, spectral and temporal distribution of discriminant power (Fisher score) between perturbed and non-perturbed trials 

in the frequency domain. Plots show grand averages across the subject group; we ensured that data from each subject 

contributed equally by rescaling it to unit scale prior to averaging.   

Ultimately, for classification we used 

average spectra from 230 to 460 ms 

window; this window was identical for 

every subject. We estimated the 

performance of a two-class (non-

perturbed vs. perturbed trials) LDA 

classifier by leave-one-out cross 

validation. In every fold the classifier  

parameters were calculated on ten most 

discriminant spectro-spatial features, 

based on Fisher score from the training 

data. We report the accuracy of 

classification in Fig. 2. For perturbed 

trials, we also report accuracy for specific 

degrees of perturbation. Typically, small 

(20°) perturbations were misclassified, 

with larger deviations allowing better 

accuracy 

4. Conclusions 

Our results seem promising with regard to on-line detection of incongruences between user's intent and 

behavior of limb avatar, and as such could perhaps be used to enhance the operation of an arm trajectory-

decoding BMI. A number of directions for further study seem worth pursuing: (i) using regression instead of 

binary classification to model the degree of error – the information which the data apparently holds (Fig. 1A); 

(ii) adding perturbations in different motor paradigms, specifically smooth, complex trajectories; (iii) error-

processing of temporal perturbations, i.e. early or delayed movement of the limb avatar. 
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Figure 2. Accuracy of classification of perturbed vs. non-perturbed 

trials (two class LDA) estimated with cross-validation. Within the 

perturbed trials class, accuracy for trials with specific degree of 

perturbation is also shown. Horizontal black lines across the bars denote 

empirically calculated chance level of p<0.05. 
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Abstract. In the classical sensorimotor rhythm (SMR) based brain computer interface (BCI) participants 

control the direction of a computer cursor movement by either imagining hand or foot movement, provided with 

visual feedback, but without information about the quality of their control. This study presents results from a 

multimodal (auditory and visual) SMR based liquid cursor model that not only feeds back amplitude of SMR but 

also the quality of classification and the degree of uncertainty. Two groups comprising ten subjects each, trained 

their ability to control a SMR based BCI via motor imagery (MI) during five sessions, by moving a probabilistic 

cursor through a funnel with unimodal (visual) and multimodal (auditory and visual) feedback. There was no 

significant difference between the performance of the groups with multimodal and unimodal feedback and no 

significant training effect could be established across the five sessions. The visual feedback seems to dominate 

and giving a more complex feedback with additional auditory information had only a small effect on the 

improvement of performance. 

Keywords: EEG, Motor Imagery, Liquid Cursor, Funnel Display, SMR modulation, training application 
 

1. Introduction 

Brain Computer Interfaces (BCIs) based on the modulation of sensorimotor rhythms (SMR) classify 

differences in the electroencephalogram (EEG) patterns caused by different types of motor imagery (MI) 

[Pfurtscheller et al., 1997]. This gives patients the opportunity to control a cursor on a 2D computer screen by 

imagining a movement such as with hand and foot [Kübler et al., 2005]. The classical unimodal SMR-BCI 

feedback is represented as a single cursor bar and provides no information about the quality of the control signal 

as it only gives feedback about which MI is classified at any point in time. A multimodal liquid cursor model for 

uncertain display (Figure 1, funnel display) can provide the user with additional information: It shows the actual 

quality of the control signal by encompassing an area with the liquid cursor, proportional to the uncertainty of 

the signal and by modulating the moving speed of the liquid cursor through the funnel, equivalent to the stability 

of the users’ control, which is represented by the overall pattern of movement of the fluid along the vertical axis 

of the funnel display. In combination with auditory feedback, the user is provided with additional information 

about the current MI. As the user can decide to which feedback he or she pays more attention to, performance 

may be improved.  

The goal of this study was to investigate whether a multimodal funnel feedback can elicit better user 

performance of SMR-BCI across five training sessions compared to the unimodal version.  

 
 

 

 

 

 

 

 

Figure 1: Feedback sequence of the multimodal funnel display. Multimodality: Each of the three different modes of control is 

connected to specific sounds. Auditory feedback is displayed simultaneously to changes in the visual display. A user with 

'poor' stability would either have the fluid always at/near the top (if their uncertainty was always high) or bouncing up and 

down from top to bottom and back again without managing to get into the "controlled" state (if their uncertainty was 

changing from high to low but they couldn't maintain it in the "low" state). A user with 'good' control stability would be able 

to move the fluid from the top to the bottom in (almost) every trial and then go on to make a left/right selection once in the 

"controlled" state. 
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2. Material and Methods 

 For each feedback ten healthy, BCI untrained subjects (multimodal: 6 female, aged between 23-51, mean 

age 30,2 ± 7,8 SD; unimodal: 6 female, aged between 19-46, mean age 27,1 ±  7.5 SD) took part in this study. 

EEG was recorded from 16 channels located over the sensorimotor cortex (Cz, FC3, FC1, FCz, FC2, FC4, C3, 

C1, Cz, C2, C4, CP3, CP1, CPz, CP2, CP4) with mastoid ground and reference. Signals were amplified using a 

g.USBamp device. The task was a two class motor imagery (left/right hand) by moving the cursor to a given 

direction (6 runs, 20 trials). Following a between-subject design, participants were devided into two groups: one 

provided with unimodal, the other with multimodal feedback. Both groups performed the same screening task 

and data was analyzed offline, using linear discriminant analysis (LDA) for signal classification. Five training 

sessions were performed with one to five days in between the sessions. The classifier was recalibrated at the 

beginning of the third session.  

Multimodality was provided by connecting sounds to different visual modes of control: At the start the 

liquid is incoherent. Depending on the stability of the user’s control it condenses and alters into a transitional 

mode while it moves to the lower region, acoustically discernible by bubble sounds (Fig. 1a). Once reached the 

“test tube”, the liquid cursor is in a stabilized mode, distinguishable by metal sounds (Fig. 1b). As the input 

signals become more accurate the user can control the liquid cursor to the left and to the right supported by the 

sound of clinking glasses (Fig. 1c). No sounds are displayed when moving in the wrong direction.  

3. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

Motor imagery for cursor control requires focused attention to process the feedback information. The herein 

presented work revealed that users were able to control the multimodal as good as but not better than the 

unimodal BCI. The performance of the users does not only depend on the feedback but also on the ability to 

concentrate. The daily condition of the subject seems to have a strong impact on the performance across each 

session and can therefore be explanation fo the missing training effects.  
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None of the participants were excluded 

from analysis. Six participants of the 

multimodal and four of the unimodal group 

could improve their performance level 

across all sessions above the critical value 

of 70% [Kübler et al., 2001]. There was no 

significant difference in the performance of 

the multimodal and unimodal group 

(ANOVA two factor with replication, 

sample: p=.35, interaction: p=.98, Figure 

2), but in average, the multimodal feedback 

group had the better performance, with the 

most distinct difference in the last session 

(not significant, ANOVA single factor 

p=.36). No significant training effect can 

be established across the five sessions 

moreover performance was very variable 

across each trial. 

Figure 2: Changes in the performance (percentage correct) of two 

groups of subjects testing the multimodal (drawn line) and unimodal 

(dashed line) feedback across five training sessions. No statistically 

significant difference in performance between the two feedback 

groups was found.  
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Abstract. For an auditory ERP paradigm, randomized stimulus presentation sequences were compared to fixed 

predictable stimulation sequences. In a study with N=10 healthy subjects, a standard offline analysis of the collected data 

epochs resulted in comparable classification performance and ERP responses. Making explicit use of the repetitive 

structure, the classification result could be improved only for the fixed sequence  condition.. 

Keywords: EEG, AEP, ERP, stimulus design, workload, BCI 
 

1. Introduction 

In the field of Brain-Computer Interfaces (BCI), the original two-class oddball paradigm with random presentation  

sequences (see [1] as an entry point) has been extended to  multiple stimuli with balanced probabilities [2]. Exploiting the 

differences between standard and deviant ERP (event-related potential) responses with Machine Learning methods, these 

multi-class paradigms are suitable for communication  and control. Recently proposed paradigms may provide a  

communication channel by exploiting the auditory modality  [3], [4], [5], [6], [7]. In the auditory domain, however, a 

multi-stimulus paradigm can have a high demand for  spatially directed attention. Supporting the transition from the lab to 

patient users means, that this high workload needs to be addressed. Therefore the present study investigates the effect of 

giving up the randomness of stimulation sequences in favor of a simple, repeated, and thus predictable pattern.  

 

Figure 1. Overview ERP plots for condition rand (left) and fix (right) for subject no. 2. The top row depicts the average time course of 

target (T) and non-target (nT) responses for channel FCz. The horizontal colored bar visualizes signed r2 values for each time bin as 

an indicator for class discriminability. Rows two and three depict scalp plots of average activity in five selected time intervals (see gray 

shades in the top row). The bottom row shows the distribution of class discriminative information for these five intervals over the scalp. 

2. Material and Methods  

The experiments conducted followed the AMUSE paradigm described in [7], but used a stimulus onset asynchrony (SOA) 

of 200 ms. Data of healthy subjects (n=10) who performed a single session with a 6-class spatial auditory ERP paradigm 

were analyzed offline. The auditory evoked potentials (AEP) resulting from the potentially simpler task (using fixed 

sequences) are compared with the AEP evoked by pseudo-randomized stimulation sequences. Overall, the experimental 

setup corresponds to a typical calibration phase of a BCI session, except for the two conditions applied and a relatively 

large number of 61 EEG channels used. 

2.1. Two Conditions: Randomized and Fixed Sequence 

Depending on the condition, the sequence of six tones was either pseudo-randomized from iteration to iteration (condition 

rand), or randomized for the first iteration only, and then kept fix for all 11 to 13 iterations of a trial. In the fix condition, 

target tones were separated by exactly five non-target tones, while in the rand condition only the expected number of non-

target tones was five. In condition fix, subjects had a chance to recognize the regular pattern of stimuli after the second 

iteration had finished. During the recording, participants were asked to pay attention to and silently count the number of 

appearances of a cued target tone, while ignoring all other non-target tones. The spatial coding and pitch differences 

between the six tones were useful cues for this attention task. 
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2.2. Analysis Methods 

The collected data were analyzed offline. The continuous EEG data was filtered (high-pass with a cut-off frequency of 0.2 

Hz, low-pass of 30 Hz). Starting with a standard epoch interval of [0–1000] ms relative to a stimulus, the analyzed epochs 

were enlarged in 12 steps by additional pre-stimulus intervals of 200 ms duration for each step. The largest analyzed 

epochs thus were located at [-2400–1000] ms around a stimulus. For classification, 12-36 features per channel were used. 

After removing 50 to 300 outlier epochs based on a simple variance and amplitude criterion, approx. 4200 epochs 

remained for each condition. Thus, approx. 700 target epochs and 3500 non-target epochs were available for further 

analysis. Classification was always performed with a shrinkage-regularized Fisher Linear Discriminant Analysis (FDA). 

Reported error values have been estimated by averaging the outcome of a 5-fold cross-validation that on top was shuffled 

randomly for another 5 times. Errors represent class-wise balanced errors with a chance level of 50 %. 

3. Results  

Class-discriminative EEG responses between target and non-target stimuli were observed for both conditions. An 

examples of the ERP responses of both conditions are depicted in Fig. 1. The binary classification error estimated for 

standard epochs of was comparable for both conditions (random: 24%, fixed: 25%). Expanding the standard epochs to 

include pre-stimulus intervals, we found that the regular structure of the fixed sequence can be exploited. Compared to the 

standard epoch, the MSE improves by 7%, while in the random condition an improvement could not be observed. (Fig 2). 

Figure 2. (left) The MSE error in condition rand for the smallest epoch [0–1000] ms is compared with the MSE of condition fix for 

different interval sizes. The x axis indicates the start point of the analyzed intervals of condition fix, while the end was kept constant at 

1000 ms post stimulus. Thin lines represent the error differences of single subjects and the thick line represents the grand average. 

(right) MSE estimated in a sliding window of 50 ms width in steps of 10 ms for ten subjects and two conditions. Errors for condition 

rand are plotted in blue colors, while errors for condition fix are plotted in red colors. Thin lines represent the errors of single subjects 

and thick lines represent the grand averages. 

4. Discussion 

Our finding, that fixed stimulation sequences elicit class-discriminative ERP responses comparable to randomized 

sequences will enlarge the toolbox of ERP setups for future BCI designs. It has to be tested, though, if the advantage 

observed for extended time intervals with fix sequences transfers into the online BCI use. In typical online setups, a 

decision is based on the agglomeration of evidence over several iterations. This technique is applicable even for 

randomized sequences, and may exploit sequential information in a similar way than with epoch enlargement for fixed 

sequences. 
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Abstract. In this work, we present a BCI system to predict driver’s preferred turning direction in front of 

intersection from scalp EEG signals. In experiments with a car simulator, we show a directional cue before the 

intersection, and analyze error related potential in EEG to infer if the presented direction coincides with the 

drivier’s intentions. The average classification accuracy for seven subjects is 0.69, which confirms the feasibility 

of using error related potential to estimate people’s turning direction in driving. 

Keywords: Car simulator, error related potential, classification, estimate turning direction 
 

1. Introduction 

Brain-computer interface (BCI) decodes brain signals to monitor people’s cognitive states or predict actions. 

This technology could be applied in automobile driving system to avoid accidents or reduce driving complexity 

by estimating driver's action intention or cognitive states. For example, BCI might be used to verify whether the 

driver is paying attention on driving, or predict his/her intended action (e.g. in front of an intersection, facing 

traffic lights and lane change). Our study aims to detect brain error processing to estimate driver's preferred 

choice from error-related brain activity, particularly the turning direction. 

Error processing is a basic function of the human brain, which engages an error detection mechanism by 

comparing mental preference and actual response. It plays a key role in integrating various cognitive processes 

and adjusting performance [Holroyd and Coles, 2002]. Single trial detection of error potentials has been applied 

in BCI systems to improve performance [Ferrez and Millán, 2008; Chavarriaga and Millán, 2010]. This work 

applies the single trial error detection in driving to estimate the turning direction in front of intersection. 

2. Material and Methods 

Seven subjects participated in the experiment. Subjects sat in the car simulator with eyes fixed in the center 

of the screen, and drove the car simulator following direction signs located in front of each intersection (Figure 

1). Once the car was less than 80m from an intersection, three gray arrows (left, straight and right) appeared in 

the center of the screen to indicate a new trial. One second later, a bright green visual stimulation is presented, 

showing a possible driving direction (i.e. replacing one of the grey arrows). The green arrow remained on the 

screen for 0.5s and all arrows disappear afterwards, as shown in Figure 1. Then, the subject had to drive toward 

the direction in the sign board. The probability of green arrow to be the same as the sign was 70%. Each session 

consisted of 30 trials and lasted about 10 min, and each subject performed 5 sessions. EEG signal was recorded 

from 64 channels according to the extended 10/20 system using a BIOSEMI Active Two system. 

 

 
Figure 1. (a) Experimental protocol in car simulator with  EEG recording. (b) Visual cue and stimulation in front of the 

intersection to evoke error related potential. White board indicates the real driving direction and the green arrow represents 

the guess of driver’s turning direction. Error potential should be elicited in case of mismatch. 

EEG data was filtered with a 4
th

 order Butterworth filter between 1 and 10Hz [Chavarriaga and Millán, 

2010]. We used common average reference (CAR) to remove background brain activity, and baseline of each 

channel was removed by subtracting its average. We used LDA to classify correct and error trials. We chose 

classification features from EEG channels by canonical variate analysis [Ferran et al., 2007] between 0.2s to 0.7s 
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for 41 EEG channels, since they are related to the error-related brain activity. 10-fold cross validation was used 

to evaluate the performance of classification. 

3. Results 

Grand average across all seven subjects are shown in Figure 2.a, segmented from 1.2s before  to 1s after 

visual stimuli, where stimuli are defined as origin of time axis (0s). Both correct and error trials had strong visual 

related potential around 250ms after visual cue for all subjects. As expected, no significant difference was found 

after presenting the first cue (p > 0.05, t-test). After stimuli, there is a peak around 250ms for both correct and 

error conditions. Significant differences (p < 0.05, t-test) were found in medial frontal electrodes, e.g. FCz and 

Cz denoted by the green line in the figure, which are around from 200ms to 600ms. Significant differences were 

found at the subject level (six out of seven subjects) as well. Results of classification (ROC curves) between 

correct and error are shown in Figure2.b for all subjects. The average classification accuracy across all subjects 

is 0.69. 

 

 
Figure 2. (a) Grand average of error (Dark) and correct (Gray) related potentials in FCz and Cz. Green thick lines 

illustrate significant difference between correct and error (p < 0.05, t-test).  (b) Classification results (ROC curves) between 

error and correct trials for seven subjects. Each line represents one subject. Random level corresponds to the diagonal. 

4. Discussion 

Present study investigates the feasibility of estimating driver’s turning direction by detecting error-related 

brain activity. In the study, we chose the signal from 0.2~0.7s as the input of classification because they are 

related to the differences between error and correct condition, which can be demonstrated by the statistical test in 

Figure2.a. Although the obtained accuracy is above random for most subjects, it may still be low for practical 

applications. As a next step, we will explore brain connectivity as features for the classification, which seems to 

provide extra information for the classification task [Zhang et al., 2012]. Additionally, since so far we use visual 

cue and stimuli to evoke error related potential, which may increase the visual burden during driving, we will 

study other feedback modalities, such as. auditory or tactile. Future work will also address online recognition. 
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