
Collision Attack on the Hamsi-256
Compression Function

Mario Lamberger1, Florian Mendel2, and Vincent Rijmen2

1 NXP Semiconductors, Austria
2 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium

Abstract. Hamsi-256 is a cryptographic hash functions submitted by
Küçük to the NIST SHA-3 competition in 2008. It was selected by NIST
as one of the 14 round 2 candidates in 2009. Even though Hamsi-256
did not make it to the final round in 2010 it is still an interesting tar-
get for cryptanalysts. Since Hamsi-256 has been proposed, it received a
great deal of cryptanalysis. Besides the second-preimage attacks on the
hash function, most cryptanalysis focused on non-random properties of
the compression function or output transformation of Hamsi-256. Inter-
estingly, the collision resistance of the hash or compression function got
much less attention. In this paper, we present a collision attack on the
Hamsi-256 compression function with a complexity of about 2124.1.

Keywords: hash function, differential cryptanalysis, collision attack

1 Introduction

In recent years, significant advances in the field of hash function research have
been made which had a formative influence on the landscape of hash functions.
Especially the work on MD5 and SHA-1 [18,19] has convinced many cryptog-
raphers that these widely deployed hash functions can no longer be considered
secure. As a consequence, researchers are evaluating alternative hash functions in
the SHA-3 initiative organized by NIST [15]. The goal is to find a hash function
which is fast and still secure within the next few decades.

Many new and interesting hash functions have been proposed. Hamsi-256 [11],
proposed by Küçük, was one of the 64 submissions to the SHA-3 competition
from which 51 submissions were selected for the first round in 2008 and 14 of
them advanced to the second round in 2009. Hamsi-256 was one of them. Even
though Hamsi-256 was not selected as one of the five finalists in 2010, mainly
because of the second-preimage attacks, it is still an interesting target for crypt-
analysts. In this work, we focus on the collision resistance on the Hamsi-256
compression function, which in turn gives new insights in the collision resistance
of the hash function.

Previous Analysis. Hamsi-256 received a great deal of cryptanalysis during
the ongoing SHA-3 competition. However, the only analysis of the Hamsi-256

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 156–171, 2012.
The original publication is available at http://dx.doi.org/10.1007/978-3-642-34931-7_10
c© Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-34931-7_10

Collision Attack on the Hamsi-256 Compression Function 157

hash function itself is due to Dinur and Shamir [7,8] and Fuhr [9]. Both attacks
are algebraic attacks targeting the second-preimage security of the hash function.
The attacks are based on the observation that it is sufficient to show that one
of the hashed output bits is wrong to discard a possible second-preimage. Since
the output bits of the compression function of Hamsi-256 can be described by
low degree polynomials, it is faster to compute a small number of output bits
by a fast polynomial evaluation technique than with the original algorithm. The
results are second-preimage attacks on Hamsi-256 with a complexity of about
2247 and 2251.3, respectively. But then again, one still needs to test 2256 inputs to
find a second preimage as in the generic case. In other words, the attacks are a
clever way to speed up brute force search. We want to note that in a similar way
also the complexity of a generic collision search for the compression function
of Hamsi-256 can be improved, resulting in an attack complexity of 2125 [7].
Moreover, in [12] Küçük showed a collision attack for a simplified version of the
Hamsi-256 compression function, ignoring the message expansion.

Most other attacks published so far are differential attacks targeting the
compression function or output transformation of Hamsi-256. Practical near-
collisions for the compression function have been shown in [1,13,16,17] and a
distinguisher for the compression function has been presented in [5]. Further-
more, non-random properties for the underlying permutation of the Hamsi-256
compression function and output transformation have been demonstrated in [1,4]
and a distinguisher for the output transformation of Hamsi-256 has been de-
scribed in [1].

Our Contribution. In this work, we present a collision attack for the Hamsi-
256 compression function. Our collision attack is based on the attack of Çalik
and Turan [5] and has a complexity of about 2124.1 compression function evalu-
ations. The main idea of the attack is very simple. We extend the approach of
Çalik and Turan, which was originally used to show non-random properties in
the compression function. This is then used to fix some output bits of the com-
pression function to a predefined value faster than in the generic case. Finally,
we use a birthday attack on the remaining bits to construct a collision for the
compression function of Hamsi-256. Even though the complexity of the attack is
very high, namely 2124.1 compression function evaluations, it demonstrates that
the compression function of Hamsi-256 is not collision resistant and gives new
insights in the security of Hamsi-256. However, it has to be noted that the attack
cannot be extended to the hash function.

Outline. The remainder of the paper is organized as follows. In Section 2, we
give a short description of the Hamsi-256 compression function. In Section 3,
we describe the distinguishing attack of Çalik and Turan on Hamsi-256, since
it is the basis for our collision attack. We present our new attack strategy in
Section 4 and apply it to the Hamsi-256 compression function in Section 5.
Finally, we conclude in Section 6.

158 Mario Lamberger, Florian Mendel, and Vincent Rijmen

2 Description of Hamsi-256

Hamsi-256 is a cryptographic hash function proposed by Küçük [11] which has
been submitted to the SHA-3 competition in 2008. It is an iterated hash function
based on the Merkle-Damg̊ard design principle [6,14] and produces a 256-bit hash
value. Like most hash functions, Hamsi-256 iterates a compression function f
to compute the hash value. It takes a 32-bit message block Mi and a 256-bit
chaining value hi−1 as input and outputs a 256-bit chaining value hi. In the
following, we give a brief overview of the compression function of Hamsi-256
(see Figure 1).

M1 h0

Concatenation

⊕

Truncated non-linear

Permutation P

M

Fig. 1. The compression function of Hamsi-256 [11].

Message Expansion. The message expansion of Hamsi-256 uses a linear code
to expand the 32-bit message word Mi into eight 32-bit words m0,m1, . . . ,m7,
i.e. 256 bits. The (128, 16, 70) linear code defined over F4 used in the message
expansion ensures that any difference in the message word Mi will lead to dif-
ferences in at least 70 of the 128 columns of the initial state. For a detailed
description of the message expansion we refer to [11].

Concatenation. The 256-bit expanded message (m0, · · · ,m7) and the 256-bit
chaining value hi−1 = (c0, . . . , c7) are concatenated to form the 512-bit initial
state (see Figure 2). We want to note that the initial state can be considered as
both a 4× 4 matrix of 32-bit words and 128 columns each consisting of 4 bits.

m0 m1 c0 c1

c2 c3 m2 m3

m4 m5 c4 c5

c6 c7 m6 m7

Fig. 2. The initial state of the compression function after concatenation.

Collision Attack on the Hamsi-256 Compression Function 159

Non-linear Permutation. The non-linear permutation P used in the Hamsi-256
compression function is composed of 3 rounds. In each round the round trans-
formation updates the state by means of a sequence of transformations:

Addition of Constants Predefined constants and a round counter is xored to
the whole state. For the value of the constants we refer to [11].

Substitution Each of the 128 columns of the state (each 4 bits) is updated by
the 4-bit s-box of the block cipher Serpent [2].

Diffusion The linear transformation L of the block cipher Serpent, which ac-
cepts four 32-bit input words, and outputs four 32-bit words is applied to
the four independent diagonals of the state.

A detailed description of the s-box and the linear transformation L is given
in [11] and the differential properties of the s-box and linear transformation of
Hamsi-256 have been studied for instance in [1] among others.

Truncation and Feed-Forward. Finally, after the application of the permu-
tation P the second and fourth rows of the state are discarded and the initial
chaining value is xored to the truncated state resulting in the initial chaining
value for the next iteration or the input to the output transformation to com-
pute the final hash value. For the description of the output transformation of
Hamsi-256 we refer to [11].

3 Attack of Çalik and Turan

In this section, we briefly describe the distinguishing attack of Çalik and Tu-
ran [5] on the Hamsi-256 compression function, since our collision attack builds
upon it. The attack is a differential attack exploiting the fact that for a given
input difference not all the output bits of the compression function are affected.
This results in a distinguisher for the compression function. Since the message
expansion of Hamsi-256 uses a (128, 16, 70) linear code, any difference in the mes-
sage will lead to differences in at least 70 of the 128 columns of the initial state.
In other words, at least 70 s-boxes will be active in the initial state. Therefore,
Çalik and Turan consider only differences in the chaining value in their analysis.
Furthermore, they restrict themselves to differences in only one column, i.e. one
active s-box, in the initial state. Since each column of the initial state contains
two bits of the chaining value (see Figure 2), three non-zero differences can be
injected to a column: these differences can be 2x, 8x or ax for columns 0-63 and
1x, 4x or 5x for columns 64-127.

To find the output bits that are not affected by one of the 3·128 possible input
differences the authors trace the differences through the round transformations of
Hamsi-256 and mark all the bits of the internal state that could have a difference.
If there are any unmarked bits in the state after 3 rounds, then one knows that
these bits are not affected by the initial difference. However, due to the feed-
forward, some of these unaffected bit positions may coincide with the difference in

160 Mario Lamberger, Florian Mendel, and Vincent Rijmen

the initial state, resulting in bits that will always change. However, in the paper
the authors do not make a distinction between these two cases (and neither will
we) and use for both cases the term unaffected bits.

As noted by Çalik and Turan the number of unaffected output bits depends
on the Hamming weight of the difference in the initial state. For the differences
with Hamming weight 2, i.e. 5x and ax, the number of unaffected bits is higher.
The reason for this is that differences with Hamming weight 1, i.e. 1x, 2x, 4x and
8x, will lead to a difference with Hamming weight at least 2 at the output of
the s-box in round 1, whereas a difference of Hamming weight 2 can lead to a
difference with Hamming weight 1, resulting in a sparser difference at the output
of round 1. Hence, it is not surprising that one could find 64 solutions with at
least one unaffected output bit using an initial difference with Hamming weight
2, cf. [5, Table 4], while no solution could be found using an initial difference
with Hamming weight 1. An example with two unaffected output bits and an
initial difference with Hamming weight 2 is given in Figure 3.

00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000

00000000 00000010 00000082 40000000
02000000 00000000 00000000 10000000
01020000 00000000 00000000 00200000
80000000 00000004 00000000 00000000

83020000 00000014 00000082 50200000
83020000 00000014 00000082 50200000
83020000 00000014 00000082 50200000
83020000 00000014 00000082 50200000

08771d1a 60f028b1 2e19419f c58be9a0
06041549 800028e8 02050105 b0608008
831e5403 68008abd 0e0415ff f0e2e020
8b000141 49000a0c 00285100 10438828

8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8
8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8
8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8
8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8

ffffffff ffffffff ffffffff ffffffff
fffebfff f7f7ffff 7efffbff ffffdfff
ffffffff ffffffff ffffffff f5ffffff
fffeffd7 fff77eff defbfff7 fdf7fcfe

ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff f5ffffff

Round 1 Substitute

Round 1 Diffuse

Round 2 Substitute

R
ou

n
d

2
D

iff
u

se

Round 3 Substitute

Round 3 Diffuse

Truncate

Fig. 3. Propagation of affected bits for the initial difference ax inserted to col-
umn 7 of the initial state [5].

Another factor that influences the number of unaffected output bits are the
values of the message bits in the column with the initial difference. By imposing
some additional restrictions on the message bits one could observe more unaf-
fected output bits. The reason for this is that for certain choices of the message
bits the Hamming weight of the difference at the output of the s-box might be

Collision Attack on the Hamsi-256 Compression Function 161

smaller. This results in a sparser difference at the output of round 1. By choos-
ing the message bits carefully, Çalik and Turan could find 8 solutions with two
unaffected bits at the output using an initial difference with Hamming weight 1,
cf. [5, Table 3]. Furthermore, also for an initial difference with Hamming weight
2 the number of solutions as well as the number of unaffected bits can be in-
creased by choosing the message bits accordingly. For instance, in the example
given in Figure 3 the number of unaffected output bits can be increased to 9
bits by setting the message bits in column 7 to 0x. By additionally also impos-
ing conditions on the chaining bits in column 7, i.e. 0x or 3x, the number of
unaffected bits can be increased to 62.

Based on these differential properties of the compression function Çalik and
Turan describe several attacks on Hamsi-256 in the original paper. First, they
show a distinguishing attack on the compression function that needs only a
few compression function evaluations. Then, they present a message-recovery
attack for the compression function with a complexity of 210.5 and a pseudo-
preimage attack with complexity of about 2254.25. For a detailed description of
these attacks we refer to [5].

In this work, we will use these differential properties of the compression
function to show a collision attack for the Hamsi-256 compression function. We
describe the basic idea of the attack in the next section.

4 Basic Attack Strategy

In this section, we present the basic attack strategy employed by our new attack
to construct collisions in the compression function of Hamsi-256. It is based
on the concept of neutral bits [3] and auxiliary differentials [10], which were
originally used to speed up differential collision attacks on hash functions.

The main idea of our attack is quite simple. Assume we can find a distinct in-
put differences (in the following referred to as auxiliary differentials), where each
difference only affects a few output bits of the compression function. Further,
we assume that there exists at least b output bits (for the sake of simplicity say
bits 0, 1, . . . , b− 1) that are not affected by any of these a auxiliary differences.
Then this can be used to find 2a partial preimages for these b output bits of
the compression function with a complexity of about 2a + 2b, compared to the
generic case of 2a+b compression function evaluations.

Let v1, . . . , va denote the a auxiliary differentials not affecting the first b
output bits of the compression function and assume for the sake of simplicity
that we want to fix these b output bits to 0. Then the attack can be summarized
as follows.

1. Choose random values for the chaining input hi−1 and the message input mi.
If necessary fulfilling all conditions imposed by the a auxiliary differentials
v1, . . . , va.

2. Compute the output of the compression function hi and check if the b output
bits of hi are correct

162 Mario Lamberger, Florian Mendel, and Vincent Rijmen

– If all b bits are 0 then continue with step 3

– else go back to step 1

3. Use the a auxiliary differentials v1, . . . , va to generate 2a additional solutions
where the first b output bits of the compression function are also 0

h
(d)
i = hi ⊕

a⊕
j=1

dj · vj

with d = (d1, . . . , da) ∈ {0, 1}a.

Note that we need to repeat step 1-2 about 2b times to find a correct hi, resulting
in a complexity of about 2b compression function evaluations to finish step 1
and 2. Since step 3 has a complexity of 2a, the final complexity of the attack is
2a+2b compression function evaluations. But then again, we found 1+2a partial
preimages where the first b output bits (0, 1, . . . , b − 1) are 0 with complexity
of 2a + 2b. This can now be used to construct a collision for the compression
function faster than in the generic case.

Since we can find about 2a partial preimages for the first b with a complexity
of 2a + 2b (instead of 2a+b) we can combine this with a birthday attack to
find a collision for the compression function faster than in the generic case. By
repeating the attack about t times with t = 2(n−b)/2−a we get t · 2a = 2(n−b)/2

outputs where the first b bits collide and due to the birthday paradox we expect
to find at least one pair of outputs where also the remaining n − b bits collide.
The result is a collision attack on the compression function with a complexity
of about t · (2a + 2b) = 2n/2 · (2−b/2 + 2b/2−a) compression function evaluations.

Clearly the complexity of the attack depends the value of a and b. For the
above computed complexity we can easily observe that the value

2−b/2 + 2b/2−a =
2b−a + 1

2b/2

is minimized if in the numerator we have a ≥ b, and in the denominator we have
b as large as possible, so basically a = b. The main question is now which values
of a and b we can expect in our attack. On the one hand this number depends on
the size of the set S containing all auxiliary differentials, and on the other hand
on the number of affected output bits of each of these auxiliary differentials in
the set. Moreover, also the number of conditions imposed on the message bits
by the auxiliary differentials might be a limiting factor, since this is only 32 bits
in the case of the Hamsi-256 compression function.

4.1 Probabilistic Considerations

In the following, we denote by [n] the integer interval {1, 2, . . . , n}, by 2[n] we

mean the set of all subsets of [n] and by
(
[n]
k

)
all subsets of [n] of size k. We are

looking at subsets of
(
[n]
k

)
because on average, the number of unaffected output

Collision Attack on the Hamsi-256 Compression Function 163

bits is ≈ k in our applications. Furthermore, we assume that the auxiliary differ-
entials are independent and that the unaffected bits of each auxiliary differential
are randomly distributed.

We want to investigate the probability P (N,n, k, b) that a set S ⊆
(
[n]
k

)
of size

N of auxiliary differentials contains a subset S′ of size a such that the elements
si ∈ S′ satisfying ∣∣∣∣∣

a⋂
i=1

si

∣∣∣∣∣ ≥ b . (1)

Now we have

P (N,n, k, b) ≤
(
N

a

)
·

k∑
j=b

Pr(n, k, j) (2)

where Pr(n, k, j) denotes the probability that a randomly chosen subsets si ∈(
[n]
k

)
satisfy |

⋂a
i=1 si| = j. The exact distribution is hard to compute, however

we can come up with the following approximation. Since each set si has size
k, we assume that a randomly chosen element e ∈ [n] is contained in si with
probability k/n. Thus, the probability for a randomly chosen element e ∈ [n] to
be contained in

⋂a
i=1 si is p = (k/n)a. From this we deduce that

k∑
j=b

Pr(n, k, j) =

k∑
j=b

(
n

j

)
pj(1− p)n−j

which in turn leads to

P (N,n, k, r) ≤
(
N

a

)
·

k∑
j=b

(
n

j

)
pj(1− p)n−j (3)

5 Application to Hamsi-256

In this section, we will discuss the application of the attack strategy described
in the previous section to the Hamsi-256 compression function. Therefore, we
first need to find a set S of auxiliary differentials that only affect a few output
bits of the compression function of Hamsi-256. Then we need to find a subset
of a auxiliary differentials not affecting the same b output bits (for large values
of a and b). To construct the set S it seems natural to use the same differen-
tials as Çalik and Turan in their distinguishing attack described in Section 3.
However, since we are aiming for a large value of a and b, in order to increase
the effectiveness of the attack, we are only interested in auxiliary differentials
where the number of unaffected output bits is large. This already rules out all
auxiliary differentials with an initial difference of Hamming weight 1. For these
cases the maximum number of unaffected output bits is at most 2 (see Section 3).
However, auxiliary differentials with an initial difference of Hamming weight 2
might be a good choice, in particular since the number of unaffected output bits

164 Mario Lamberger, Florian Mendel, and Vincent Rijmen

can be increased to up to 62 bits by imposing some additional conditions on the
chaining and message bits (see Section 3).

In total we found 198 auxiliary differentials with an initial difference of Ham-
ming weight 2. As shown in Figure 5 in the appendix the number of unaffected
output bits is on average 30. Note that since we are interested in large values of a
and b, we only considered auxiliary differentials where the number of unaffected
output bits is at least 10. Now assuming that these 198 auxiliary differentials are
independent and randomly distributed, we can use (3) with k = 30 to estimate
a, b ≈ 4 that can be used in our collision attack on the Hamsi-256 compression
function.

However, the auxiliary differentials in the set S are not independent nor
randomly distributed. By doing a brute-force search we found a solution with
a = b = 6 resulting in a collision attack on the Hamsi-256 compression function
with complexity of about 2126 compression function evaluations. The six auxil-
iary differentials including the necessary conditions on the chaining and message
bits are given in Table 1 and the affected output bits for these six auxiliary
differentials are shown in Table 4 in the appendix. Note that the 10 conditions
imposed by the six auxiliary differentials on the message bits can be fulfilled
by solving a set of linear equations. This is due to the fact that the message
expansion of Hamsi-256 is linear.

Table 1. The six auxiliary differentials used in our attack including all conditions
on the chaining and message bits. Note that none of them affects the output bits
131, 200, 201, 202, 237, 238.

i
1 2 3 4 5 6

column 1 2 38 39 110 111
difference ax ax ax ax 5x 5x

message bits 2x 2x 3x 1x 2x, 3x 2x, 3x
chaining bits 1x, 2x 1x, 2x 1x, 2x 1x, 2x 0x, 3x 1x, 2x

5.1 Improving the Attack

To improve the attack described above we need to find a subset of size a of
auxiliary differentials not affecting the same b output bits for larger values of
a and b. Therefore, we need to find a set S of auxiliary differentials, where the
number of unaffected output bits is larger than 30 on average. To find such
auxiliary differentials we need to consider initial differences with more than only
one active column at the input of the first round. This significantly increases the
search space, but also the complexity to generate the set S. However, since we
are interested in auxiliary differentials which are affecting only a few output bits,
the search space and hence the complexity can be reduced by only considering
initial differences leading to a sparse difference at the input of round 2. To be

Collision Attack on the Hamsi-256 Compression Function 165

00000000 00000000 20000000 00002000
04000000 00000000 00000000 00000000
00000000 00000000 20000000 00002000
04000000 00000000 00000000 00000000

00000000 00000000 00000000 00002000
04000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 20000000 00000000

00000000 00000000 00000000 80000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 80000000
00000000 00000000 00000000 80000000
00000000 00000000 00000000 80000000
00000000 00000000 00000000 80000000

00000800 00004100 00000020 08060000
00002000 00000000 00000008 00000001
20000000 00001400 10000000 81000001
00000200 00000000 00400000 00000040

20002a00 00005500 10400028 89060041
20002a00 00005500 10400028 89060041
20002a00 00005500 10400028 89060041
20002a00 00005500 10400028 89060041

fa15dab1 fea0cfd7 d5f4d362 3bbeed3c
c0157641 0e80aa81 b5e00458 120ea493
6045fefe 220affef 7570d578 8fbe0dcb
9815063e 14aaa080 21d49408 8310a0d5

fa15dab1 fea0cfd7 d5f4d362 3bbeed3c
6045fefe 220affef 7570d578 8fbe0dcb

Round 1 Substitute

Round 1 Diffuse

Round 2 Substitute
R

ou
n

d
2

D
iff

u
se

Round 3 Substitute

Round 3 Diffuse

Truncate

Fig. 4. Propagation of affected bits for the initial difference 1x inserted to column
96 at the input of round 2. Note that some conditions on the chaining and
message bits in the column 5, 66 and 114 have to be fulfilled in order to guarantee
that there will be only a single bit difference in the column 96 at the input of
round 2.

more precise, we restrict ourselves to initial differences resulting in a single bit
difference (one active column) at the input of round 2. One example of such an
auxiliary differential with only a single bit difference in column 96 at the input
of round 2 is given in Figure 4.

Considering only auxiliary differentials resulting in a singe bit difference at
the input of round 2 has several advantages. First of all since only one column
is active at the input of round 2, this results in sparse auxiliary differentials
affecting only a few output bits. Second, due to the fact that the difference at
the input of round 2 has Hamming weight 1, this results in at most 7 active
columns at the input of round 1. Note that a difference with a higher Hamming
weight would result in more active columns, complicating the attack. Moreover,
a disadvantage is that the number of conditions on the chaining and message
bits, that need to be fulfilled to guarantee that the auxiliary differential holds,
would increase. For example the auxiliary differential given in Figure 4 needs
3 conditions on the chaining bits and 5 conditions on the message bits (see
Table 2).

The best way to find the auxiliary differentials is to start with a single bit
difference at the input of round 2 and then compute backward. Due to the
properties of the linear layer, one will get 2 to 7 active columns at the input of

166 Mario Lamberger, Florian Mendel, and Vincent Rijmen

Table 2. Detailed information for the auxiliary differential used in the example
given in Figure 4.

column 5 66 114

difference ax 5x 5x
message bits 0x 0x 0x, 1x
chaining bits 1x, 2x 1x, 2x 1x, 2x

round 1, resulting in 2-7 conditions on the chaining bits and 3-13 conditions on
the message bits. We want to note that since the message input of Hamsi-256 is
only 32 bits the increased number of message bit conditions might be the limiting
factor for the attack. In Table 3 we list all the auxiliary differentials that result
in a single bit difference at the input of round 2. As can be seen in the table the
number of unaffected output bits for all the 192 auxiliary differentials is in the
range between 100 and 130 bits with an average of 110 bits as shown in Figure 6
in the appendix.

Table 3. List of all possible auxiliary differentials with only a single bit difference
at the input of round 2.

input round 2 output input message

difference column # unaffected bits # active columns # conditions

1x
98, . . . , 100 102–103 2 3

96, 97; 101, . . . , 127 100–125 3 5

2x

29, . . . , 31 111–116 3 5

25, . . . , 28 113–114 4 7

0, . . . , 24 107–129 7 13

4x 32, . . . , 95 100–125 3 6

8x
61, . . . , 63; 93, . . . , 95 111–116 4 7

32, . . . , 60; 64, . . . , 62 107–129 5 9

Assuming again that the 192 auxiliary differentials are independent and ran-
domly distributed and the number of unaffected output bits is 110. Then, as
above from (3) we would expect to find a solution with a, b ≈ 10.

This is very close to our result, by using a brute-force search we found a =
10 auxiliary differentials not affecting the same b = 9 output bits resulting in
an attack complexity of about 2124.1 compression function evaluations. The 10
auxiliary differentials and the list of the affected output bits for each auxiliary
differential are given in Table 5 and Table 6 in the appendix.

However, the results of the attack described in the previous section would
suggest that there might solutions for larger values of a and b than estimated by
(3), since the auxiliary differentials are not independent nor random. Indeed, if
we ignore the conditions imposed by the auxiliary differentials on the message
bits, then we could find a = 14 auxiliary differentials not affecting the same

Collision Attack on the Hamsi-256 Compression Function 167

b = 14 output bits, however we were not able to find a confirming message
input. The reason for this is that we need to fulfill on average about 7 conditions
on the message bits per auxiliary differential, while the message input of Hamsi-
256 is only 32 bits. Note that for the attack described in the previous section,
we had in total only 10 message bit conditions for the 6 auxiliary differentials
all together.

6 Conclusion

In this work, we have analyzed the Hamsi-256 compression function with respect
to its collision resistance. By exploiting non-random properties of the compres-
sion function we could show a collision attack with a complexity of about 2124.1.
The attack is an extension of the distinguishing attack of Çalik and Turan com-
bined with the idea of neutral bits and auxiliary differentials originally used to
speed up existing differential collision attacks. Even though the complexity of
our attack is very high and close the the generic case it gives some new insights
in the security of Hamsi-256.

Acknowledgments. This work was supported in part by the IAP Programme
P6/26 BCRYPT of the Belgian State (Belgian Science Policy) and by the Euro-
pean Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II. In addition, this work was supported by the Research Fund KU
Leuven, OT/08/027.

References

1. Aumasson, J.P., Käsper, E., Knudsen, L.R., Matusiewicz, K., Ødeg̊ard, R.S.,
Peyrin, T., Schläffer, M.: Distinguishers for the Compression Function and Output
Transformation of Hamsi-256. In: Steinfeld, R., Hawkes, P. (eds.) ACISP. LNCS,
vol. 6168, pp. 87–103. Springer (2010)

2. Biham, E., Anderson, R.J., Knudsen, L.R.: Serpent: A New Block Cipher Proposal.
In: Vaudenay, S. (ed.) FSE. LNCS, vol. 1372, pp. 222–238. Springer (1998)

3. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M.K. (ed.) CRYPTO.
LNCS, vol. 3152, pp. 290–305. Springer (2004)

4. Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and
Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) Selected Areas in Cryptography. LNCS, vol. 6544, pp. 1–17. Springer (2010)

5. Çagdas Çalik, Turan, M.S.: Message Recovery and Pseudo-preimage Attacks on
the Compression Function of Hamsi-256. In: Abdalla, M., Barreto, P.S.L.M. (eds.)
LATINCRYPT. LNCS, vol. 6212, pp. 205–221. Springer (2010)

6. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO. LNCS, vol. 435, pp. 416–427. Springer (1989)

7. Dinur, I., Shamir, A.: An Improved Algebraic Attack on Hamsi-256. Cryptology
ePrint Archive, Report 2010/602 (2010), http://eprint.iacr.org/

8. Dinur, I., Shamir, A.: An Improved Algebraic Attack on Hamsi-256. In: Joux, A.
(ed.) FSE. LNCS, vol. 6733, pp. 88–106. Springer (2011)

http://eprint.iacr.org/

168 Mario Lamberger, Florian Mendel, and Vincent Rijmen

9. Fuhr, T.: Finding Second Preimages of Short Messages for Hamsi-256. In: Abe, M.
(ed.) ASIACRYPT. LNCS, vol. 6477, pp. 20–37. Springer (2010)

10. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO. LNCS, vol. 4622, pp. 244–263. Springer (2007)

11. Küçük, Ö.: The Hash Function Hamsi. Submission to NIST (updated) (2009)
12. Küçük, Ö.: Design and Analysis of Cryptographic Hash Functions. Ph.D. thesis,

KU Leuven (April 2012)
13. Li, Y., Wang, A.: Using genetic algorithm to find near collisions for the compress

function of Hamsi-256. In: BIC-TA. pp. 826–829. IEEE (2010)
14. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO.

LNCS, vol. 435, pp. 428–446. Springer (1989)
15. National Institute of Standards and Technology: Announcing Request for Candi-

date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220 (November 2007), http://csrc.

nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
16. Nikolic, I.: Near Collisions for the Compression Function of Hamsi-256. CRYPTO

rump session (2009)
17. Wang, M., Wang, X., Jia, K., Wang, W.: New Pseudo-Near-Collision Attack

on Reduced-Round of Hamsi-256. Cryptology ePrint Archive, Report 2009/484
(2009), http://eprint.iacr.org/

18. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. LNCS, vol. 3621, pp. 17–36. Springer (2005)

19. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT. LNCS, vol. 3494, pp. 19–35. Springer (2005)

A Supporting Material

Table 4. Affected output bits for the 6 auxiliary differentials used in our collision
attack on the Hamsi-256 compression function.

i
output

affected bits # unaffected bits

1
7bbfff3f fe1dfaff febaefdf f7fdf7e7

53
cfbfdfcf 615fffff 2e1affef f7f1fd7b

2
bddfff9f fe0efd7f ff5d77ef fbfefbf3

56
e5dfefe7 a0afffff 970d7ff7 fbf8febd

3
3fbfefbf fbddfff9 ffe0efd7 fff5d77e

58
cfbf8feb 6c7dfefe a21affff 7f70d7ff

4
9fdff7df fceebffc fff077eb 7ffaebbf

62
e5dfc7f5 263eff7f d10d7fff bfb86bff

5
fbffff3f fe1dffff ffffffff fffff7e7

29
efffffef e1ffffff 3e1fffef fff1fdfb

6
fdffff9f ff0effff ffffffff fffffbf3

30
e7fffff7 f0ffffff 9f0ffff7 fff8fefd

ffffffff ffffffff ffffffff ffffffff
6

efffffff ffffffff ff1fffff fff9ffff

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://eprint.iacr.org/

Collision Attack on the Hamsi-256 Compression Function 169

 10

 20

 30

 40

 50

 60

 70

 0 198

un

af
fe

ct
ed

 b
its

bits

Fig. 5. Number of unaffected bits at the output of the compression function
with an initial difference of Hamming weight 2. Note that this does not include
auxiliary differentials where the number of unaffected output bits is smaller than
10, since they are not useful for our attack.

 90

 95

 100

 105

 110

 115

 120

 125

 130

 0 192

un

af
fe

ct
ed

 b
its

bits

Fig. 6. Number of unaffected bits at the output of the compression function
with a single bit difference, i.e. 1x, 2x, 4x or 8x, at the input of round 2.

170 Mario Lamberger, Florian Mendel, and Vincent Rijmen

Table 5. List of auxiliary differentials used in our collision attack on the Hamsi-
256 compression function including all conditions on the message and chaining
bits. Note that all conditions on the message bits can be fulfilled be setting
the 32-bit message block Mi = {12, 51, aa, 05} prior to the application of the
message expansion.

1

column 3 4 64 112
difference ax ax 5x 5x

message bits 2x 0x 2x 0x, 1x
chaining bits 0x, 3x 0x, 3x 0x, 3x 1x, 2x

2

column 3 10 11 38 67 71 119
difference ax ax ax ax 5x 5x 5x

message bits 2x 3x 3x 1x 1x 1x 2x, 3x
chaining bits 0x, 3x 1x, 2x 0x, 3x 0x, 3x 1x, 2x 0x, 3x 1x, 2x

3

column 3 38 67
difference ax ax 5x

message bits 2x 1x 1x
chaining bits 0x, 3x 0x, 3x 1x, 2x

4

column 3 64 112
difference ax 5x 5x

message bits 2x 2x 0x, 1x
chaining bits 0x, 3x 0x, 3x 1x, 2x

5

column 4 39 68
difference ax ax 5x

message bits 0x 3x 2x
chaining bits 0x, 3x 0x, 3x 1x, 2x

6

column 10 71 119
difference ax 5x 5x

message bits 3x 1x 2x, 3x
chaining bits 1x, 2x 0x, 3x 1x, 2x

7

column 11 72 120
difference ax 5x 5x

message bits 3x 2x 0x, 1x
chaining bits 0x, 3x 0x, 3x 1x, 2x

8

column 16 42 45 52 90
difference ax ax ax ax 5x

message bits 0x 3x 0x 2x 0x, 1x
chaining bits 1x, 2x 0x, 3x 1x, 2x 1x, 2x 1x, 2x

9

column 50 85 114
difference ax 5x 5x

message bits 2x 1x 2x
chaining bits 1x, 2x 0x, 3x 0x, 3x

10

column 63 67 89 92 105
difference ax 5x 5x 5x 5x

message bits 3x 1x 2x 0x 2x, 3x
chaining bits 1x, 2x 1x, 2x 1x, 2x 1x, 2x 1x, 2x

Collision Attack on the Hamsi-256 Compression Function 171

Table 6. Affected output bits for the 10 auxiliary differentials used in our im-
proved collision attack on the Hamsi-256 compression function.

i
output

affected bits # unaffected bits

1
8777dda7 1f02ab16 ffd419fa 5abe9a0c

114
7177c1b9 8008bfde f8415ffd 0e3e1aaf

2
4f0eefbb 2c3e8576 f5ffa833 18b57d34

109
7067ef83 bd18917f ebfe82bf 4a1c7c35

3
8316afa6 69e19cf7 d58fc0ae 7eb9f506

119
8143ab86 6a1c7d70 f7a3022f 6d7fd057

4
e8576ac7 fa833f5f 57d34d8b eefbb4f0

100
8117fbf9 e82bffbf d58355e1 7ef8372e

5
418b57d3 b4f08e7b 6ac7e857 3e5c3a83

125
50a1d5c3 352e3cb8 e9d18117 26bfe82b

6
8fc0aad5 bff5067e 16afa69b e1ddf769

108
a0122ff7 7e1057ff c3af86ab 4c7df06e

7
c7e0556a 5ffa833f 8b57d34d f0eebbb4

109
d00917fb bf082bff e1d7c355 263ef837

8
8316afa6 69e19cf7 c583c0ae 7eb9f506

123
81438b86 6a1c7d70 f7a3022f 6d7fd057

9
ea0cfd7f 5f4d362d bbeed3c3 a15d8b1f

102
a0affeff 160d5787 fb60dcb9 245fefe6

10
ea0cfd7f 5f4d062d bbeed3c3 a15d8b0f

107
a0affeff 160d5787 fb60dcb9 245fef46

efffffff ffffbfff ffffffff ffffffff
9

f1ffffff ff3fffff ffffdfff 7fffffff

	Introduction
	Description of Hamsi-256
	Attack of Çalik and Turan
	Basic Attack Strategy
	Probabilistic Considerations

	Application to Hamsi-256
	Improving the Attack

	Conclusion
	Supporting Material

