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Abstract—This paper studies a family of second-order homoge-
neous state-feedback controllers, which includes the well-known
twisting algorithm as a special case. Upper bounds for the closed
loop’s convergence time are proposed that may be computed
analytically for any values of the positive controller parameters.
Numerical comparisons show that the bound approximates the
actual convergence time to within a factor of two over a large
parameter range.

Index Terms—Homogeneity; Finite-time convergence; Lya-
punov methods; Variable-structure/sliding-mode control

I. INTRODUCTION

ASSESSING the performance of feedback control loops is
an important part of control design. For this purpose, per-

formance indicators such as overshoot, steady state accuracy,
and settling time are typically considered. Some nonlinear
controllers achieve closed-loop convergence in finite time. In
this case, the finite convergence time, rather than the settling
time, is of interest. Examples are sliding-mode controllers, see,
e.g. [1], [2], and homogeneous state-feedback control laws
with negative homogeneity degree, see, e.g. [3], [4]. Compared
to linear state feedback, these controllers exhibit improved
disturbance attenuation, and some of them are even able to
completely reject certain classes of perturbations. Computing
and bounding their convergence time has thus seen extensive
research, see, e.g. [5], [6], [7], [8].

Here, homogeneous control of the perturbed double inte-
grator σ̈ = u+ w with control input u and disturbance w
is considered. Such a system may arise from input-output
linearization of plants with relative degree two, which are
common, e.g., in mechanical setups. For this system, a family
of homogeneous state-feedback controllers is considered that
is parameterized by γ ∈ (0, 1) and is given by

u = −k1 |σ|
γ

2−γ sign(σ)− k2 |σ̇|γ sign(σ̇) (1)

with positive gains k1, k2, see, e.g. [9], [3]. As γ tends to zero
or one, this control law becomes the discontinuous twisting
algorithm, see [10], or a linear state feedback controller,
respectively; therefore, it can be considered an interpolation
of these two cases.

There are few convergence time bounds for the resulting
closed loop. A technique in [11] claims to provide an upper
convergence time bound provided that γ is sufficiently close
to one; a counterexample to that result is provided in [12],
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however. For γ = 0, i.e., for the twisting algorithm, the
actual convergence time is bounded in [13], [14] and computed
analytically in [15]. The present paper proposes an upper con-
vergence time bound for any value of the parameter γ ∈ (0, 1)
and of the positive gains k1, k2 based on a family of Lyapunov
functions presented in [16].

The paper is organized as follows: After the problem
statement in Section II, Section III presents the main result:
an upper bound for the convergence time of the homogeneous
state-feedback control loop with and without perturbation. Sec-
tion IV gives some technical preliminaries needed for finding
the proposed bound, which is then derived and proven in
Section V. Section VI shows how to choose a free parameter of
the bound in an optimal way, and Section VII demonstrates the
bound’s accuracy by comparing it to numerical and simulation
results. Section VIII concludes the paper.

II. PROBLEM STATEMENT

In the following and throughout the paper, the abbreviation
byep := |y|p sign(y) is used. With this notation and state
variables x1 = σ, x2 = σ̇, the closed loop obtained by
applying (1) to the perturbed double integrator is given by

ẋ1 = x2, (2a)

ẋ2 = −k1 bx1e
γ

2−γ − k2 bx2eγ + w. (2b)

The state is aggregated in the vector x := [x1 x2]
T. The

disturbance is assumed to be bounded by

|w| ≤W (x) :=W1 |x1|
γ

2−γ +W2 |x2|γ (3)

with non-negative constants W1, W2. This bound is motivated
by the following proposition, which is proven in the appendix:

Proposition 1: Consider system (2) with disturbance w
bounded by |w| ≤ W1 |x1|c1 +W2 |x2|c2 . If either W1 > 0
and c1 <

γ
2−γ or W2 > 0 and c2 < γ, then the perturbed

system’s origin is not attractive.
Remark 1: Similarly, it is also possible to show that attrac-

tivity cannot be global if c1 > γ
2−γ or c2 > γ. In this case,

results from this paper may still be used locally, however.
It is well-known that every trajectory of system (2)–(3)

converges to the origin in finite time for all positive parameters
k1, k2 and γ ∈ (0, 1) with sufficiently small W1,W2. For a
given initial state x0, the maximum time it takes to converge is
given by the convergence time function. This function depends
on the disturbance bounds W1,W2, is denoted by TW1,W2

, and
is formally defined as

TW1,W2
(x0) := sup

w
s.t. (3)

inf{τ : x(0) = x0,x(t) = 0 ∀t ≥ τ}.

(4)
The goal is to provide upper bounds for this function.
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III. MAIN RESULT

This section states the two main theorems that provide con-
vergence time bounds for the unperturbed and the perturbed
closed-loop system.

Theorem 1 (Unperturbed Convergence Time Bound): Con-
sider the unperturbed system (2) with w = 0 and parameter
γ ∈ (0, 1). Let a, b be positive constants that satisfy either
0 < b < a ≤ 1 or a = b = 1 and define the positive constant
c as

c =
1

3− γ

[
(2− γ)a+ b+ (1− b)

(
1− b
a− b

) 2−γ
γ
]
. (5)

If the positive parameters k1, k2 satisfy

k
2−γ
2

1 > (2− γ)γ
γ
2

2
ak2, (6)

then the unperturbed system’s convergence time function is
bounded from above by

T 0,0(x) =
3− γ
1− γ

c

bk2

(
Ṽ (x)

3−γ
2 + (2−γ)ak2

c x1x2

) 1−γ
3−γ

1− (2− γ)γ
γ
2

2 ak2k
− 2−γ

2
1

(7)

with the abbreviation

Ṽ (x) = (2− γ)k1 |x1|
2

2−γ + |x2|2 , (8)

i.e., T0,0(x0) ≤ T 0,0(x0) holds for all x0 ∈ R2.
Proof: Given in Section V-C.

Remark 2: The parameter range (6), for which the bound
is applicable, is determined by the choice of a. By suitably
selecting it, any desired parameter range can be obtained. The
selection of the parameter b is discussed in Section VI.

Remark 3: By introducing the parameter ratio

ρ = k2k
− 2−γ

2
1 <

2

(2− γ)γ γ2 a
, (9)

the bound (7) for x2 = 0, i.e., for initial states with a velocity
component of zero, can be written as

T 0,0(x1, 0) =
c

b

(3− γ)(2− γ)
1−γ
2

(1− γ)ρ
√
k1

|x1|
1−γ
2−γ

1− (2− γ)γ
γ
2

2 aρ
. (10)

One can see that, for a fixed value of ρ, it is inversely
proportional to

√
k1. Using this fact, the convergence time

for x2 = 0 may be tuned by first selecting the ratio ρ, then
tuning the parameter k1, and finally computing k2 from ρ.

Theorem 2 (Perturbed Convergence Time Bound): Consider
the perturbed system (2)–(3) with positive parameters k1, k2,
and γ ∈ (0, 1). Suppose that positive constants a, b, c and
parameters k1, k2 satisfy the conditions of Theorem 1, define
the positive constants

m0 = 1− (2− γ)γ
γ
2

2
ak2k

− 2−γ
2

1 , (11a)

m1 =
m2

(2− γ) γ2 k2k
− 2−γ

2
1

, (11b)

m2 =
(3− γ) cb

(
3− γ + a

c (2− γ)
γ
2 k2k

− 2−γ
2

1

)(
(3− γ) 3−γ

2 − a
c (2− γ)k2k

− 2−γ
2

1

) 2
3−γ

, (11c)

and let T 0,0(x) be defined as in (7). If the non-negative
perturbation bounds W1 and W2 satisfy

m1
W1

k1
+m2

W2

k2
< m0, (12)

then the perturbed system’s convergence time function is
bounded from above by

TW1,W2(x) =
m0

m0 −m1
W1

k1
−m2

W2

k2

T 0,0(x), (13)

i.e., TW1,W2(x0) ≤ TW1,W2(x0) holds for all x0 ∈ R2.
Proof: Given in Section V-D.

Remark 4: Note that m0 is equal to part of the denominator
in the unperturbed bound (7) and that m0,m1,m2 depend only
on the parameter ratio ρ given in (9). Since m−11 m0k1 and
m−12 m0k2 may be considered upper bounds for W1 and W2,
respectively, the range of permissible perturbations in (12) may
be increased by increasing k1 (and thus also k2) for a fixed ρ.

IV. TECHNICAL LEMMAS

This section introduces two main technical lemmas that are
used for deriving the bound. The first one is taken from [16] as
a special case of Lemma 7 therein and is presented here along
with an immediate corollary. The second one is proposed here
and is proven in the appendix.

Lemma 1 ([16, Lemma 7]): For any positive constants α,
β, κ, and γ ∈ (0, 1), consider the function

V (x) =
(
α |x1|

2
2−γ + β |x2|2

) 2+κ−γ
2

+ δx1 bx2eκ . (14)

If |δ| < δ or |δ| = δ hold with

δ =
( α

2− γ

) 2−γ
2
(β
κ

)κ
2

(2− γ + κ)
2−γ+κ

2 , (15)

then V is positive definite or semidefinite, respectively.
Corollary 1: Let α, β, κ be positive, let γ ∈ (0, 1), and

consider the set M = {x ∈ R2 : α |x1|
2

2−γ + β |x2|2 = 1}.
Then,

sup
x∈M

x1 bx2eκ =

(
2−γ
α

) 2−γ
2
(
κ
β

)κ
2

(2− γ + κ)
2−γ+κ

2

. (16)

Proof: Given in the appendix.
Lemma 2: Let positive constants α, β, κ, and Y be given.

If β ≤ α < 1
Y and κ < 1, then

inf
|y1|≤Y
y2∈[0,1]

1 + αy1
(1 + βy1y2)κ

= 1− αY. (17)

Proof: Given in the appendix.

V. CONVERGENCE TIME BOUND

This section derives and proves the presented convergence
time bound. First, it briefly recapitulates the Lyapunov-based
technique for convergence time bounding and the employed
family of Lyapunov functions from [16]. Then, the choice
of a suitable function from that family is discussed. Using
the chosen Lyapunov function, the unperturbed and perturbed
convergence time bounds are finally proven.
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A. Lyapunov-Based Convergence Time Estimation

The convergence time bound is based on a family of strong,
smooth Lyapunov functions for system (2) that were recently
proposed in [16]. They have the form

V (x) = Ṽ (x)
3−γ
2 + εx1x2, (18)

wherein ε is a positive constant and Ṽ defined in (8)
is a (well-known) weak Lyapunov function for (2), whose
time derivative along the system’s trajectories is given by
d
dt Ṽ = −2k2 |x2|1+γ for w = 0. Using this fact, the time
derivative V̇ of V is found as

V̇ (x) = −(3− γ)k2Ṽ (x)
1−γ
2 |x2|1+γ

+ ε(|x2|2 − k1 |x1|
2

2−γ − k2x1 bx2eγ). (19)

It is shown in [16] that for all positive values of the
parameters k1, k2 there exists a sufficiently small value of ε
such that V is positive definite and V̇ is negative definite. For
such values of ε, the Lyapunov function and its time derivative
satisfy the inequality

V̇ (x) ≤ −CV (x)
2

3−γ (20)

with some C > 0 for all x. Rewriting this differential
inequality in the form

d

dt
V

1−γ
3−γ ≤ −1− γ

3− γ
C (21)

and integrating it yields a bound for the convergence time:
Lemma 3: Consider the perturbed system (2)–(3) with given

non-negative perturbation bounds W1,W2. Suppose that for
some ε > 0, the function V defined in (18) is positive
definite, and suppose that its time derivative V̇ along the
system’s trajectories satisfies (20) for some C > 0. Then,
the system’s convergence time is bounded from above by
T (x0) ≥ TW1,W2

(x0) with

T (x) =
3− γ
1− γ

V (x)
1−γ
3−γ

C
(22)

for all initial states x0 ∈ R2.
Proof: Given in the appendix.

B. Choice of Lyapunov Function

In order to derive a convergence time bound, a Lyapunov
function has to be chosen, i.e., the value of ε in (18) has
to be selected. This has to be done as a function of the
parameters k1, k2, γ without compromising the positive and
negative definiteness of V and V̇ , respectively. Furthermore,
the resulting V̇ should allow for an analytic computation of C
in the differential inequality (20) without requiring additional
complicated or conservative parameter conditions.

In order to simplify considerations, homogeneity of most
involved functions, in particular of V and V̇ , is used, see,
e.g. [3], [4]. Any such homogeneous scalar-valued function
f(x1, x2) satisfies f(α2−γx1, αx2) = αmf(x1, x2) for all
α > 0 and for some scalar m, which is called the homogeneity
degree of f . As a consequence, any inequalities involving
homogeneous functions hold for all x if and only if they

hold on the compact set defined by Ṽ (x) = 1. Therefore,
the following obvious relations

sup
Ṽ=1

|x1| =
(2− γ)−

2−γ
2

k
2−γ
2

1

, sup
Ṽ=1

|x2|2 = 1, (23a)

and furthermore, due to Corollary 1, the relations

sup
Ṽ=1

x1x2 =
(3− γ)−

3−γ
2

k
2−γ
2

1

, sup
Ṽ=1

x1 bx2eγ =
γ
γ
2

2k
2−γ
2

1

(23b)

will prove to be useful.
Using these considerations, the next proposition gives a

range of values for ε that ensures positive definiteness of V .
Proposition 2: Suppose that for some a ∈ (0, 1] the positive

parameters k1, k2, and γ ∈ (0, 1) satisfy (6). Then, V in (18)
is positive definite for all positive ε ≤ (2− γ)ak2.

Proof: Restricting considerations to Ṽ (x) = 1 due to
homogeneity, one finds by using (23b) and applying (6) that

inf
Ṽ (x)=1

V (x) = 1− ε sup
Ṽ (x)=1

x1x2 ≥ 1− (2− γ)a
(3− γ) 3−γ

2

k2

k
2−γ
2

1

≥ 1− 2

(3− γ)
3−γ
2 γ

γ
2

> 0 (24)

holds, because the last expression is strictly decreasing with
respect to γ and equal to zero for γ = 1.

The Lyapunov function’s time derivative V̇ is now con-
sidered. Taking into account that Ṽ (x) ≥ |x2|2, one obtains
V̇ (x) ≤ −k2R(x) from (19) with

R(x) =
(
3− γ − ε

k2

)
|x2|2 +

ε

k2
k1 |x1|

2
2−γ + εx1 bx2eγ .

(25)
A choice for ε is now proposed that yields a negative definite
upper bound for V̇ in addition to positive definiteness of V .
Since it involves the constant c defined in (5), an auxiliary
lemma is first given; then, the proposed choice for ε is stated.

Lemma 4: For a given γ ∈ (0, 1), suppose that constants
a, b, c satisfy the conditions of Theorem 1. Then, c ≥ 1.

Proof: Given in the appendix.
Proposition 3: Suppose that parameters k1, k2, γ and con-

stants a, b, c satisfy the conditions of Theorem 1. Then, choos-
ing the positive constant ε as

ε = (2− γ)a
c
k2 (26)

guarantees that V defined in (18) is positive definite and that
V̇ given in (19) satisfies

V̇ (x)

V (x)
2

3−γ
≤ −k2

b

c

Ṽ (x) + cεx1 bx2eγ(
Ṽ (x)

3−γ
2 + εx1x2

) 2
3−γ

(27)

for all x ∈ R2 \ {0}.
Proof: Since c ≥ 1 according to Lemma 4, positive

definiteness of V follows from Proposition 2. By multiplying
both sides of (27) with c

(1−b)k2V (x)
2

3−γ and using the fact
that V̇ (x) ≤ −k2R(x) with R(x) given in (25), one can see
that it suffices to show that the function H(x) defined as

H(x) =
cR(x)− b

(
Ṽ (x) + cεx1 bx2eγ

)
1− b

(28)
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is positive definite. Substituting ε from (26) and c from (5),
this function can be written as

H(x) = α |x1|
2

2−γ + β |x2|2 + δx1 bx2eγ (29)

with constants α, β, and δ given by

α = (2− γ)k1
a− b
1− b

, δ = (2− γ)ak2, (30)

β =
(3− γ)c− (2− γ)a− b

1− b
=
(1− b
a− b

) 2−γ
γ

. (31)

According to Lemma 1, H(x) is positive definite, iff

(2− γ)ak2 < 2
(
k1
a− b
1− b

) 2−γ
2

[( 1−b
a−b

) 2−γ
γ

γ

] γ
2

=
2k

2−γ
2

1

γ
γ
2

(32)

holds, which is equivalent to condition (6) of Theorem 1.

C. Bound for Unperturbed Case

The differential inequality in Proposition 3 may now be
bounded from above by using Lemma 2. This allows to prove
the unperturbed convergence time bound stated in Theorem 1.

Proof of Theorem 1: With the abbreviations y1 = x1 bx2eγ
and y2 = |x2|1−γ , one may write the inequality (27) from
Proposition 3 for Ṽ (x) = 1 as

V̇ (x)

V (x)
2

3−γ

∣∣∣∣∣
Ṽ (x)=1

≤ −k2
b

c

1 + cεy1(
1 + εy1y2

) 2
3−γ

. (33)

By using (23), one finds that the variables y1, y2 satisfy

|y1| ≤
γ
γ
2

2k
2−γ
2

1

, 0 ≤ y2 ≤ 1. (34)

Thus, applying Lemma 2 and substituting ε from (26) yields

V̇ (x)

V (x)
2

3−γ
≤ −k2

b

c

(
1− cε γ

γ
2

2k
2−γ
2

1

)
= −k2

b

c

(
1− (2− γ)ak2γ

γ
2

2k
2−γ
2

1

)
= −C. (35)

Applying Lemma 3 to this differential inequality yields the
claimed convergence time bound (7).

D. Bound for Perturbed Case

The perturbed case is now considered, and the result in
Theorem 2 is derived and proven. Taking the time derivative of
the Lyapunov function V defined in (18) along the trajectories
of the perturbed system (2)–(3) yields

V̇ (x) ≤ −CV (x)
2

3−γ +
∂V

∂x2
(x)w

≤ −CV (x)
2

3−γ +

∣∣∣∣ ∂V∂x2 (x)
∣∣∣∣W (x). (36)

with C given in (35) and the partial derivative given by

∂V

∂x2
(x) = (3− γ)Ṽ (x)

1−γ
2 x2 + εx1. (37)

A differential inequality of the form V̇ ≤ −(C − D)V
2

3−γ

may be obtained by bounding the second term in (36) as∣∣∣∣ ∂V∂x2 (x)
∣∣∣∣W (x) ≤ DV (x)

2
3−γ , (38)

with a positive constant D. This allows to prove Theorem 2.
Proof of Theorem 2: As before, it suffices to consider (38)

only for Ṽ (x) = 1. By using (23), one obtains

inf
Ṽ (x)=1

V (x) = 1− ε (3− γ)
− 3−γ

2

k
2−γ
2

1

= F1 (39a)

sup
Ṽ (x)=1

∣∣∣∣ ∂V∂x2 (x)
∣∣∣∣ ≤ (3− γ) + ε

(2− γ)−
2−γ
2

k
2−γ
2

1

= F2 (39b)

sup
Ṽ (x)=1

W (x) ≤W1
(2− γ)−

γ
2

k
γ
2
1

+W2 (39c)

with positive constants F1, F2. Therefore, by substituting ε
from (26), one finds that∣∣∣ ∂V∂x2

(x)
∣∣∣W (x)

V (x)
2

3−γ
≤ F2

F
2

3−γ
1

[
(2− γ)−

γ
2

k
γ
2
1

W1 +W2

]
=
bk2
c

(m1

k1
W1 +

m2

k2
W2

)
= D (40)

and bk2
c m0 = C hold with m0,m1,m2 in (11) and C in (35).

Since (12) implies C > D, Lemma 3 may be applied to the
resulting differential inequality V̇ ≤ −(C −D)V

2
3−γ to yield

the convergence time bound (13).

VI. PARAMETER SELECTION

As pointed out in Remark 2, the value of a in Theorem 1
determines the range (6) of k1, k2 or, equivalently, of the
parameter ratio ρ in (9), for which the bound is applicable.
Once a is fixed, the main quantity of interest is the scaling
factor c

b that appears in (7) and (10). In general, the smaller
this factor is, the smaller (and better) the bound is. Thus, the
parameter b should be selected to minimize this factor. The
following proposition provides a way to do this by computing
the root of a generalized polynomial.

Proposition 4 (Choice of b): Let constants a ∈ (0, 1] and
γ ∈ (0, 1) be given. Define c as in Theorem 1 and consider
the unique solution q ∈ ( 1a ,∞) of the equation

q
2
γ − 2

(2− γ)a
q

2−γ
γ − γ = 0. (41)

Then, cb ≥ 1 holds for all b ∈ (0, a) and selecting

b =
1− aq
1− q

(42)

minimizes the value of c
b with respect to b.

Proof: Given in the appendix.
Remark 5: Note that b = c = 1 is obtained from this

proposition for a = 1, regardless of γ.
Fig. 1 plots the optimal value of b and the corresponding

scaling factor c
b as a function of a for different values of γ.

One can see that the scaling factor increases with decreasing
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Fig. 1. Optimal parameter values of b obtained from Proposition 4 (top) and
corresponding minimum scaling factor c

b
in Theorem 1 (bottom) as a function

of the parameter a for different values of γ.

values of a and γ. With decreasing γ, it thus becomes harder
to obtain small bounds for values of k1 that require a < 1.

The reason for this effect can be seen by considering the
limit γ → 0. Condition (6) then tends to k1 > ak2 and system
(2) becomes the well-known twisting algorithm. The twisting
algorithm is only finite-time stable for k1 > k2, however.
Therefore, all convergence time bounds with a < 1 must
diverge at this point, which explains the increase in scaling
factors with decreasing γ.

VII. COMPARISONS AND SIMULATION RESULTS

This section compares the proposed convergence time bound
to the actual convergence time of the twisting algorithm, which
is obtained for γ → 0, and to simulation results with γ = 0.5,
which is a common parameter choice.

A. Comparison for γ → 0: Twisting Algorithm
In the limit as γ tends to zero, system (2) becomes the well-

known twisting algorithm. Although γ = 0 is not considered
explicitly in Theorem 1, one may take the limit γ → 0 there,
provided that a = b = 1 is selected. The corresponding limits
of condition (6) and bound (7) are studied as a benchmark of
the proposed result.

For vanishing γ, the bound (7) tends to

lim
γ→0

T 0,0(x) =
3

k2

((
2k2 |x1|+ |x2|2

) 3
2 + 2k2x1x2

) 1
3

1− k2k−11

,

(43)
while condition (6) tends to k1 > k2, a well-known necessary
and sufficient stability condition for the twisting algorithm.
Due to continuity reasons, expression (43) is an upper con-
vergence time bound for system (2) with γ = 0 and w = 0.
Fig. 2 compares this bound to the convergence time function
of the twisting algorithm that is computed analytically in [15]
or also obtained from [13] by optimally choosing k therein.
One can see that the proposed bound is qualitatively similar
to the actual convergence time; for large k1, in particular, it
is conservative only by a fixed offset.
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Fig. 2. Proposed bound’s limit for γ → 0 with a = b = 1 and actual
convergence time of the twisting algorithm computed in [14] (or also obtained
from [13] with optimally chosen parameter k therein) with k2 = 1 and initial
state x0 = [1 1]T as a function of k1.
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Fig. 3. Upper convergence time bounds from Theorem 1 for different values
of a with optimally chosen parameter b, and actual convergence time of system
(2) with w = 0 from a simulation with initial condition x0 = [1 1]T and
parameters γ = 0.5, k2 = 1 as a function of k1.

B. Simulation Results for γ = 0.5

Fig. 3 studies the behavior of the bound for k2 = 1, γ = 0.5
as a function of k1 for different values of a. For each a, the
parameter b is chosen optimally according to Proposition 4.
The results are compared to actual convergence times obtained
from a simulation. One can see that by decreasing a, the
asymptote may be shifted to the left, though at the cost of
an increasingly larger bound. Nevertheless, the bounds show
the same qualitative behavior as for the twisting algorithm,
and for large values of k1, the bound approximates the actual
convergence time to within a factor of two.

VIII. CONCLUSION

An upper bound for the convergence time of a family
of second-order homogeneous state-feedback controllers was
presented. The range of controller parameters, for which the
bound is applicable, may be tuned using a scalar parameter
and may be made arbitrarily large. The bound was compared
to convergence times obtained from simulations and to the
convergence time of the twisting algorithm, which is obtained
as a special case in the limit. These comparisons showed that
the bound approximates the actual convergence time to within
a factor of two over a large parameter range.

APPENDIX

Proof of Proposition 1: In the first case, w = δ bx1ec1 with
any δ ∈ (0,W1] yields the nontrivial equilibrium

x1 =
∣∣k−11 δ

∣∣ 1
γ

2−γ−c1 , x2 = 0 (44)
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arbitrarily close to the origin. In the second case, choose
w =W2 bx2ec2 ; then, the time derivative of the positive defi-
nite function Ṽ defined in (8) along the system’s trajectories

˙̃V (x) = −2k2 |x2|1+γ + 2W2 |x2|1+c2 , (45)

is non-negative in every open neighborhood of the origin,
wherein |x2| <

∣∣k−12 W2

∣∣ 1
γ−c2 holds.

Proof of Corollary 1: Consider V (x) in (14) with δ = −δ
from (15). Since V is only positive semidefinite, its infimum
is zero. Keeping δ < 0 in mind, one has

0 = inf
x∈M

V (x) = 1 + inf
x∈M

δx1 bx2eκ

= 1− δ sup
x∈M

x1 bx2eκ , (46)

and thus, supx∈M x1 bx2eκ = −δ−1.
Proof of Lemma 2: Using βy2 ≤ α, one finds that

d

dy1

1 + αy1
(1 + βy1y2)κ

=
(α− κβy2) + αβ(1− κ)y1y2

(1 + βy1y2)κ+1

≥ α(1− κ)
(1 + βy1y2)κ

≥ 0, (47)

i.e., that the expression in (17) is non-decreasing with respect
to y1 for every value of y2 ∈ [0, 1]. Thus, the minimum is
obtained for y1 = −Y and, since 1− αY > 0, y2 = 0.

Proof of Lemma 3: Suppose to the contrary that there is a
trajectory x(t) of system (2)–(3) with initial state x0 = x(0)
and xT = x(T (x0)) 6= 0. Then, integration of (21) yields

V (xT)
1−γ
3−γ − V (x0)

1−γ
3−γ ≤ −1− γ

3− γ
CT (x0) = −V (x0)

1−γ
3−γ .

(48)
Hence, V (xT) ≤ 0 but xT 6= 0, which contradicts positive
definiteness of V .

Proof of Lemma 4: Rewrite (5) as

c =

(3− γ)b+ (1− b)
[
(2− γ)a−b1−b +

(
1−b
a−b

) 2−γ
γ

]
3− γ

. (49)

Introducing the abbreviation y = a−b
1−b ∈ (0, 1], one has

inf
y∈(0,1]

[
(2− γ)y + 1

y
2−γ
γ

]
= 3− γ (50)

with the infimum being obtained for y = 1, because the
expression’s derivative is negative for all y ∈ (0, 1]. Therefore,
the right-hand side of (49) may be bounded from below as

c ≥ (3− γ)b+ (1− b)(3− γ)
3− γ

= 1, (51)

which completes the proof.
Proof of Proposition 4: With z = a

b ∈ [1,∞), (5) yields

(3− γ)c
b

=

[ ( z
a − 1

) 2
γ

(z − 1)
2−γ
γ

+ (2− γ)z + 1

]
≥ 3− γ. (52)

To see that the solution of (41) is unique for q ∈ [ 1a ,∞), note
that the left-hand side of (41) is negative for qa = 1, positive
for sufficiently large q, and strictly increasing, because
d

dq

(
q

2
γ − 2

(2− γ)a
q

2−γ
γ − γ

)
=

2

γ
q

2−γ
γ

(
1− 1

qa

)
> 0 (53)

for qa > 1. It will be shown that (41) is the first order
optimality condition for a minimum of c

b given in (52).
Differentiation with respect to z yields

d

dz

(3− γ)c
b

=
2

aγ

( z
a − 1

z − 1

) 2−γ
γ − 2− γ

γ

( z
a − 1

z − 1

) 2
γ

+(2−γ).
(54)

By multiplying this expression with γ
γ−2 and introducing

q =
z
a − 1

z − 1
=

1− b
a− b

, (55)

the left-hand side of (41) is obtained, and inverting (55) yields
the value of b in (42). Since c

b in (52) tends to infinity for
z → 1 and z →∞ and the solution of (41) is unique, the
unique global minimum is obtained this way.
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