
An 8-bit AVR-Based Elliptic Curve Cryptographic
RISC Processor for the Internet of Things

Erich Wenger
Graz University of Technology

IAIK, Inffeldgasse 16a, A–8010 Graz, Austria
erich.wenger@iaik.tugraz.at

Johann Großschädl
University of Luxembourg

6, r. Coudenhove-Kalergi, L–1359 Luxembourg
johann.groszschaedl@uni.lu

Abstract—In recent years, a large body of research has been
dedicated to the “lightweight” implementation of Elliptic Curve
Cryptography (ECC) for RFID tags, wireless sensor nodes, and
other “smart” devices that are supposed to become components
of the Internet of Things (IoT). However, making ECC suitable
for the IoT is far from trivial since many applications demand
fast response times (i.e. high performance), but nonetheless call
for small silicon area and low power consumption. We tackle this
challenge through hardware/software co-design and introduce an
8-bit Application-Specific Instruction Set Processor (ASIP) that
combines the efficiency of a dedicated hardware implementation
with the flexibility and scalability of ECC software. Our ASIP is
based on JAAVR (“Just Another AVR”), an ATmega128 clone
into which we integrated a relatively small (32×× 4)-bit Multiply-
Accumulate (MAC) unit optimized to speed up multi-precision
arithmetic. To demonstrate the flexibility of our co-design, we
implemented scalar multiplication over four families of elliptic
curve, namely a Weierstraß curve, a twisted Edwards curve, a
Montgomery curve, and a Gallant-Lambert-Vanstone curve. All
curves use a 160-bit Optimal Prime Field (OPF) as underlying
algebraic structure, which allows for particularly fast execution
of the modular reduction on JAAVR. When using “native” AVR
instructions only, our fastest implementation of scalar multipli-
cation reaches an execution time of less than 4M clock cycles on
a conventional ATmega128 processor. Taking advantage of the
MAC unit, the time for a full 160-bit scalar multiplication falls
below 1M cycles, whereas a “leakage-reducing” implementation
that does not execute any security-critical conditional statements
needs some 1.3M cycles. A low-memory variant of the extended
JAAVR occupies an area of merely 21k gates, making it suitable
for resource-constrained IoT devices like sensor nodes.

Index Terms—Lightweight cryptography, IoT security, Wire-
less sensor network, AVR architecture, Instruction set extension

I. INTRODUCTION

The so-called “Internet of Things” (IoT) is envisioned as a
global network connecting billions of smart devices capable
of creating, processing, and/or exchanging data without the
intervention of human beings. Today, virtually all products
that use electricity, ranging from home appliances (e.g. coffee
machines, fridges, micro-waves) over entertainment systems
(e.g. TV sets, DVD players, game consoles) to cars (or, more
generally, smart vehicles) are equipped with microprocessors
and, consequently, possess data processing capabilities. An
ever-increasing number of these devices contain transceivers
for WiFi, GSM/GPRS, Bluetooth, Zigbee, or other wireless
networking technologies, which allows them to communicate
with each other or establish a connection to the Internet. In

addition, also “non-smart” things (e.g. consumer products in
an ordinary retail store) can temporarily become a part of the
IoT by attaching RFID tags to them so that they evolve into
identifiable objects.

Security and privacy issues pose a significant challenge to
the further expansion of the IoT and the end-user acceptance
of many IoT-based applications and services [18]. Similar to
the “ordinary” Internet, Public-Key Cryptography (PKC) can
play a valuable role in the IoT to overcome these challenges
by providing such services as encryption, authentication, and
key establishment. Elliptic Curve Cryptography (ECC) [10] is
a form of PKC that offers equivalent security to RSA (and
other “classical” PKC schemes), but does so with significant-
ly shorter keys. A well-designed 160-bit ECC cryptosystem is
presumed to be at least as secure as 1024-bit RSA [10]. The
high level of security per bit of ECC implicates a multitude
of further benefits, most notably fast computation time, small
RAM footprint, and low bandwidth requirements, which has
made ECC a serious competitor to RSA. All the advantages
of ECC over RSA are even more pronounced in the IoT since
sensor nodes, RFID tags, and the like are extremely limited
in computational power and memory resources.

The efficient implementation of ECC for IoT devices is an
intricate task due to diverse (and even conflicting) constraints
and requirements that need to be taken into account. On the
one hand, many IoT applications require fast response times
(i.e. “high” performance), while, at the same time, they also
demand small silicon area and low power dissipation. These
requirements make a good case for hardware implementation
of the expensive operations of ECC. On the other hand, the
main building block of ECC (namely scalar multiplication in
an elliptic curve group [10]) is very complicated, which calls
for a software solution. Furthermore, ECC is a highly active
area of research that yields better and better algorithms and
parameterizations every year, and this progress also benefits
implementation results. Adapting an ECC implementation in
response to mathematical progress is only possible with soft-
ware since an algorithm cast in silicon can not be modified
or updated. A promising approach to cope with such diverse
constraints is hardware/software co-design in the form of an
Application-Specific Instruction Set Processor (ASIP).

In this paper, we describe the design of an area-optimized
8-bit ASIP for ECC and assess the execution time of several
scalar multiplication algorithms executed on it. Our ASIP is

Proceedings of the 45th Annual IEEE/ACM International Symposium on Microarchitecture Workshops (MICROW 2012), pp. 39–46. © IEEE 2012

mailto:erich.wenger@iaik.tugraz.at
mailto:johann.groszschaedl@uni.lu


based on JAAVR (“Just Another AVR”), an AVR-compatible
softcore written in synthesizeable VHDL [24], into which we
integrated a special Multiply-Accumulate (MAC) unit so as to
speed up long-integer arithmetic [15]. JAAVR is basically an
ATmega128 clone consisting of only 6,166 GE that supports
the “full” AVR instruction set. The MAC unit of our ASIP is
composed of a (32×4)-bit multiplier and a 72-bit accumula-
tor. It is tightly integrated into JAAVR’s datapath and operates
on General-Purpose Register (GPR), i.e. the 32-bit operands
to be multiplied are read from two quadruples of 8-bit GPRs
(32 bits per operand). A full (32×32)-bit multiplication takes
eight clock cycles and does not stall the pipeline of JAAVR’s
integer unit. The 64-bit product is then accumulated into the
content of the nine GPRs R0 to R8. The idea of integrating a
functional unit able to process operands which are a multiple
of the processor’s native word-size is somewhat related to the
rationale of many multimedia extensions (e.g. the 128-bit SSE
extensions to the 32-bit Intel Architecture), but we apply this
idea to accelerate ECC on an 8-bit processor.

Hardware acceleration of ECC at the granularity of custom
instructions has the advantage of high flexibility and scalabil-
ity. To demonstrate this, we implemented scalar multiplication
using four different families of elliptic curve: a conventional
Weierstraß curve [10], a Montgomery curve [20], a so-called
twisted Edwards curve [12] and a Gallant-Lambert-Vanstone
(GLV) curve [6]. All the curves use a 160-bit Optimal Prime
Field (OPF) [26] as underlying algebraic structure. OPFs are
a special class of prime fields that allow for particularly effi-
cient arithmetic on our ASIP since they perform the reduction
operation through multiplications (and not via additions like
generalized-Mersenne primes), which are very fast thanks to
the (32× 4)-bit MAC unit. We also evaluated the execution
time of the standardized Weierstraß curve secp160r1 to have
a reference for comparison. For each curve, we implemented
the field arithmetic in two alternative ways, namely with and
without MAC operation. Our fastest implementation is based
on the GLV curve and performs a 160-bit scalar multiplication
in slightly less than 4M clock cycles when using only native
AVR instructions. By taking advantage of the MAC unit, the
execution time can be reduced to 1M cycles. However, this
implementation is vulnerable to side-channel attacks due to
the “irregular” execution pattern of the GLV method. On the
other hand, scalar multiplication on the Montgomery curve
features regular execution, but is a little slower since it needs
5.5M cycles on an ordinary ATmega128 and 1.3M cycles on
our ASIP. The former result improves the state-of-the-art in
constant-time scalar multiplication on an 8-bit processor.

II. PRELIMINARIES

In this section we summarize basic concepts and properties
of the algebraic structures used in our work, namely Optimal
Prime Fields (OPFs) [26] and three special classes of curves
(Montgomery curves [20], twisted Edwards curves [12], and
GLV curves [6]). We will not discuss Weierstraß curves since
they are described in any textbook on ECC, e.g. in Hankerson
et al’s Guide to Elliptic Curve Cryptography [10].

A. Optimal Prime Fields

The finite field we use in our implementation belongs to the
class of so-called Optimal Prime Fields (OPFs), which were
first mentioned in the literature in an extended abstract from
2006 [7]. These fields are specified by a “low-weight” prime
that can be written as p = u ·2k + v, where u and v are small
compared to 2k; in our case, u has a length of up to 16 bits so
that it fits into two registers of an ATmega processor, while
v is equal to 1. Primes of such a form are characterized by a
low Hamming weight as only the two most significant bytes
and the least significant byte are non-zero; all other bytes are
zero. An example is p = 65356 ·2144 +1, which happens to be
a 160-bit prime that looks as follows in hex notation.

0xFF4C000000000000000000000000000000000001

The low Hamming weight of p allows for optimization of the
modular arithmetic since only the non-zero digits of p need
to be processed in the reduction operation. For example, the
Montgomery algorithm [19] can be easily optimized for these
primes such that the modular reduction has only linear com-
plexity, similar to pseudo-Mersenne or generalized-Mersenne
primes [10]. However, the latter family of primes allows one
to do modular reduction via additions, whereas the reduction
modulo our low-weight prime is performed through execution
of mul instructions (resp. MAC instructions on our ASIP). As
a consequence, OPFs are especially efficient on our ASIP and
other platforms featuring a fast integer multiplier. A detailed
description of how OPF arithmetic can be implemented on an
8-bit AVR processor is given in Section III.

B. Montgomery Curves

25 years ago, Peter Montgomery [20] introduced a special
family of curves to speed up algorithms for the factorization
of large integers. These curves are nowadays often referred to
as Montgomery curves and have the unique property that a
scalar multiplication can be carried out using the x coordinate
only, which is significantly faster than when both the x and
y coordinate are calculated. Formally, a Montgomery curve
over Fp is defined by the equation

By2 = x3 +Ax2 + x (1)

with (A2− 4)B 6= 0 and allows for an efficient computation
of the x-coordinate of a sum P+Q of two points P,Q whose
difference P−Q is known. More precisely, a point addition
performed according to the formula in [20, p. 261] requires
four multiplications (4M) and two squarings (2S), whereas a
point doubling costs 3M and 2S. However, one of the three
multiplications in the doubling uses the constant (A+2)/4 as
operand, which is small if the curve parameter A is chosen
accordingly. Our experiments show that multiplying a field
element by a small (up to 16 bits long) constant costs some
0.25–0.3 M. Furthermore, the point addition formula specified
in [20, page 261] can be optimized when using the so-called
Montgomery ladder [3, Alg. 13.35] for scalar multiplication
and representing the base point P via projective coordinates

40



with Z = 1 (see also Remark 13.36 (ii) in [3]). Although the
number of field multiplications and squarings is low, it has
to be taken into account that the Montgomery ladder always
executes both a point addition and a point doubling for each
bit of the scalar k. For this reason, the overall computational
cost of scalar multiplication amounts to 5.3n multiplications
and 4n squarings in Fp, i.e. 5.3 M + 4 S per bit.

C. Twisted Edwards Curves

In 2007, Harold Edwards introduced a new form of elliptic
curves that are now known as Edwards curves [4]. Bernstein
et al [2] discussed these curves in more detail and presented
an especially fast implementation of point addition and point
doubling. Moreover, they showed that these curves allow one
to define an addition law with very attractive implementation
properties such as uniformity (i.e. it can be used for addition
as well as doubling of points) and completeness (i.e. it works
for any input, including the point at infinity). Twisted Edwards
curves, also proposed by Bernstein et al, are a generalization
of Edwards curves and can be defined by an equation of the
following form:

ax2 + y2 = 1+dx2y2 (2)

where a and d are distinct elements of Fp \ {0}. We use the
extended twisted Edwards coordinates from [12] to perform
addition and doubling of points; the former operation requires
7 multiplications (7M) in the underlying field Fp, whereas the
latter has a computational cost of 3 multiplications (3M) and
4 squarings (4S). When using the double-and-add method, a
scalar multiplication k ·P on a twisted Edwards curve takes
6.5n multiplications and 4n squarings in Fp, i.e. 6.5 M + 4 S
per bit, assuming that k has a Hamming density of 0.5.

D. GLV Curves

The so-called Gallant-Lambert-Vanstone (GLV) curves are
elliptic curves over Fp that possess an efficiently computable
endomorphism φ whose characteristic polynomial has small
coefficients [6]. The specific curve used in this paper belongs
to the family of GLV curves that can be described through a
Weierstrass equation of the form

y2 = x3 +b (i.e. a = 0) (3)

over a prime field Fp with p≡ 1 mod 3 (cf. Example 4 from
[6]). When using mixed Jacobian-affine coordinates, a point
addition on this curve requires 8 M + 3 S, i.e. adding points is
exactly as costly as on a conventional Weierstrass curve. On
the other hand, the double 2P of a point P given in Jacobian
coordinates can be computed using only 3 M and 4 S since
the curve parameter a is 0. However, what makes GLV curves
very attractive is that the cost of scalar multiplication can be
significantly reduced by exploiting the efficiently-computable
endomorphism described in [6]. This endomorphism allows
one to accomplish an n-bit scalar multiplication k ·P through
a computation of the form k1 ·P+ k2 ·φ(P) where k1,k2 have
only half the bit-length of k. The two half-length scalar mul-
tiplications can be carried out simultaneously (via “Shamir’s

trick”), which takes n/2 doublings and roughly n/4 additions
when the scalars k1, k2 are represented in Joint Sparse Form
(JSF) [10]. Thus, the overall cost of computing k ·P amounts
to 3.5n multiplications and 2.75n squarings in Fp, i.e. 3.5 M
+ 2.75 S per bit. Note that the GLV method does not require
the point P to be fixed or known a-priori, which means it can
be used in ECDH key exchange.

III. BASELINE IMPLEMENTATION

Our previous work [26] introduces an efficient OPF arith-
metic library for 8-bit AVR processors and explains how to
speed up modular reduction for low-weight primes. All ECC
implementations we describe in this paper use an optimized
version of the OPF library from [26] as a component for the
“low-level” field arithmetic. However, for the sake of com-
pleteness, we provide in this section an overview of how the
library performs addition, subtraction, multiplication, as well
as squaring in OPFs. Throughout this paper, we will use the
following notation. Uppercase letters denote arrays of w-bit
words representing elements of Fp, while indexed uppercase
letters refer to individual words within an array, e.g. Ai is the
i-th word of array A that represents a ∈ Fp. Although AVR is
an 8-bit platform, we use a word-size of w = 32 bits so as to
increase performance, which means the arithmetic operations
of our library generally process four bytes at once [9]. Given
an operand length of n bits, the total number of w-bit words
is s = dn/we, i.e. we have s = 5 for a 160-bit OPF.

A. Addition and Subtraction

Addition and subtraction are the most basic operations in
multiple-precision arithmetic. To calculate the modular sum
a + b mod p, we firstly do the addition and then perform the
reduction. Let Ai,Bi be the i-th word of the two arrays A and
B, which represent a,b ∈ Fp. The addition simply starts with
A0 +B0, and then repeatedly calculates Ai +Bi + c for i from
1 to s− 1, whereby c denotes the carry bit generated in the
previous addition of 32-bit words. After addition of the two
most significant words, we have a sum that is up to n+1 bits
long. We use the carry bit c from the last addition of words
to decide whether or not to subtract p, which is faster than an
exact comparison, but may lead to an incompletely reduced
result in the range [0,2n−1] instead of the least non-negative
residue. Fortunately, this is not a problem in practice because
all arithmetic functions of our OPF library are able to cope
with incompletely reduced operands.

A drawback of this approach is that, in the worst case, two
subtractions of p are required to obtain an n-bit result since
both operands may be incompletely reduced [26]. In order to
get “branch-less” code, we always perform two subtractions
of c · p, but update the carry bit c after the first one. More in
detail, the first subtraction produces a “borrow bit,” which is
either 0 or 1 and has to be subtracted from the carry bit to
obtain a correct carry bit for the second subtraction. There
exist a number of low-level optimization techniques to speed
up these two final subtractions by exploiting the special form
of p [26]. Note that the prime we use in this paper contains

41



s−2 zero-words; only the Most Significant Word (MSW) as
well as the Least Significant Word (LSW) are not zero. All
these zero-words do not need to be loaded from memory and
normally do also not need to be subtracted from the sum. In
other words, it normally suffices to perform the subtraction
on the LSW and MSW of the sum. However, there is a case
that requires special attention, namely when the LSW of the
sum is 0 and the carry bit c is 1. In this situation, c = 1 gets
subtracted from 0, which produces a “borrow” bit into the
next-higher word. Our implementation tackles this issue by
checking whether a borrow occurred, and if this is the case
we propagate the borrow bit up to the MSW. Fortunately, the
probability of a borrow being generated (which can only hap-
pen if the LSW of the sum A + B, is 0) is extremely low; in
our case (w = 32), this probability is 2−32. The information
leakage from this (potential) irregularity is too small for a real
SPA attack, in particular when the base point is blinded.

A modular substraction a− b mod p is very similar to the
modular addition, except that the prime p needs to be added
if the difference a−b is negative.

B. Multiplication and Squaring

Modular multiplication and squaring have a big impact on
the overall performance of public-key cryptosystems, especial-
ly ECC [10]. Our OPF library uses Montgomery’s algorithm
[19] for modular multiplication and is optimized to achieve
minimal execution time for “low-weight” primes of the form
p = u ·216 +1, whereby u has a length of at most 16 bits. An
s-word array P representing p contains merely two non-zero
words, namely Ps−1 and P0. There exist different techniques
for fast computation of the Montgomery product; one is the
so-called Finely Integrated Product Scanning (FIPS) method
[14], which performs multiplication and modular reduction in
an interleaved fashion. The FIPS method normally executes
2s2 + s word-level (i.e. (w×w)-bit) multiplications, but this
number drops by roughly one half to s2 +s when the modulus
is a low-weight prime as defined above [26]. Computing the
product of two s-word operands requires s2 word-level multi-
plications, which means the overhead of modular reduction is
linear, costing only s word-level multiplications.

The FIPS method consists of two nested loops, both exe-
cuting simple Multiply-Accumulate (MAC) operations in the
inner loop. In our case (i.e. w = 32), the inner-loop operation
requires multiplying two 32-bit words (which involves a total
of 16 MUL instructions on an AVR processor) and adding the
obtained 64-bit product to a 72-bit cumulative sum held in
9 registers. The concrete implementation of the FIPS method
included the OPF library follows the general idea of hybrid
multiplication [9], but executes the inner-loop operation in a
more efficient way as described in [26]. An iteration of the
inner loop needs only 101 clock cycles, which allows a full
(160× 160)-bit multiplication (without reduction) to be per-
formed in 2,840 cycles. The execution of a 160-bit OPF-FIPS
multiplication (including Montgomery reduction) takes some
3,314 clock cycles, i.e. our optimized OPF library is a little
faster than Zhang’s original version from [26]. Note that we

exploit the same “shortcut” for the final subtraction as in the
modular addition, which means we perform the subtraction
only at the MSW and LSW. Similar to the modular addition
described before, there is a small probability for information
leakage from a (potential) irregularity in the subtraction.

IV. ECC EXTENSIONS FOR AVR

The ATmega128 is one of the most widely-used embedded
processors of all time [1]. It is a simple 8-bit RISC machine
with a Harvard architecture, 32 general-purpose registers, an
8-bit integer multiplier, and several peripherals. Utilizing the
integer multiplier efficiently is crucial to achieve high perfor-
mance in prime-field arithmetic. In the next two sections, we
describe and evaluate ECC software implementations on three
different AVR platforms. The first is a standard ATmega128
(or any other AVR processor that has the same instruction
timing, e.g. our JAAVR in cycle-accurate mode as discussed
below). Our second platform is JAAVR operating in a mode
with better CPI (i.e. less instruction cycles) than the original
ATmega128. Finally, the third platform is JAAVR featuring a
special (32×4)-bit MAC unit and other extensions.

JAAVR (our ATmega128 clone) is written in VHDL, can
be fully synthesized to ASIC and FPGA technologies, and is
fully instruction-set compatible with the original ATmega128
core. It supports two operation modi, which can be selected
via a “generic” statement in the VHDL code [25]. When the
flag CYCLE_ACCURACY is switched on, JAAVR has exactly the
same CPI (cycles per instruction) timing as the original AT-
mega128 (except minor differences that are irrelevant for this
paper). In this mode, JAAVR automatically inserts NOPs to be
compatible with the ATmega128. Such a cycle-accurate mode
is especially important for real-time applications (e.g. protocol
handling) and makes it easy for a designer to switch from an
original ATmega128 to our JAAVR. On the other hand, when
CYCLE_ACCURACY is switched off, the CPI-count of most load
(resp. store) and multiply instructions improves, which boosts
the performance of all four ECC implementations discussed
in this paper. Of course, not only ECC but many other kinds
of IoT applications profit from the better CPI. However, the
performance gain is especially pronounced for ECC since the
underlying prime-field arithmetic requires to execute a large
number of load, store, and multiply instructions [10]. In the
following subsection, we extend the architecture of JAAVR to
further reduce the execution time of ECC.

A. (32×4)-bit Multiply-Accumulate Unit

The performance of ECC relies on the efficiency of certain
arithmetic operations in the underlying finite field [10]. The
by far most important field operations are multiplication and
squaring; optimizing these operations can drastically improve
the execution time of an ECC implementation.

In order to speed up multiplication in Fp, we enhanced the
JAAVR core with a (32×4)-bit Multiply-Accumulate (MAC)
unit that we tightly integrated into the processor core. A full
(32× 32)-bit multiplication yielding a 64-bit result has to be
composed of eight (32× 4)-bit MAC operations, which take

42



 R16-R19

<< 8

<< 16

 R0-R8

72 bit

Adder

 R0-R8

32x4 bit

Multiplier

Logic Shift 

Left

<< 4

 R24OpA

Fig. 1. (32×4)-bit Multiply-Accumulate unit.

eight clock cycles in total. However, the MAC does not stall
the pipeline of the integer unit so that e.g. load instructions
can be executed at the same time. Due to the CPI improve-
ments mentioned above, JAAVR only needs a single cycle to
execute a load instruction. Thus, two 32-bit operands (eight
bytes) can be loaded during a (32×32)-bit multiplication. In
other words, while performing a (32× 32)-bit multiplication
or MAC operation, JAAVR can already load the eight bytes
of the two operands needed for the subsequent (32× 32)-bit
multiplication or MAC operation.

Figure 1 depicts a block diagram of our (32×4)-bit MAC
unit. The first operand (a 32-bit word) is always read from
registers R16–R19. As second operand, either the lower 4 bits
of the selected operand register (OpA) or, alternatively, the
lower or higher 4 bits of register R24 is used. Since such a
4-bit nibble is only a part of the full 32-bit multiplicand, the
36-bit product has to be shifted by 0, 4, 8, 12, 16, 20, 24, or
28 bits. This is achieved with a barrel shifter, shown on the
right of Figure 1. Using a 72-bit adder, the shifted product is
accumulated into the fixed registers R0–R8. All this happens
in a single clock cycle. The critical path of the JAAVR core
is minimally affected by the integration of the MAC unit. For
example, when synthesized using 130-nm standard cells, the
maximum clock frequency of the JAAVR core is well above
our desired operating frequency of 20 MHz1.

The (32×4)-bit MAC unit is in principle suitable to speed
up any public-key cryptosystem that relies on multi-precision
multiplication, e.g. ECC over prime fields or even RSA. In
this paper, we use OPFs [26] and perform the multiplication
modulo p = u ·2k +1 via a special variant of the FIPS method
for Montgomery multiplication [14]. As described in Section
III, our baseline implementation of OPF arithmetic operates
on 32-bit words (i.e. 4 bytes are processed at a time), which
makes it relatively straightforward to use the MAC unit. In
order to minimize the execution time and fully exploit the
MAC unit, we modified the baseline OPF implementation as
follows. First, we completely unrolled the nested loops of the

1Note that conventional AVR-based sensor nodes, such as the widely used
MICAz motes, are clocked with a frequency of only 7.3728 MHz.

Algorithm 1. 32-bit MAC operation reusing SWAP instruction
1: LD R16, Y+0
2: LD R17, Y+1
3: LD R18, Y+2
4: LD R19, Y+3
5: LD R20, Z+0
6: LD R21, Z+1
7: LD R22, Z+2
8: LD R23, Z+3

9: SWAP R20
10: SWAP R20
11: SWAP R21
12: SWAP R21
13: SWAP R22
14: SWAP R22
15: SWAP R23
16: SWAP R23

FIPS method to eliminate all loop overhead. Of course, loop
unrolling bloats the code size, but using our MAC unit limits
this effect since a single MAC operation replaces a multitude
of AVR instructions. Therefore, unrolling the FIPS method is
a viable optimization technique on JAAVR, but not necessari-
ly on an ordinary AVR processor. Second, we used Y and Z as
registers to access the two operands of an OPF multiplication
since they allow one to execute a load instruction with a fixed
offset (e.g. LDD Rd, Y+offset) so that neither Y nor Z are
modified throughout a multiplication. Third, we replaced the
(unrolled) assembly code for the (32×32)-bit multiplications
by a sequence of eight MAC operations.

We implemented two alternative mechanisms to access the
MAC unit; Algorithm 1 illustrates one of these. In a special
mode of operation, configured using an I/O-memory-mapped
register, the SWAP instruction gets “re-interpreted.” During the
execution of SWAP, the lower and higher 4 bits of the chosen
register are exchanged, and additionally the lower four bits
are multiplied by the 32-bit word stored in registers R16 to
R19. Thus, eight SWAPs are necessary for a (32×32)-bit mul-
tiplication. The offset for the “Logic Shift Left” (Figure 1) is
automatically generated by an internal counter that overflows
after eight multiplications, resetting itself to zero.

Algorithm 2 shows a second way (with better performance)
to accomplish the MAC operation. For every load operation
(LDD, LD) with R24 being used as the destination register, two
MAC operations are performed automatically during the two
following clock cycles. Since the MAC operations are carried
out on the MAC unit, the ALU is free and can execute some
other instructions in parallel, provided that these instructions
do not access any of the 13 accumulator (resp. multiplicand)
registers. The NOP instructions shown in Algorithm 2 can be
replaced by operations to load operands for the subsequently
performed (32×32)-bit multiplication.

Our carefully optimized Assembly code for multiplication
in a 160-bit OPF requires exactly 552 cycles. This execution
time can be broken down into 204 load instructions (LD and
LDD), of which 100 activate a MAC operation, 40 store (ST)
instructions, 83 MOVW instructions, 40 SWAP instructions, and
31 NOP instructions, which are actually only needed because
of data-dependencies.

V. RESULTS AND DISCUSSION

We describe and discuss results in three categories: (1) the
impact of the hardware optimizations on the execution time

43



Algorithm 2. 32-bit MAC operation: L() and H() are used to
access the lower and higher 4 bits of the loaded word

1: LDD R16, Y+0
2: LDD R17, Y+1
3: LDD R18, Y+2
4: LDD R19, Y+3
5: LDD R24, Z+0
6: NOP (acc← acc+(A×L(Z +0))� 0)
7: LDD R24, Z+1 (acc← acc+(A×H(Z +0))� 4)
8: NOP (acc← acc+(A×L(Z +1))� 8)
9: LDD R24, Z+2 (acc← acc+(A×H(Z +1))� 12)

10: NOP (acc← acc+(A×L(Z +2))� 16)
11: LDD R24, Z+3 (acc← acc+(A×H(Z +2))� 20)
12: NOP (acc← acc+(A×L(Z +3))� 24)
13: NOP (acc← acc+(A×H(Z +3))� 28)

TABLE I
OPF OPERATIONS ON DIFFERENT VARIANTS OF JAAVR.

Processor Mode CA FAST ISE
Runtimes [Cycles]

Addition 240 145 145
Subtraction 240 145 145
Multiplication 3,314 2,537 552
Inversion 189k 128k 124k

Chip Area
JAAVR 6,166 GE 6,800 GE 8,344 GE
Difference – +10% +35%

of OPF arithmetic, (2) the ATmega128-compatible execution
time of the different point multiplication methods, and (3) the
area requirements of the different variants of JAAVR.

A. Arithmetic Operations in OPFs

As mentioned previously, the execution time of arithmetic
operations in the underlying field has a direct impact on the
performance of the point multiplication. Table I summarizes
three types of execution times for arithmetic operations in a
160-bit OPF: CA, FAST, and ISE. CA is the cycle-accurate
mode of our JAAVR, which has exactly the same instruction
timing as a standard ATmega128. When the cycle-accuracy is
switched off, JAAVR operates in FAST mode. The ISE mode
adds the previously described MAC unit to JAAVR.

When unrolling the loop, addition (and also subtraction) in
a 160-bit OPF takes 240 cycles on JAAVR in CA mode. The
runtime of addition (resp. subtraction) is constant (i.e. does
not depend on the operands) with a probability of 1−2−32 as
explained in Section III. By improving the LD, ST, PUSH, and
POP instructions, utilizing the FAST (i.e. non cycle-accurate)
mode of JAAVR, the runtime improved to 145 cycles, which
corresponds to a speed-up factor of 1.65. Unfortunately, the
impact of load and store optimizations on the multiplication
time is less significant. A “looped” OPF multiplication needs
3,314 cycles in CA versus 2,537 cycles in FAST mode, i.e. a
speed-up factor of 1.31 was achieved. However, reducing the
execution cycles of instructions does not come for free. Some
634 GE (10 %) of logic have to be added to the CA version
of JAAVR, which occupies roughly 6.2 kGE. Fortunately, the

TABLE II
POINT MULTIPLICATION TIMES ON A STANDARD ATMEGA128.

High-speed Constant Round
Elliptic Curve Method Runtime Method Runtime

[kCycles] [kCycles]
Standardized Curve

secp160r1 NAF 7,136 Mon 8,722
Non-Standardized Curves using OPF

Weierstraß NAF 6,983 Mon 8,824
Edwards NAF 5,597 DAAA 8,251
Montgomery Mon 5,545 Mon 5,545
GLV End, JSF 3,930 Mon 8,132

speed-up is larger than the increase in area, which means the
area-time product got improved. Further 1.5 kGE (+23 %) are
necessary to integrate the proposed MAC unit. It reduces the
cycle-count for a 160-bit OPF multiplication to 552, which is
4.6 (resp. 6.0) times faster than the software implementation
in FAST (resp. CA) mode. The impact of our extensions on
the performance of point multiplication is discussed below.

B. Elliptic Curve Point Multiplications

Table II shows the results of all implemented curve shapes
on a standard ATmega128 (or JAAVR in CA mode). We used
different point multiplication methods to achieve either high
speed or reduced side-channel leakage via “branch-less” code
with constant (i.e. operand-independent) execution time. The
implementations belonging to the latter category do not have
fully constant execution time due to the Montgomery inverse
we used in projective-to-affine conversion [10], but the main
loop of the algorithm for point multiplication is performed in
constant time, independent of the value of the scalar.

The standardized curve secp160r1 does not use an OPF as
underlying field; therefore, its field arithmetic is implemented
with a separate set of assembly-optimized functions. For the
field multiplication, an unrolled variant of Gura et al’s hybrid
multiplication method [9] is used in combination with some
prime-specific optimizations of the modular reduction.

We decided to stick with methods for point multiplication
that require a minimal amount of memory. In general, ECC is
only part of a larger application (e.g. a security protocol) and
should, therefore, not consume all available program or data
memory. Also, no comb methods with pre-calculated points
are used since they require the base point P to be fixed and
known a-priori (i.e. a comb method is not suitable to perform
ECDH key exchange). The double-and-add algorithm based
on Non-Adjacent Form (NAF) representation of the scalar is
well suited for fast ECC with low memory footprint because
it reduces the number of point additions but does not demand
much extra memory [10]. In combination with an appropriate
coordinate systems (specified in brackets), the NAF method
was used for secp160r1 (Jacobian [10]), Weierstraß (same
Jacobian [10]), and Edwards curves (Hişil et al [12]). For the
GLV curve, the Jacobian doubling formula was optimized to
save a multiplication since a = 0. The GLV implementation
exploits the endomorphism mentioned in Section II and uses
a Joint Sparse Form (JSF) representation for k1,k2 [10].

44



To get constant (i.e. scalar-independent) execution time, we
employed the Montgomery ladder [3] and Double-And-Add-
Always (DAAA) algorithm. For secp160r1, Weierstraß, and
GLV curves, the 10-register formula by Hutter et al [13] was
applied. There exist no ladder-like (i.e. differential) addition
formulas for Edwards curves, but due to completeness of the
addition law, the DAAA algorithm can be implemented in a
fairly straightforward way. The Montgomery curve is special
because it features differential point addition formulas of high
regularity and low complexity [3]. In fact, these formulas are
so efficient that the performance-optimized and constant-time
implementations are the same. The GLV curve achieved the
fastest point multiplication time, requiring only 3,930 kCycles
on an ATmega128. Montgomery, Edwards, Weierstraß, and
secp160r1 elliptic curves are about 41 %, 42 %, 77 %, and
82 % slower, respectively. The fastest of the leakage-reduced
implementation is the Montgomery curve with 5,945 kCycles
(41 % slower). All other “low-leakage” implementations are
roughly equal, ranging between 8.2 and 8.8 MCycles.

C. Architectural Support for OPF-Based ECC

While the previous performance figures were obtained on a
standard ATmega128 (or JAAVR in CA mode), we now take
advantage of the FAST and ISE modes. Table III reports the
execution time and synthesis results (i.e. silicon area) of all
performed experiments. Our target technology was a 130 nm
low-leakage CMOS process from UMC with Faraday design
library. The silicon area was minimized by utilizing area-opti-
mized, synchronous one-port register-file RAM macros. Thus
the impact of the required data memories (528, 505, 567, and
865 bytes for Weierstraß, Montgomery, Edwards, and GLV
curves, respectively) on the total chip area is rather small.

The most complex point multiplication algorithm requiring
the biggest program memory is the GLV method. Its program
memory is approximately 43 % larger than that needed by the
Edwards curve, which is with some 19.6 kGE altogether the
smallest of all our implementations. Switching from CA to
FAST and from FAST to ISE increases the silicon area of all
implementations, but also improves their execution time. This
is best illustrated by the results for the Scaled Area-Runtime
Product (SARP) from Table III. In CA and FAST mode, the
GLV curve achieves the highest SARP value and, hence, has
the best area-runtime product. However, if in ISE mode, the
Edwards curve outperforms the other three implementations
by a small margin (SARP between 5.06 and 5.13).

By utilizing the MAC unit, the OPF-multiplication becomes
roughly six times faster, but the overall point multiplications
only improved by factors of between 3.9 and 4.5. This is to
be expected since the MAC unit accelerates only the multi-
plication but no other OPF operations. Switching from CA to
FAST mode improved the execution times by some 33 % and
all area-runtime products by 28 %, respectively. Table III also
shows simulated power consumption values for a placed and
routed design at 1 MHz. While the CPU (17–22 µW) and the
RAM (1.2–5.4 µW) require relatively low power, the program
memory (which was synthesized using logic cells) consumes

TABLE IV
COMPARISON WITH RELATED HARDWARE IMPLEMENTATIONS.

Reference Field Field Runtime Area
Type Size [kCycles] [GE]

Koschuch et al. [15] GF(2m) 163 bit 1,190 29,491
Fürbass et al. [5] GF(p) 160 bit 362 19,000
Hein et al. [11] GF(2m) 163 bit 296 13,250
Lee et al. [16] GF(2m) 163 bit 302 12,506
Wenger et al. [25] GF(p) 192 bit 1,377 11,686
Our Work (Mon) GF(p) 160 bit 1,300 20,980

TABLE V
RELATED SOFTWARE IMPLEMENTATIONS ON AN ATMEGA128.

Reference Elliptic Curve Runtime
[kCycles]

Liu and Ning [17] secp160r1 15,060
Wang and Li [23] secp160r1 9,953
Szczechowiak et al. [21] Weierstraß, GM prime 9,376
Ugus et al. [22] secp160r1 7,594
Gura et al. [9] secp160r1 6,480
Großschädl et al. [8] GLV, OPF 5,480
Our Work Montgomery, OPF 5,545
Our Work GLV, OPF 3,930

up to 110 µW. Of course, replacing this synthesized program
memory by a “Via-1” ROM macro would reduce the overall
power consumption significantly. The energy cost of a single
point multiplication on JAAVR in CA mode ranges between
455 µJ (GLV curve) and 969 µJ (Weierstraß curve).

D. Comparison with Related Work

We distinguish two categories of related work: (1) “light-
weight” hardware implementations of ECC, and (2) software
implementations of ECC for the ATmega128 based on prime
fields. Only very few hardware/software co-designs exist; we
include them in the former category in our comparison. Table
IV summarizes dedicated hardware implementations of ECC
for resource-restricted environments. Although most of them
outperform our ASIP in terms of runtime and area, they are
less flexible and scalable than our co-design because they can
not handle different fields or families of curve. Our ASIP, on
the other hand, includes a C programmable AVR core able to
perform various other tasks, e.g. protocol processing.

Table V shows a summary of related ATmega128 software
implementations. Our “pure” software solutions (using native
AVR instructions only) outperform most previously-reported
software implementations of ECC over prime fields.

VI. CONCLUSIONS

We presented an AVR-compatible 8-bit ASIP for ECC and
evaluated its performance through software implementations
of several scalar multiplication algorithms. The research con-
tribution of this paper is twofold. First, we showed that the
integration of a (32×4)-bit MAC unit into an AVR core is a
viable option to speed up ECC since it allows one to achieve
a threefold performance gain at the cost of a slight increase
in area. Second, we analyzed the efficiency of four families
of elliptic curves on our ASIP, taking into account numerous
implementation options such as the use of the MAC unit and
whether or not the scalar multiplication method should have

45



TABLE III
SYNTHESIS RESULTS FOR THE DIFFERENT MODES OF JAAVR (HIGHER SARP VALUE MEANS BETTER AREA-RUNTIME PRODUCT).

Elliptic Curve Mode Point Mult. ROM JAAVR ROM RAM Total JAAVR ROM Total SARP
[Cycles] [bytes] [GE] [GE] [GE] [GE] [µW] [µW] [µW]

Weierstraß CA 6,982,629 6,224 6,166 9,091 4,485 19,742 18.8 109.5 138.8 1.00
Edwards CA 5,596,860 6,022 6,166 8,694 4,712 19,572 18.0 81.9 110.1 1.26
Montgomery CA 5,545,078 6,824 6,167 9,542 4,359 20,068 17.9 60.0 88.9 1.24
GLV CA 3,930,256 8,638 6,166 12,413 6,450 25,029 16.8 87.1 115.7 1.40
Weierstraß FAST 5,254,706 6,224 6,800 9,071 4,485 20,355 18.6 60.2 89.7 1.29
Edwards FAST 4,214,289 6,022 6,802 8,695 4,712 20,208 19.4 50.1 80.9 1.62
Montgomery FAST 4,165,405 6,824 6,803 9,533 4,359 20,695 18.3 15.4 45.4 1.60
GLV FAST 2,939,929 8,638 6,802 12,413 6,450 25,665 19.5 68.0 99.9 1.83
Weierstraß ISE 1,542,981 6,290 8,344 8,718 4,485 21,546 18.7 58.4 88.5 4.15
Edwards ISE 1,230,663 6,128 8,345 8,562 4,359 21,266 20.7 67.3 99.8 5.27
Montgomery ISE 1,299,598 5,752 8,343 7,926 4,712 20,980 21.8 14.4 49.5 5.06
GLV ISE 1,001,302 8,640 8,330 12,078 6,450 26,858 19.5 78.5 111.1 5.13

a regular execution profile to counteract certain side-channel
attacks. Based on our experimental results, we can draw the
following conclusions: The GLV curve is an excellent option
when high speed is the main criterion because it outperforms
all other curve types by at least 23%. On the other hand, if a
regular execution profile (and operand-independent execution
time) is important, the Montgomery curve is clearly the best
choice. Last but not least, the Edwards curve has its benefits
when the area-time product is of primary importance.

ACKNOWLEDGMENTS

The research described in this paper has been supported, in
part, by the European Commission through the ICT Program
under contract ICT-SEC-2009-5-258754 TAMPRES.

REFERENCES

[1] Atmel Corporation. 8-bit Atmel Microcontroller with 128KBytes In-
System Programmable Flash. Datasheet, available online at http://www.
atmel.com/dyn/resources/prod documents/doc2467.pdf, June 2011.

[2] D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic
curves. In Advances in Cryptology — ASIACRYPT 2007, LNCS 4833,
pp. 29–50. Springer Verlag, 2007.

[3] H. Cohen and G. Frey (eds). Handbook of Elliptic and Hyperelliptic
Curve Cryptography, vol. 34 of Discrete Mathematics and Its Applica-
tions. Chapmann & Hall\CRC, 2006.

[4] H. M. Edwards. A normal form for elliptic curves. Bulletin of the
American Mathematical Society, 44(3):393–422, July 2007.

[5] F. Fürbass and J. Wolkerstorfer. ECC processor with low die size for
RFID applications. In Proceedings of the 40th IEEE International Sym-
posium on Circuits and Systems (ISCAS 2007), pp. 1835–1838. IEEE,
2007.

[6] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multi-
plication on elliptic curves with efficient endomorphism. In Advances
in Cryptology — CRYPTO 2001, LNCS 2139, pp. 190–200. Springer
Verlag, 2001.

[7] J. Großschädl. TinySA: A security architecture for wireless sensor net-
works. In Proceedings of the 2nd International Conference on Emerging
Networking Experiments and Technologies (CoNEXT 2006), pp. 288–
289. ACM Press, 2006.

[8] J. Großschädl, M. Hudler, M. Koschuch, M. Krüger, and A. Szekely.
Smart elliptic curve cryptography for smart dust. In Quality of Service
in Heterogeneous Networks — QSHINE 2010, LNICST 74, pp. 548–559.
Springer Verlag, 2010.

[9] N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz.
Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In
Cryptographic Hardware and Embedded Systems — CHES 2004, LNCS
3156, pp. 119–132. Springer Verlag, 2004.

[10] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic
Curve Cryptography. Springer Verlag, 2004.

[11] D. Hein, J. Wolkerstorfer, and N. Felber. ECC is ready for RFID —
A proof in silicon. In Selected Areas in Cryptography — SAC 2008,
LNCS 5381, pp. 401–413. Springer Verlag, 2009.

[12] H. Hişil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards
curves revisited. In Advances in Cryptology — ASIACRYPT 2008, LNCS
5350, pp. 326–343. Springer Verlag, 2008.

[13] M. Hutter, M. Joye, and Y. Sierra. Memory-constrained implementations
of elliptic curve cryptography in co-Z coordinate representation. In
Progress in Cryptology — AFRICACRYPT 2011, LNCS 6737, pp. 170–
187. Springer Verlag, 2011.

[14] Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and comparing Mont-
gomery multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

[15] M. Koschuch, J. Lechner, A. Weitzer, J. Großschädl, A. Szekely,
S. Tillich, and J. Wolkerstorfer. Hardware/software co-design of elliptic
curve cryptography on an 8051 microcontroller. In Cryptographic
Hardware and Embedded Systems — CHES 2006, LNCS 4249, pp. 430–
444. Springer Verlag, 2006.

[16] Y. K. Lee, L. Batina, K. Sakiyama, and I. Verbauwhede. Elliptic curve
based security processor for RFID. IEEE Transactions on Computers,
57(11):1514–1527, Nov. 2008.

[17] A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. In Proceedings of the 7th
International Conference on Information Processing in Sensor Networks
(IPSN 2008), pp. 245–256. IEEE Computer Society, 2008.

[18] C. P. Mayer. Security and privacy challenges in the Internet of things.
Electronic Communications of the EASST, 17(4):1–12, Mar. 2009.

[19] P. L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44(170):519–521, Apr. 1985.

[20] P. L. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Mathematics of Computation, 48(177):243–264, Jan.
1987.

[21] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab.
NanoECC: Testing the limits of elliptic curve cryptography in sensor
networks. In Wireless Sensor Networks — EWSN 2008, LNCS 4913,
pp. 305–320. Springer Verlag, 2008.

[22] O. Ugus, D. Westhoff, R. Laue, A. Shoufan, and S. A. Huss. Optimized
implementation of elliptic curve based additive homomorphic encryption
for wireless sensor networks. In Proceedings of the 2nd Workshop on
Embedded Systems Security (WESS 2007), pp. 11–16, 2007.

[23] H. Wang and Q. Li. Efficient implementation of public key cryptosys-
tems on mote sensors. In Information and Communications Security —
ICICS 2006, LNCS 4307, pp. 519–528. Springer Verlag, 2006.

[24] E. Wenger, T. Baier, and J. Feichtner. JAAVR: Introducing the next
generation of security-enabled RFID tags. In Proceedings of the 15th
EUROMICRO Conference on Digital System Design (DSD 2012), pp.
640–647. IEEE Computer Society, 2012.

[25] E. Wenger, M. Feldhofer, and N. Felber. Low-resource hardware design
of an elliptic curve processor for contactless devices. In Information
Security Applications — WISA 2010, LNCS 6513, pp. 92–106. Springer
Verlag, 2011.

[26] Y. Zhang and J. Großschädl. Efficient prime-field arithmetic for elliptic
curve cryptography on wireless sensor nodes. In Proceedings of the 1st
International Conference on Computer Science and Network Technology
(ICCSNT 2011), vol. 1, pp. 459–466. IEEE, 2011.

46

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

	Introduction
	Preliminaries
	Optimal Prime Fields
	Montgomery Curves
	Twisted Edwards Curves
	GLV Curves

	Baseline Implementation
	Addition and Subtraction
	Multiplication and Squaring

	ECC Extensions for AVR
	(32x4)-bit Multiply-Accumulate Unit

	Results and Discussion
	Arithmetic Operations in OPFs
	Elliptic Curve Point Multiplications
	Architectural Support for OPF-Based ECC
	Comparison with Related Work

	Conclusions
	References

