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Prologue

Everyone has the right to life, liberty and security of person.

Universal Declaration of Human Rights, Article 3

Our life turned digital, and so did we. Not long ago, the globalized commu-
nication that we enjoy today on an everyday basis was the privilege of a few.
Nowadays, artificial intelligence in the cloud, smartified handhelds, low-power
Internet-of-Things gadgets, and self-maneuvering objects in the physical world
are promising us unthinkable freedom in shaping our personal lives as well as
society as a whole. Sadly, our collective excitement about the “new”, the “better”,
the “more”, the “instant”, has overruled our sense of security and privacy. New
features, better design, more resources and instant satisfaction make us happily
pay for it with our own data. To phrase it differently: technology sells, security
does not. But what is our digital society worth if it not only fails to protect
our privacy but seeks to intrude our most intimate moments? “Study after
study has show [sic] that human behavior changes when we know we’re being
watched. Under observation, we act less free, which means we effectively are less
free.” [Sno19].

Providing a solid basis for a privacy-friendly future is and should be core
motivation of security research. Unfortunately, we live in a highly fragmented
ecosystem where each device and every piece of code exposes its users to distinct
security issues. Even worse, huge amounts of new code are being produced day
by day; and tons of insecure legacy software have not yet reached their natural
decay. Today, managing the sheer complexity is by far one of the most pressing
issues. As Bruce Schneier phrased it: “Complexity is the worst enemy of security,
and our systems are getting more complex all the time.” [Sch15]. Research today
literally shouts for more principled security technologies.

The Herculean task of securing our systems inevitably needs to be broken down
into small manageable pieces. To this end, enclaves are a promising candidate.
Enclaves are a recent technology built into our computers that can effectively
shield our sensitive data from adversarial access, even remotely. Studying their
security guarantees, precise capabilities, and limitations form an exciting and
active field of research with enough substance to not only fill this thesis with
hopefully valuable insight.
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Abstract

Enclaves are a recent security technology for processors capable of safeguarding
sensitive programs from malware and untrusted system operators alike. To
understand the precise security properties of enclaves, we need more research.
In this thesis, we study enclaves from two viewpoints. First, we take an outside
perspective on the underlying hardware and effectively expand state-of-the-art
enclave technology towards a broader range of application scenarios. Second,
we inspect enclave’s inner behavior with respect to side channels, showing novel
attacks, and improving the automated search for unknown vulnerabilities.

For the first part of this thesis, we ask ourselves three questions: (i) How
can enclaves securely interact with their (physical) environment? (ii) How can
enclaves be realized on tiny resource-constrained devices? (iii) How can we
prevent enclaves from running wild? For (i) we give theoretical results and show
how a trusted hypervisor can provide secure enclave interaction in a generic way.
Connecting enclaves with hypervisors yields subtle but fatal attack vectors, which
we address by using a Trusted Platform Module. For (ii) we design and prototype
enclaves on the open RISC-V architecture. Our system dubbed TIMBER-V
makes use of a specially tagged memory to provide tighter integration and higher
flexibility than comparable schemes. For (iii) we encapsulate enclaves themselves
within a sandbox called SGXJail to contain potential misbehavior.

In the second part, we study side-channel attacks on enclaves with a focus
on cryptographic software, again with three contributions. As shown by others,
enclaves face stronger page-based side-channel attacks than previous systems.
(i) We demonstrate that these attacks also directly affect the generation of cryp-
tographic key material. To that end, we successfully attack RSA key generation
in OpenSSL and provide patches to close the vulnerability. (ii) To automate side-
channel analysis, we develop Differential Address Trace Analysis (DATA). DATA
covers not only classical cache attacks but also fine granular single-instruction or
single-byte leakage, which was believed impractical to exploit until very recently.
DATA helped discover previously unknown leakage in OpenSSL. (iii) For a sys-
tematic study, we adapt DATA to detect leakage of secret nonces in DSA-like
cryptosystems. Our analysis reveals known and several unknown vulnerabilities
in all essential DSA computation steps of OpenSSL and others, many of which
allow full key recovery. Our reports helped fix many of the issues.
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1
Introduction

Trust takes years to build, seconds to break, and forever to repair.

Abraham Lincoln

Software vulnerabilities are a prevalent issue for the security of computing
devices. More than 17.000 software vulnerabilities were reported within the last
year1 [NIS], 57% of which are ranked with high or critical severity. As distributed,
networked computing becomes omnipresent in the Internet of Things (IoT), the
risk of damage even increases, allowing remote exploits on a large scale. In the
recent past, we have been witnessing attacks on million devices, like cameras and
routers [NJC16], cars [MV15], cardiac devices [Lar17], and light bulbs [Ron+17],
to name a few. Also, due to long service life, the security of such devices becomes
decisive, making exploitation only a matter of time. A significant reason for this
threat is code complexity, which makes traditional secure design paradigms like
software verification or testing reach its limits. These security issues attenuate
future use cases in the cloud or the IoT dealing with sensitive corporate or
personal data since a compromise could have immediate monetary, legal, or
privacy consequences [Hel17].

Rather than trying to achieve full system security, a promising line of research
shifted the focus on securing sensitive code only and executing it in architecturally
isolated containers, often referred to as enclaves. An enclave is protected against
all non-enclave code by the hardware. Thus, the security of an enclave solely
relies on the computing hardware and the enclave code itself. At the same time,
the whole operating system can be safely considered untrusted from an enclave’s
perspective.

1This refers to the period between 01/01/2019 and 31/12/2019.
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1.1. Challenges 2

Intel SGX [Int16a] made enclaves available to the public via its x86 main-
line CPUs. SGX targets high-performance cloud computing, where the cloud
provider currently needs to be trusted entirely, as well as Digital Rights Man-
agement (DRM). Research has devised various scenarios of SGX, ranging from
generic containers [BPH15; Arn+16; Shi+17b; TPV17] to specific application
scenarios [Sch+15; PVC18; Lin+16; Bre+17]. Being relatively new, the security
of enclaves is not as well understood as traditional concepts. In the following, we
discuss open challenges and present our contributions.

1.1 Challenges

Despite the ability of enclaves to significantly improve application security, various
new challenges arise. In this thesis, we address the following challenges:

1. Secure I/O. While Intel SGX securely shields a piece of code inside an
enclave, it does not provide means for enclaves to communicate with an end
user securely. This lack of secure I/O renders many potential application
scenarios impractical, as sensitive user input like passwords or credit card
information could be eaves-dropped before it arrives in the enclave. Also,
presenting enclave output securely to the end user faces similar issues.

2. Small and Open Systems. Second, enclave technology is not yet as open
as required for supporting a diverse ecosystem. While Intel SGX is the
culmination of a long history of research on enclaves, its proprietary nature
prohibits more in-depth security analysis. Attack scenarios range from
speculation-based vulnerabilities [Bul+18] to deliberate backdoors [Dom18].
Open enclave systems, e.g., for the RISC-V [Ris] processor architecture, are
necessary for transparent security analysis. Enclaves have been brought to
larger RISC-V processors [CLD16] as well as to embedded systems [Eld+12;
Noo+13; Göt+15; Noo+17; Koe+14; Bra+15; Arm17]. However, prior to
our research, no enclave system existed for small RISC-V microcontrollers
useful for deeply embedded IoT applications.

3. Enclave Malware. There is a flip side to enclave technology, as one can
misuse them for malicious activity. Similar to rootkits [Kin+06; MY07],
enclaves can effectively hide malware [Rut13; DF14; CD16]. Currently, no
reasonable defense against enclave malware has been proposed or imple-
mented.

4. Side Channels. Enclave technology does not solve the issue of software
side-channel attacks [Sch+17; Bra+17b]. Even worse, Intel SGX aggravates
this threat via novel deterministic side channels [XCP15]. While the research
community is exploring these new attack techniques, it is unclear how
popular cryptographic libraries such as OpenSSL and SGX-SSL [Int19] are
affected by those attacks. Finally, searching for side-channel vulnerabilities
in production software such as OpenSSL is not only tedious but also error-
prone. This is mainly due to a lack of proper tool support side-channel
analysts can use to assist their investigations. Existing side-channel analysis
tools suffer from imprecision, accuracy, and performance issues.
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1.2 Contributions and Outline

This thesis is split into two parts, where each contribution is represented by
one chapter. We preface each part with an introductory chapter covering back-
ground information and related work. We list our publications as well as further
collaborations in the end.
Part I discusses enclaves from an architectural perspective (challenge 1–3):

In Chapter 3, we develop the first concept for secure and generic user interac-
tion with Intel SGX enclaves called SGXIO. To do so, we augment SGX with a
small and trusted hypervisor. The key contribution is a proper binding of enclaves
with the trusted hypervisor by utilizing a Trusted Platform Module (TPM). This
work was published at CODASPY’16 [WW17a].

In Chapter 4, we, for the first time, bring enclaves to small RISC-V micro-
controllers. To address the issue of limited memory, we devise novel tag-based
isolation, which allows dynamic enclave memory management. Our scheme fur-
ther enables novel use cases, such as interleaving of trusted and untrusted data on
the same application stack or heap, thus reducing overall memory fragmentation.
This work was published at NDSS’19 [Wei+19b].

In Chapter 5, we show how to prevent potential enclave malware from
attacking the system. Enclave malware might attack its host application due to
a lack of bi-directional isolation between enclaves and applications [SWG19]. We
propose enclave sandboxing as a generic defense against enclave malware and
show how enclave sandboxing can be efficiently instantiated both in software and
in hardware. This work was published at RAID’19 [Wei+19a].
Part II discusses enclaves concerning side-channel vulnerabilities (challenge 4):

In Chapter 7, we demonstrate novel side-channel attacks on cryptographic key
generation. The use of SGX exposes key-generation algorithms to side-channel
attacks, which had been overlooked so far. To highlight this issue, we demonstrate
the first single-trace attack on RSA key generation in SGX-SSL [Int19] and recover
the secret key in 100% of the cases. Our proposed countermeasures helped fix
the vulnerability. This work was published at ASIACCS’18 [WSB18a].

In Chapter 8, we develop Differential Address Trace Analysis (DATA). Rather
than addressing specific attacks only, DATA is capable of uncovering arbitrary
software side-channel vulnerabilities that rely on address information, includ-
ing cache attacks [Per05], controlled-channel attacks [XCP15], DRAM-based
attacks [Pes+16], and branch shadowing attacks [Lee+17b]. We implement
DATA in a fully automated evaluation tool and use it to discover vulnerabilities
in OpenSSL and PyCrypto. This work was published at USENIX’18 [Wei+18a].

In Chapter 9, we refine DATA towards detecting nonce leakage vulnerabilities
in (EC)DSA-like cryptosystems. We systematically analyze the whole lifetime of
nonces in OpenSSL, LibreSSL, and BoringSSL. We report various side-channel
vulnerabilities across all essential computation steps, most of which stem from
leaky Bignumber implementations. Our work helped fix many of the issues and
was accepted for publication at USENIX’20 [Wei+20].

To make our results reproducible and help other researchers advance upon it,
we open-sourced various code developed for this thesis.
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2
From Bugs to Enclaves. A Primer

Whoever is careless with the truth in small matters cannot be trusted
with important matters.

Albert Einstein

Everything in a computer system is built on trust: trust in individual com-
ponents, trust in their composition, and trust in the humans interacting with
the system. A minor inadvertence inside a single core component, a wrong
assumption about the user, and all trust might collapse like a house of cards.
Ideally, the construction of components into a complete system is such that trust
can be reduced to the bare minimum necessary, that is, to the piece of code and
hardware responsible for managing critical tasks.

In this chapter, we first introduce the reader to two broad classes of attacks,
which help understand the ideas and concepts presented later on. Afterward, we
discuss the history of isolation technologies and finally introduce enclaves, the
core subject for this part of the thesis.

2.1 Attack Scenarios

The landscape of attack scenarios is almost as diverse as the number of protection
mechanisms. For this work, we cluster them into attacks on the inner behavior of
a program and attacks on a program’s environment in a larger system. While the
first group of attacks exploit software vulnerabilities within a single program, the
second group of attacks are performed across different programs by tampering
with their execution environment. Often, a single software vulnerability in one
program serve as an entry point into the whole system. Security architectures

7
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shall uphold security guarantees of the system – even in case a program is
compromised. Our actual contribution lies in the latter – security architectures.
Although many security architectures involve trusted code components that need
to be free of vulnerabilities, we focus on the design of security architectures
rather than their correct implementation. Nevertheless, in the following, we
outline both scenarios. We first discuss software vulnerabilities by touching on
their threat models, describing prominent attacks, and giving countermeasures.
Next, we discuss security architectures by elaborating on their responsibilities
and the underlying threat model, introducing the trusted computing base, and
highlighting important research goals to put this thesis into context.

2.1.1 Bug Alert! On Software Vulnerabilities

Software security focuses on analyzing the security of a given program with
respect to its intended behavior. In this setting, one considers the whole operating
environment – including the operating system and hardware – as secure. However,
an attacker might play with the program’s legitimate communication interface to
trick the program into misbehaving. Typically, one precludes malicious intent of
the programmer, such as backdoors coded into the program. Instead, one assumes
that an honest but imperfect programmer made some inadvertent programming
bugs. If those bugs affect the security of the system, they are called vulnerabilities.
An attacker might exploit such a vulnerability by providing specially crafted
input to the program.

Early attacks managed to directly inject or modify code at runtime, e.g., via
a buffer overflow. However, this is not possible anymore with current systems.
Instead, an attacker nowadays typically tries to manipulate control data and,
thus, change the control flow of an application. By overwriting a code pointer, an
attacker can divert the control flow to existing code snippets, resulting in so-called
control-flow hijacking attacks. This gives an attacker the capability to perform
touring-complete computation. From a functional perspective, an attacker has
managed to transform the normal state machine of a program into a more ex-
pressive weird machine [Bra+11]. In its strongest form, a control-flow hijacking
attack allows arbitrary code execution at the attacker’s discretion. One of the
most generic and powerful control-flow hijacking attacks is return-oriented pro-
gramming (ROP) [Sha07], which overwrites return addresses to create arbitrary
attack payloads. Similar attacks exist for overwriting function pointers [Che+10;
Ble+11; Lan+15; CW14; Gök+14; Sch+15] or signal handlers [BB14].

Research on vulnerability defenses covers a wide range of strategies. The
ultimate goal is to prove a program free of bugs, i.e., verify its functionality
against a given model. Typically, one matches software against a formal model,
specified in some abstract language. Writing such a verification code can easily
outweigh the effort for coding the program itself. For example, the development
effort for the seL4 microkernel took 2.2 person-years, whereas the correctness
proof took 20.5 person-years [Kle+14]. Hence, one tends to invest such costs
only in high assurance systems [Kle+18]. Moreover, many program verification
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techniques suffer from complexity issues such as state explosion [Val96]. Software
testing reduces the state space at the expense of looser guarantees [MSB11].

Rather than analyzing precise functionality, a different line of research focuses
on invariants that are inherent to most programs. For example, memory safety
tackles the semantic gap between a programming language and the compiled
binary from the perspective of objects in memory. The goal is to maintain
invariants such as spatial memory safety, temporal memory safety, and type
safety across the compilation step. These safety properties eradicate buffer
overflow attacks, dangling pointers, or type confusion attacks. Rust already
integrates memory safety in the language design [Rus]. Unfortunately, a large
body of legacy code remains unprotected, and one resorts to weaker protection
schemes, such as address-space layout randomization (ASLR) [PaX03], stack
canaries [Cow98; PaX15], and shadow stacks [CH01]. While stronger control-flow
integrity (CFI) [Aba+05; Kuz+14] can eradicate control-flow attacks, they leave
data-only attacks [Car+15; Isp+18] unaddressed. A good overview of the struggle
towards memory safety is given in [Sze+14].

2.1.2 Intrusion Alert! On Security Architectures

Having dug into the security of a single program, we now look at a complete
system of multiple interacting components. In particular, we are interested in
cases where not all components are behaving well. Such misbehavior might be
due to the exploitation of software vulnerabilities. Alternatively, the user might
unwittingly have installed malicious software. In many cases, the execution
of potentially untrusted code is even unavoidable (cf. JavaScript execution in
browsers) or part of the business model (cf. cloud computing). No matter how
an attacker might infiltrate a system, security architectures shall maintain the
secure operation of the other components in this case.

In light of powerful control-flow hijacking attacks, one typically assumes
that an attacker has arbitrary code execution. That is, the attacker can execute
arbitrary CPU instructions on the victim system an unlimited number of times,
and interact with the victim system to exfiltrate gained information, or inject new
instructions. It is the goal of the attacker to illegitimately access sensitive data,
e.g., by elevating privileges and bypassing protection mechanisms. Note that
the availability of the system is not necessarily the goal of security architectures,
and the attacker might successfully mount denial-of-service attacks. Instead,
security architectures shall protect the secrecy (or confidentiality) and integrity
(or authenticity) of sensitive data even in case of intrusion. Protection involves
proper isolation of different security domains and safeguarding their interaction.

Each security architecture builds upon a core set of components that are
crucial for security and, hence, need to be trusted. Those components are also
referred to as the trusted computing base (TCB). Any vulnerability inside the
TCB is considered fatal for overall security. The TCB typically includes CPU
hardware but also software components such as the operating system and user
programs that are entrusted access to sensitive data.
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Research on security architectures is two-fold. First, one studies the precise
security guarantees an architecture offers, together with the underlying mechanics.
While some systems focus on the isolation of data only, others also attest or
authenticate code operating on it. An important question is also how a program
can securely interact with the user, should the system be compromised. Security
architectures range from trusted software running on commodity hardware down
to specialized hardware extensions. Second, one needs to study the security of
the TCB itself. Trusting the TCB is not necessarily based on security reasoning
but an inevitable obligation to anyone using the system. Research shall provide
convincing arguments that the TCB is also secure and, thus, trustworthy. This
links back to our previous discussion on how to prevent (software) vulnerabilities.
A mature security architecture shall provide its services at the smallest possible
complexity. To phrase it differently: an important goal in designing security
architectures is to minimize their TCB. A minimal TCB decreases the likelihood
of bugs in the TCB and paves the way for full verification.

As mentioned before, our focus is not on vulnerability analysis of the TCB but
its complexity reduction. Plus, we are interested in studying existing architectures
in terms of their security properties.

2.2 A History of Isolation Technology

A fundamental building block for securing systems is isolation. The goal is to
prevent compromised code from harming the rest of a system, which requires
partitioning of memory into security domains. Isolation can be realized on various
layers. Figure 2.1 depicts the most widely used schemes. In traditional process
isolation, each application process belongs to a different security domain and
cannot access the memory of other domains. Also, the operating system forms
its own security domain, which is isolated from the rest. To protect against
untrusted operating systems, Arm TrustZone runs so-called trustlets on top of a
small, trusted operating system inside a secure world. One can bootstrap trust in
software via secure boot, or with the help of a Trusted Platform Module (TPM)
via trusted boot. Intel SGX integrates those concepts inside the CPU, allowing
enclaves to run securely on a compromised operating system. In the following,
we explain those concepts and their evolution in more detail.

2.2.1 Process Isolation

Process isolation is a fundamental security concept that combines hardware
and software techniques to isolate the memory of processes from each other.
Resource-constrained devices use physical memory protection for that purpose,
while large systems isolate processes in separate virtual address spaces. Isolation
is usually enforced by the operating system taking advantage of the processor’s
privilege levels.
Physical Memory Protection. Highly embedded systems, such as the Arm
Cortex M series [Armb], operate on a single flat address space called physical mem-
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Figure 2.1: Process isolation is built on top of the operating system, which could be
verified via a TPM and trusted boot. Arm TrustZone provides a so-called
secure world for executing trustlets atop of a TrustZone operating system.
Trust is typically established via secure boot. Intel SGX runs enclaves
within an untrusted application, and trust is directly bootstrapped by
the CPU. The TCB is colored green, including trusted components (dark
green) and secured code (light green). Potentially malicious code is orange.

ory. Typically, part of this address space is used for read-only memory (ROM),
random-access memory (RAM), and memory-mapped input/output devices de-
noted as MMIO. In such systems, memory isolation is achieved via a so-called
Memory Protection Unit (MPU), a hardware module that safeguards access to
physical memory. For the RISC-V architecture, MPU’s are even called physical
memory protection (PMP). An MPU sanitizes the address bus for malicious
accesses, i.e., accesses that do not belong to the current security domain. In
case malicious access is detected, the MPU issues an exception that interrupts
normal program execution and hands over control to the operating system. An
MPU offers a fixed number of slots, each one holding a single contiguous memory
range (e.g., the Arm Cortex M0+ offers eight MPU slots [Armb]). Only if a
memory location belongs to the memory range of at least one MPU slot, access
is allowed. In order to schedule multiple applications, the operating system is
responsible for loading and unloading MPU slots upon each context switch. Due
to the fragmentation of memory, an application might comprise a higher number
of memory ranges than there are available MPU slots. In this case, the operating
system can lazily swap MPU slots whenever the application accesses memory
that is currently not loaded in the MPU.

In general, an MPU slot holds the start and end address of a memory range,
but more optimized designs are possible by requiring memory ranges to be aligned.
To increase security, MPUs can hold additional metadata for distinguishing read-
only, writable, and executable memory regions, typically denoted as rwx bits.
Memory Segmentation. Having a single flat address space for all applications
comes with its drawbacks. For example, the more applications are executed, the
more tedious memory partitioning becomes. In particular, all memory addresses
need to be known a priori, that is, at compile/link time, impeding dynamic
memory management. For that reason, memory segmentation was invented.
A memory segment is represented by a base address and a size, similar to an
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MPU slot. Applications can reference any memory relative to a memory segment
rather than via an absolute address. Thus, the application becomes position
independent, and the operating system can decide at runtime at which memory
location to load a particular application. Similar to an MPU, segmentation
can also be used as an isolation technique by making an application’s memory
segments immutable and disjoint to other applications.
Virtual Memory. For mid and high-class application processors [Arma; Int16a;
AMD20b], memory is virtualized, solving not only the fragmentation issue but
also offering a strong primitive for isolation. For this, each application is given
its own virtual view on the full memory range. E.g., on systems with 32-bit
addresses, this covers 232 = 4GB of memory. This virtual address space is created
atop of a 1:n address translation mechanism which transforms virtual addresses
to physical ones. To simplify translation, both virtual and physical memory is
split into chunks of pages (e.g., 4KB). A translation table maps virtual pages
to physical pages. These translations are denoted as Page Table Entries (PTE).
Each PTE is indexed by the virtual page address, and contains the corresponding
physical page address (e.g., all but the lower 12 address bits for 4KB pages).
Moreover, a PTE holds metadata such as permission bits (rwx) and access history
bits. In order to increase efficiency, modern systems use a hierarchy of translation
tables with up to five layers [Int16a].

As address translations are an expensive operation, a dedicated module called
Memory Management Unit (MMU) does them in hardware. Moreover, successful
translations are cached in the so-called translation lookaside buffer (TLB). On
every context switch, the operating system not only switches translation tables,
but it also needs to invalidate the corresponding TLB entries.
Privilege Levels. In all the above scenarios, the operating system is responsible
for partitioning and, thus, isolating memory between applications. Obviously,
the operating system needs to protect its own memory as well. It does so by the
same means of physical or virtual memory protection used to protect applications.
However, isolation alone does not suffice to defend against malicious applications
bypassing it (e.g., by reconfiguring the MPU or MMU). Privilege levels are needed
in hardware to constrain sensitive operations to the legit operating system. For
example, the privileged kernel mode has access to the MPU or MMU. In contrast,
the unprivileged user mode provides a constrained environment for executing
potentially malicious application code. That is, specific CPU instructions are
disallowed in user mode. Modern systems have more than two privilege levels.
For example, x86 features four so-called protection rings indexed from 3 to 0, a
separate virtualization layer informally indexed with -1, and a system management
mode indexed with -2 for low-level hardware control. RISC-V provides a user
mode for applications, a supervisor mode for the operating system, and a machine
mode for emulating missing hardware features.
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2.2.2 Bootstrapping Trust

Process isolation fundamentally relies on the correct operation of the operating
system. If an attacker manages to compromise the operating system, e.g., by
corrupting the boot images, all security guarantees are lost. Secure boot prevents
compromised components from being loaded. An attacker might also trick a
remote user into communicating with a compromised device controlled by the
attacker instead of the legit device. Here, we need a trusted boot mechanism
proving the device configuration to the outside world.
Secure Boot. A simple yet powerful method for bootstrapping trust is secure
boot. Here, the first piece of software executed at power on - the so-called
first-stage bootloader - will perform checks on the code of the next stage before
actually invoking it. Only if the next stage matches an expected signature, it will
be handed over control. Signatures are typically based on cryptographic hashes
over the code. To increase flexibility, the hash itself is usually cryptographically
signed, and the signature key is embedded in the code of the respective boot
stage. By iteratively checking the boot process, trust can eventually be extended
to a full operating system. Secure boot can be purely implemented in software,
assuming the first stage bootloader can be trusted as is. To do so, one typically
places the first stage bootloader in read-only memory. Secure boot is used for
bootstrapping the Arm TrustZone [Arm09] and UEFI [UEF19]. On Android,
secure boot is called verified boot [Edg15].
Trusted Boot. According to Casper et al. [CP11], “Trusted Boot refers to the
ability to have confidence or trust in the security of a system startup, beginning
with the initial configuration boot of the system.” Secure boot alone does not
provide a mechanism to verify remotely whether a device was initialized securely.
Hence, trusted boot combines secure boot with a concept called authenticated
boot [Arb05]. On Windows, authenticated boot is called measured boot [Sat18].

Authenticated boot generates an “[...] accurate record of the way that the
platform booted” [Tru12]. This record might involve relevant software and the
hardware configuration. In any case, it shall reveal whether security mechanisms
are present and initialized correctly. Similar to secure boot, authenticated boot
scans each successive boot stage before running it. The resulting signatures
are called measurements. However, rather than aborting in case of a signature
mismatch, the obtained signatures are accumulated into one signature, e.g., via
a chain of hashes. Verification of signatures is deferred to the future, where an
external verifier checks signatures in a process called attestation.
Trusted Platform Module. Authenticated boot requires secure storage for
signatures (i.e., measurements). The Trusted Platform Module (TPM) [TCG14]
is a dedicated security co-processor built into a tamper-proof hardware chip that
offers secure storage alongside various cryptographic services. It allows software
to accumulate signatures, that is, extend measurements, but not revert them.
One can also bind TPM key material to a particular measurement such that keys
are only unlocked if the boot process was performed correctly. This is used for
full disk encryption, such as BitLocker, amongst others.
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Bootstrapping trust with a TPM is prone to cold-boot attacks [Hal+08]
and cuckoo attacks [Par08], assuming an attacker intercepts the communication
interface between TPM and the CPU. Also, a major disadvantage of trusted boot
is that the trusted computing base might become significantly large. E.g., when
using the TPM from a user application, the whole operating system needs to be
measured and trusted as well (cf. Figure 2.1). Even worse, if a single component
in the trust chain is compromised, there is no way to re-establish trust other
than a complete reboot of the system. Since trust is derived from a single static
component, namely the first-stage bootloader, it is also entitled static root of
trust.
Dynamic Root of Trust. Intel Trusted Execution Technology (TXT) [Int15] is
a CPU extension that tackles the inflexibility issues of a static root of trust. TXT
allows freezing execution of whatever software might be running, and bootstrap
into a fresh environment, effectively giving a dynamic root of trust. Inside this
environment, one can load a small security kernel and perform security-critical
tasks. Once finished, TXT switches back to the original context and resumes
normal execution. The open-source tboot project builds upon Intel TXT to
provide trusted boot for an operating system.1

2.2.3 Untrusted Operating Systems

We have seen that operating systems can be securely bootstrapped, and provide
process isolation towards user applications. However, the amount of code that
needs to be trusted (the TCB) comprises the whole operating system. Unfortu-
nately, most widely used operating systems rely on a monolithic design, where a
single bug can suffice to undermine process isolation completely. Microkernels,
on the other hand, take the opposite approach by reducing kernel complexity.
Monolithic Kernels. Monolithic kernels perform all kernel-related tasks in a
single security domain. This includes various forms of resource management as
well as device drivers. Since monolithic kernels tend to have a large code base
(e.g., the Linux kernel 5.6-rc4 comprises more than 18.5mio lines of code), the
chance for unknown bugs is huge. For example, a total of 2300 vulnerabilities were
reported for the Linux kernel within the last two decades, 246 of which are labeled
as dangerous code execution bugs.2 Finding such bugs in an automated way
is a highly active line of research [Gen+18; Jeo+19; Yav19; LPW19b; Zha+19;
Son+19; WLY18; LPW19a; Sri+19].

To reduce the attack surface, Linux randomizes the kernel layout via KASLR
[Edg13]. Furthermore, it leverages supervisor mode access/execution preven-
tion (SMAP and SMEP) to avoid misinterpretation of user memory as kernel
memory. Also, other hardware features can be used to confine kernel operation
further [GEL16; Pom+19; Gra+19].

1http://sourceforge.net/projects/tboot. (Accessed 05/03/2020)
2https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html (Accessed

02/03/2020)

http://sourceforge.net/projects/tboot
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html


2.2. A History of Isolation Technology 15

Microkernels. Unlike monolithic kernels, a microkernel attempts to reduce
kernel complexity and, thus, the attack surface, to a bare minimum.3 Typically,
drivers are run in user mode, and resource management is handed over to
userspace via so-called capabilities. A prominent example is the seL4 microkernel.
The developers of seL4 reduced kernel code size to 8700 lines of C code and
conducted formal verification to prove its correctness [Kle+09]. Designing a fully-
featured, secure OS on top of a microkernel is a challenge on its own [Jac+15].
Nevertheless, Google is currently developing a capability-based operating system
called Fuchsia atop of the Zirkon microkernel as a long-term replacement for
Android.4

2.2.4 Towards Enclaves

Operating systems are arguably a weak link for the security of the overall system.
We rely on them mainly because we have to. Removing the operating system
from the trusted computing base (TCB) sounds appealing but impractical. To
give an analogy in the physical world: one could barely remove the motor of a
car and still expect it to move. Nevertheless, researchers asked the question to
what extent one can distrust the operating system and still guarantee security.
As a result, enclaves were developed. Enclaves are small containers that shield
a piece of unprivileged code from the outside. The “outside” covers all code
running outside of the enclave, including the operating system.

Enclaves evolved during a long journey of research and industry efforts,
of which a partial, yet informative overview is given in [Mae+18]. Various
terminologies related to enclaves exist such as trusted, secure, isolated, or shielded
execution. In this thesis, we will use the term enclave as follows: an enclave is an
unprivileged execution environment that allows one to securely execute a piece of
code on a compromised system. We assume that the operating system and other
software is untrusted and under control by an attacker. That is, the TCB only
covers enclaves and the hardware (cf. Intel SGX in Figure 2.1). In contrast, the
more general term trusted execution environment (TEE) may be used not only
for enclaves but also for privileged execution environments that are shielded from
a compromised operating system. In these privileged environments the TCB also
covers a trusted operating system kernel (cf. Arm TrustZone in Figure 2.1).

Enclaves (as well as TEEs) are built upon three security primitives: memory
isolation for protecting their code and data, entry point protection to prevent
control-flow hijacking attacks, and attestation for bootstrapping trust. Fur-
thermore, enclaves are unprivileged. The operating system can decide on their
management.

Enclaves evolved from various techniques for secure code execution. Early
designs put critical computation in a separate security co-processor [SW99]. The
co-processor features cryptographic operations similar to a TPM but can also run
a full general-purpose software stack, authenticated with a secure boot mechanism,

3For a list of popular microkernels see http://www.microkernel.info/
4https://fuchsia.dev (Accessed 02/03/2020)

http://www.microkernel.info/
https://fuchsia.dev
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and an attestation scheme. XOM explores execute-only memory [Lie+00], based
on previous work on transparent memory encryption et al. [GLQ98; GLQ99].
AEGIS is a hardware-software co-design based on memory encryption and an
optional security kernel [Suh+03].
Arm TrustZone. Arm developed TrustZone in 2008 [Arm09], which since
then, became a de-facto industry standard. As shown in Figure 2.1, TrustZone
provides a secure world for running secure software alongside an untrusted rich
operating system, running in the normal world. This world split is orthogonal
to the processor’s privilege levels and effectively creates a secure virtual CPU.
The secure world can access all system resources, while the non-secure world
can only access non-secure memory regions. Moreover, the secure world can be
extended to security-critical hardware peripherals. TrustZone demands a security
kernel (e.g., a microkernel) which is responsible for running so-called trustlets,
small user programs that shall be shielded against software attacks. The trusted
computing base (TCB) covers all secure world code plus the hardware.
Other Isolation Techniques. Flicker bootstraps secure applications with the
help of Intel TXT and the TPM [McC+08] and a small privileged bootstrapping
code. However, during the execution of the secure application, Intel TXT
suspends all other applications. Hypervisors have been used to separate secure
applications from an untrusted operating system [TLL06; Che+08; YS08; CL10;
McC+10; Chh+11; Hof+13]. Virtual ghost isolates sensitive memory via compiler
transformations on the untrusted kernel [CDA14]. SICE uses system management
RAM on x86 for creating a secure environment [ANZ11]. CARMA [Vas+12] and
Oasis [Owu+13] create a secure environment purely inside CPU caches.
Enclave Architectures. IBM SecureBlue++ [WB11; BW12] is an extension to
the Power architecture, which reduces the trusted computing base to the enclave
(denoted as secure executable) and hardware only. It is compatible with existing
software, protects enclaves also in the file system via encryption, and provides
enclaves with shared memory and multithreading. Intel SGX [McK+13] brings
enclaves to x86 off-the-shelf CPUs. SGX embeds enclaves in ordinary application
processes and comes with an enclave-to-enclave and a remote attestation scheme.
SGX outsources memory mapping to the untrusted operating system and also
encrypts all enclave memory in DRAM. For this, enclave memory has to be
allocated inside a pre-defined portion of DRAM, and the memory mapping
is verified against an SGX shadow structure. We discuss SGX in detail in
Section 2.3. Unlike SGX, Iso-X [Evt+14] allows using any memory for enclaves,
however, without memory encryption. Also, Iso-X does not prevent the operating
system from remapping enclave memory, which could lead to runtime attacks.
Sanctum [CLD16] brings the SGX concept to the RISC-V architecture and uses
a memory coloring scheme that is more resistant to side-channel attacks.

In order to isolate whole virtual machines rather than enclaves only, AMD
added full memory encryption in their CPUs called Secure Encrypted Virtual-
ization (SEV) [KPW16]. To address attacks tampering with encrypted mem-
ory [Mor+18], AMD recently integrated a memory integrity scheme for SEV,
called Secure Nested Paging (SEV-SNP) [AMD20a].



2.3. Intel Software Guard Extensions (SGX) 17

Enclaves were also ported to small embedded systems via dedicated hardware
support [Eld+12; Noo+13; Göt+15; Noo+17; Koe+14; Bra+15; Arm17]. We will
discuss them in Section 4.9. MultiZone and Keystone both provide a TrustZone-
like software stack for RISC-V MPU-based systems [Hex; Lee+20].

2.3 Intel Software Guard Extensions (SGX)

Intel Software Guard Extensions (SGX) are an x86 instruction-set extension
that has been rolled out with the Skylake microarchitecture. SGX first intro-
duced the term enclave for running trusted code isolated from the remaining
system. Enclaves opened a wide range of new application scenarios, such as
trusted cloud computing [BPH14; Sch+15; Gje+17], protection of web browser
input fields [Esk+19; Dha+20a] copyrighted material [BL16] or cryptocurren-
cies [Lia+17], secure networking [MAP18], and many more. Also, programs that
were not intended for enclave execution can benefit from enclave-based container
approaches. Haven shifts a whole Windows 8 library into an SGX enclave [BPH14],
and SCONE [Arn+16], Panoply [Shi+17b], and Graphene-SGX [TPV17] provide
such an abstraction for Linux.

In the following, we focus on SGX features and discuss attacks on SGX. For
more details, we refer to the available literature [McK+13; Ana+13; Hoe+13;
XSL16; Cha+17a; Fer+17; Ana+15; CD16; Int16a; Int16b; Int17b].

2.3.1 Basic SGX Features

The central concept of SGX is a hardware-isolated enclave container in which
sensitive parts of an application are placed. Unlike TrustZone, an enclave directly
resides in the address space of an untrusted user application (cf. Figure 2.1).
Only the enclave itself can access its memory while the hardware prevents any
other access to it. SGX does not rely on any privileged software (trusted kernel,
hypervisor, etc.) to isolate enclaves, thus reducing the TCB to only the CPU and
enclaves themselves.5 To protect against physical attackers, SGX encrypts and
integrity-protects all enclave memory on the fly when written to DRAM using a
dedicated hardware encryption module.
Enclave Interaction. Figure 2.2 shows the process of invoking an enclave.
The enclave defines secure functions denoted as ECALLs, which the application
can call with the EENTER instruction. Call gates (CG) restrict ECALLs to valid
entry points. This prevents simple control-flow attacks from the application. To
further reduce the TCB, syscalls are disallowed from within enclaves. Instead,
enclaves can request OS services such as syscalls via OCALLs. In order to leave
the enclave, it can issue the EEXIT instruction.

Intel assists enclave developers with a so-called Enclave Definition Lan-
guage (EDL). The EDL file is used to specify the ECALL/OCALL interface of

5SGX relies on CPU microcode, which is considered part of the hardware. For remote
attestation, SGX interacts with the Intel Management Engine (ME) [Rua14b] as a trusted
component.
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Figure 2.2: SGX enclaves are tightly integrated in a host application. The application
can invoke the enclave via ECALLs while the enclave can perform OCALLs.
Enclaves can only be entered via the EENTER instruction at dedicated call
gates (CG) and can only be left via EEXIT.

a particular enclave. As such, it contains function signatures of the enclave’s
ECALLs and OCALLs, augmented with additional security attributes (e.g.,
in, out). Intel provides developers with an SDK [Int16b] that automatically
generates glue code from the EDL file with appropriate parameter validation
and buffer copying inside the enclave. The glue code is also responsible for
maintaining CPU state across EENTER and EEXIT by saving and restoring CPU
registers appropriately.
Shielding against the OS. In SGX, the operating system is entirely distrusted.
Nevertheless, it is responsible for managing enclaves. The CPU safeguards all
such enclave management operations and prevents the enclave from executing in
case of operating system misbehavior. This affects three areas: enclave launch,
memory mapping, and interruption.
Enclave Launch. To launch an enclave, SGX provides new initialization in-
structions to the operating system. ECREATE initializes a fresh, empty enclave.
EADD lets the operating system load memory pages into the enclave. EEXTEND

can be used to measure those enclave pages in a chained cryptographic hash log,
stored in a register called MRENCLAVE. This process of hashing is comparable to a
TPM [TCG14]. Not only the enclave page content is measured, but also the exact
sequence of SGX initialization instructions. When completing initialization via
EINIT, the CPU verifies the value of MRENCLAVE against a vendor-signed version
and aborts on a mismatch. Only if the operating system has loaded the enclave
in the intended way, this verification will succeed. Hence, MRENCLAVE vouches for
the integrity of the enclave startup; it serves as load-time attestation.
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Memory Mapping. In SGX, memory management is solely done by the
operating system, as opposed to TrustZone. SGX does not prevent an operating
system from mapping enclave pages in an illegitimate way. However, the CPU
will refuse to run enclaves with an incorrect mapping. The corresponding checks
are implemented in the virtual-to-physical address translation mechanism. A
so-called Enclave Page Cache Map (EPCM) keeps a copy of the intended page
mappings specified during EADD. This includes the virtual address, the permission
bits, and the enclave this page belongs to. The EPCM can also be seen as a
table of inverse PTEs, mapping physical enclave pages back to virtual ones. If
any of the EPCM checks fail, an exception is triggered. Checks only need to be
done once, as successful translations are cached in the TLB. However, the TLB
needs to be flushed when entering an enclave with EENTER, causing a noticeable
slowdown [WBA17].
Interruption. For normal ECALLs and OCALLs, the enclave software preserves
the CPU register state. However, an enclave might get interrupted, e.g., via an
external interrupt or an exception. This is called Asynchronous Exit Event (AEX).
Upon an AEX, the CPU suspends enclave execution and stores its CPU state
inside a special State-Save Area (SSA) in the enclave. Moreover, it will clear
registers to avoid information leakage and hand over control to the operating
system. To resume from interruption, SGX provides an ERESUME instruction that
restores the CPU state from the SSA.

An enclave might want to handle some AEXs, such as floating point exceptions,
itself. To do so, the application can re-enter an interrupted enclave via EENTER.
Once the AEX is resolved and the enclave issued EEXIT, the OS can resume
the enclave via ERESUME. Also, nested AEX are possible. For this, the SSA is
organized as stack, and enclaves can be re-entered until the SSA is full.

2.3.2 Advanced SGX Features

Enclaves fundamentally build upon attestation and sealing, which we discuss in
the following. Moreover, we will cover enclave debugging, licensing, and an SGX
extension called flexible launch control.
Attestation. In order to bootstrap trust, SGX provides two attestation mecha-
nisms [Ana+13], namely local and remote attestation.

Local attestation enables enclaves to verify each other. It is based on a
signed report structure that contains MRENCLAVE. The report structure is signed
by a CPU-specific key, and local attestation only succeeds between enclaves
running on the same physical CPU. The report structure can hold additional
user data. One can use this user data to authentically exchange information
between enclaves and agree on an encryption key, for example. The SGX SDK
uses local attestation to exchange a Diffie-Hellman key between two enclaves.

Remote attestation can be used by a remote party to check if the attested
enclave is indeed running on a genuine Intel CPU. It allows the initial provisioning
of keys and secrets. Provisioning is required since enclave code is public (in
contrast to encrypted SecureBlue++ enclaves), and secrets cannot be embedded
directly in the code. To perform remote attestation, Intel ships a so-called quoting
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enclave with its SDK. After performing local attestation to the target enclave, the
quoting enclave will prove its authenticity to an Intel Attestation Service (IAS).
By verifying a remote attestation report against the IAS, developers can ensure
that the attested enclave runs on a genuine Intel CPU.
Sealing. SGX also allows an enclave to obtain a sealing key, which is cryp-
tographically bound to the local CPU. The enclave can use the sealing key to
encrypt arbitrary data for offline storage and, thus, preserve its state among
multiple system reboots. The Intel SDK comes with a protected filesystem (PFS)
that automates the process of writing and reading encrypted SGX files, with
integrity checks [Sel16].

SGX permits making the sealing key dependent on MRENCLAVE [Ana+13].
Hence, the same sealing key can only be queried from exactly the same enclave,
running on the same, genuine Intel CPU. Furthermore, the sealing key can be
derived from the enclave developer’s public key. Thus, an enclave vendor can use
the same sealing key among different enclaves.
Debugging. SGX distinguishes between debug and production enclaves. Debug
enclaves can be accessed from the operating system via the EDBGRD and EDBGWR

instructions, while production enclaves cannot. Moreover, debug enclaves can
opt-in to ordinary x86 breakpoint handling and performance monitoring [Int16a].
This supports the enclave development process. In a production setting, however,
enclaves have to run in production mode to protect against an untrusted OS.
During the initialization of an enclave, one needs to specify a debug mode flag.
The choice of this flag yields different MRENCLAVE values, making a debug enclave
distinguishable from a production enclave.
Enclave Licensing. SGX has a controversially discussed peculiarity, called
launch enclave [Bee15]. The launch enclave is a gatekeeper, controlling all other
enclave launches. During enclave initialization with EINIT, the CPU verifies
a so-called EINITTOKEN, which contains several enclave attributes to enforce,
including the debug mode flag. The EINITTOKEN has to be signed by a special
launch key only accessible to the launch enclave. The launch enclave is issued
by Intel, giving it full control over which enclaves can be executed. The SGX
SDK is shipped with a launch enclave issuing EINITTOKENs for debug enclaves
only [Int16b]. In order to run an enclave in production mode, one needs to obtain
a proper license from Intel [JZD16].
Flexible Launch Control. Reacting to customer feedback, Intel introduced
flexible launch control [Joh18; Sca+18]. Flexible launch control not only allows
software vendors to use their own remote attestation infrastructure but also to
take control over the launch enclave mechanism.

2.3.3 Attacks on Enclaves

Due to their strong security guarantees, enclave architectures are subject to
new attack vectors. Side-channel attacks are of particular interest, but we defer
a detailed discussion to Part II. In the following, we discuss various enclave
vulnerabilities, replay attacks, and enclave malware.
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Enclave vulnerabilities. Similar to application code, enclaves might be
subject to memory safety vulnerabilities [Lee+17a; Bio+18], addressed by related
defense mechanisms [Kuv+17]. However, synchronization issues become more
pressing, since enclaves can be forcefully interrupted via induced AEX [Wei+16;
Swa17]. They were generalized as COIN attacks [Kha+20], which relates to
concurrency, order, input, and nesting issues. Also, any communication from an
enclave with the untrusted operating system is problematic and might allow Iago
attacks [PG08; CS13]. In an Iago attack, the operating system forges syscall
return arguments to compromise the enclave. Proper checking of return values is
especially relevant to library operating systems that allow hosting unmodified
binaries inside an enclave container [BPH14; Arn+16; TPV17; Tia+17; Shi+17b].
Replay Attacks. In a replay attack, a malicious operating system downgrades
the sealed SGX data blob to a previous, valid version. In order to counteract
replay attacks on Intel SGX, sealing can be combined with persistent storage
of the Intel Management Engine, a dedicated security co-processor present on
recent Intel chipsets [Rua14b; Gue16]. Alternatively, one can achieve distributed
rollback protection among multiple enclaves [Bra+17a; Mat+17].
Enclave Malware. SGX assumes that all non-enclave code (i.e., operating
system and host application) is untrusted. SGX provides no means to protect
applications from misbehaving enclaves, giving rise to enclave malware [Rut13;
DF14; CD16]. By design, an enclave can access the entire virtual address space
of the host application. By using this mechanism, an enclave can share data
with the host application (e.g., function parameters for ECALLs and OCALLs).
However, it also creates an asymmetry in access permissions that an enclave can
use to corrupt the host application [SWG19]. We address this issue in Chapter 5.
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3
SGXIO: Enclaves using I/O

Prayer is simply a two-way conversation between you and God.

Billy Graham

Secure computation is a core feature of enclaves; secure communication is not.
Although the interaction between enclaves can be secured utilizing attestation and
cryptographic channels, conversations with the outside world need other security
means. Enclaves need to be able to discern input of an actual outside person
from adversarial content, e.g., induced by the operating system. Also, enclaves
might want to deliver sensitive output only to legitimate persons. Securing this
enclave I/O is an ongoing field of research.

To achieve secure I/O, one requires trusted paths between enclaves and
I/O devices. Stock SGX only works with proprietary trusted paths like Intel
Protected Audio Video Path (PAVP). However, proprietary trusted paths are
hard to analyze regarding security. Moreover, they are not generic and address
specific devices and scenarios only. Unfortunately, SGX lacks support for generic
trusted paths that work with any I/O device.

In this chapter, we present SGXIO, which at the time of publication to our
knowledge has been the first generic trusted path architecture for Intel SGX.
SGXIO runs user applications securely on top of an untrusted operating system
while providing trusted paths to generic I/O devices. User applications benefit
from SGX protection, while trusted paths are established via a small and trusted
hypervisor. To that end, we identify and solve several challenges in linking the
security domains of SGX and the trusted hypervisor, based on a Trusted Platform
Module (TPM).

23
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SGXIO allows a remote party to attest not only enclave code but also the
whole trusted path setup. Also, SGXIO enables human end users to verify trusted
paths without requiring additional hardware. SGXIO improves upon existing
generic trusted paths for pre-SGX systems with a more intuitive programming
model. We furthermore give a novel zero-overhead, non-interactive key transport
scheme for establishing a 128-bit symmetric key between two local SGX enclaves.
Our scheme is more efficient than Diffie-Hellman local attestation implemented
by the Intel SGX SDK. Finally, SGXIO can tweak insecure debug enclaves to
behave like secure production enclaves.

Traditional SGX targets high-performance cloud computing, where the cloud
provider is entirely distrusted, as well as Digital Rights Management (DRM).
SGXIO surpasses those use cases and makes SGX technology usable for protecting
user-centric, local applications against compromised systems. It works on modern
commodity notebooks and is compatible with unmodified operating systems.
Hence, SGXIO is particularly promising for the broad x86 community to which
SGX is readily available.
Contributions. We summarize our contributions as follows:

� We present the concept of SGXIO, the first generic trusted path architecture
for Intel SGX.

� We highlight novel challenges in linking the security domains of SGX and
the trusted hypervisor, and give solutions based on the Trusted Platform
Module (TPM).

� We give a novel fast non-interactive key transport scheme that is more
efficient than local attestation implemented by the Intel SGX SDK.

� We show how SGXIO can tweak debug enclaves to behave like production
enclaves.

This chapter is based on the publication [WW17a] and the extended author
manuscript [WW17b], both of which I am the main author. These papers, in
turn, expand ideas from my master thesis [Wei16]. The rest of this chapter is
structured as follows: Section 3.1 gives related work on trusted paths. Section 3.2
discusses the threat model and challenges. Section 3.3 presents our SGXIO
architecture, while Section 3.4 gives a thorough security analysis. Section 3.5
gives our novel key transport scheme for enclaves. Section 3.6 shows how SGXIO
can apply the debug enclave tweak. It is followed by further considerations in
Section 3.7 and a summary in Section 3.8.

3.1 Trusted Paths

A trusted path is a secure communication channel between a system’s trusted
computing base (TCB) and a user [Dep85]. The user shall be able to initiate
trusted path communication and to distinguish a trusted path from any other
untrusted communication channel. In the following, we discuss trusted path solu-
tions that work on standard I/O devices and systems that require modifications
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to the I/O device itself (e.g., via a USB bridge). We continue with recent research
results that were published after SGXIO and conclude with trusted paths on
Android and the Arm TrustZone.
Standard I/O Devices. Garfinkel et al. [Gar+03] proposed Terra, which
isolates different distrusting applications in separate virtual machines (VM),
and establishes trusted paths between users and a VM. However, a VM itself
might operate a large, untrusted operating system. To remove trust from device
drivers, Garfinkel et al. advocate for more hardware support to achieve secure
I/O. Nitpicker [FH05] addresses the often large TCB necessary for rendering
secure output. Ta-Min et al. [TLL06] proposes Proxos, which isolates the normal
operating system from a private one via virtualization. They support a trusted
path towards a protected X-server. Borders et al. [BP07] propose a trusted input
proxy in the virtual machine monitor for relaying user input to a server.

Filyanov et al. [Fil+11] discuss a pure unidirectional trusted path for secure
user transactions using Flicker. Zhou et al. [Zho+12] build the first comprehen-
sive, generic trusted path for x86 systems. Their isolation is based on TrustVi-
sor [McC+10] and protects a trusted path all the way from the application level
down to the device level. They consider PCI device misconfiguration, DMA
attacks as well as interrupt spoofing attacks. However, pure hypervisor-based
designs come at a price. They strictly separate the untrusted stack from the
trusted one. Hence, the hypervisor is in charge of managing all secure applications
and all associated resources itself. This includes secure process and memory man-
agement with scheduling, verified launch, and attestation. Also, communication
between both security domains might be non-trivial due to synchronization issues
or potentially mismatching Application Binary Interfaces (ABI). In contrast,
SGXIO uses the comparably simple programming model of SGX enclaves, in
which the untrusted operating system remains in charge of managing secure
enclaves. Moreover, SGX provides verified launch and attestation out of the box.

In [Zho14] and [ZYG14], Zhou et al. discuss a trusted path to a USB device.
Their so-called wimpy kernel runs alongside the virtualized operating system.
Yu et al. [YGZ15] apply the trusted path concept to GPU separation.
Modified I/O Devices. Another way of establishing a trusted path is via
dedicated I/O devices that support cryptographic channels to tunnel through
untrusted software. However, this idea does not generalize to other I/O devices.

Bumpy [MPR09], which is based on [MPR06], proposes encrypted commu-
nication between input devices and a Flicker-protected system that, in turn,
communicates with a web server. They achieve a trusted input path with a USB
interposition device. Intel’s Protected Audio Video Path (PAVP), as well as its
successor, Intel Insider [Rua14b; Knu11], provides a proprietary trusted output
path. Both rely on Intel’s Management Engine (ME) to establish a cryptographic
channel to the GPU. Ruan [Rua14b] describes a protected transaction display via
the Intel ME, which makes use of PAVP to securely obtain a one-time PIN from
the user. Unfortunately, ME-related code is proprietary, which limits potential
open-source use cases and hinders transparent security assessment. Hoekstra
et al. outline the integration of PAVP in SGX applications to achieve secure video
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conferencing and one-time password generation [Hoe+13]. They defer trusted
input paths on SGX as future work.
Recent Work. Research continued after publication of SGXIO. Zhou [Jan17]
discusses SGX remote attestation towards a USB dongle called SGX-USB.
Kirchengast [Kir19] discusses relay attacks against SGX-USB in light of a compro-
mised platform, and show how to combine SGX enclaves with a MACSec-protected
network. Bastion-SGX [Pet+18] establishes a trusted path between an SGX
enclave and a trusted Bluetooth device.

ProximiTEE [Dha+20b] provides a trusted path from an enclave to a USB
dongle. In a trust-on-first-use scheme, the user boots a small ProximiTEE kernel
which initializes an enclave by creating and sealing encryption keys and deploying
them to the USB dongle. The dongle has an integrated LCD and buttons to allow
users to choose the enclave to open a trusted path to. Furthermore, ProximiTEE
comes with a distance bounding scheme to detect whether the dongle is indeed
communicating with the correct enclave and that no relay attacks are ongoing.

Fidelius [Esk+19] establishes a trusted path between a user and a web enclave
running in the browser. The web enclave protects HTML input form fields which
are tagged as secure. To establish trusted paths from the enclave to the keyboard
and the screen, a USB and an HDMI proxy device are used. Screen overlays
protect sensitive input forms and also present the current trusted path to the
user (i.e., which domain and which input fields are active). Separate LEDs on
the proxy devices indicate an established trusted path channel. Trusted path
channels have a constant, encrypted data stream to avoid side-channel leakage.

ProtectIOn [Dha+20a] protects HTML forms via an IOHub device rather
than a web enclave. It is based on IntegriKey [Dha+17] and also uses the same
hardware as ProximiTEE [Dha+20b], although without SGX support. The
IOHub device intercepts all keyboard, mouse, and HDMI signals. It receives
cryptographically protected input forms from the web server via a QR code,
which it renders as screen overlay. If the user enters the overlay region, IOHub
freezes and greys out unprotected screen content and hides all further input
signals from the host. Instead, IOHub encrypts user input before sending it back
to the host. IOHub needs to emulate the mouse cursor, involving interpolation
and synchronization of its position with the host.

Aurora [Lia+20] provides trusted paths between SGX enclaves and an SMVisor
running in System Management Mode (SMM). The SMVisor intercepts device
interrupts and invokes the corresponding UEFI device drivers. It furthermore
communicates with an enclave to establish a trusted path. Aurora is evaluated
on keyboards, serial devices, and USB storage. Using SMM is appealing from a
security perspective, but might introduce performance penalty due to full system
preemption. To attest the SMVisor to the enclave, Aurora proposes to use TPM
attestation features in combination with the SGX launch enclave. However, the
SGX launch enclave cannot be used for that purpose, as it has no notion of the
TPM. With SGXIO, we present a way to achieve attestation of a hypervisor,
which equally applies to SMVisor running in SMM.
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Android. Trusted paths on mobile phones are often directly integrated into
existing commodity operating systems, such as Android. ScreenPass deploys a
trusted software keyboard [Liu+13], and GuarDroid [TE13] hooks password input
fields to protect user passwords. Crossover [LL13] tackles secure user interfaces
with multiple personalities. TIVOs [Fer+14] are trusted visual I/O paths for An-
droid applications that show a secret image to the user to ensure a correct trusted
path setup. All those approaches consider the Android subsystem as trusted,
thus significantly enlarging the TCB. In contrast, Brandon et al. implement a
trusted display for Android using an FPGA for screen overlays [BT17].
Arm TrustZone. Mobile phones based on Arm processors likely feature Trust-
Zone support. While TrustZone allows running code protected from the Android
operating system, it can provide trusted paths as well. As such, TrustZone
can isolate hardware peripherals and physical memory via a system MMU (cf.
an IOMMU in x86), which can also prevent DMA attacks. Moreover, device
interrupts can be routed directly into the secure world.

TrustUI [Li+14] provides secure rendering and touchscreen input on Android
using TrustZone. Its secure software keyboard randomizes the keyboard layout
to decorrelate touch positions from the entered key. A security LED indicates
the validity of the trusted path. Schrodintext [San17] removes glyph rendering
from the TCB by performing it in the Android operating system, which is
considered untrusted. A monitor running in the TrustZone then stitches together
the final view. VButton [Li+18] renders critical UI components necessary for user
confirmation in the TrustZone and interposes on touchscreen actions. It sends
user actions to a web server in an authenticated way. Trusted user interfaces are
already being integrated into off-the-shelf mobile phones by Trustonic [Hay19]
and Android [Dan18]. They make use of TrustZone to render security-relevant
user interfaces, e.g., for validating transactions.

3.2 Threat Model and Challenges

SGXIO utilizes SGX as one building block to provide isolated execution. However,
the threat models of pure SGX and SGXIO differ. This section elaborates on
the threat model of SGXIO and shows that, in contrast to pure SGX, physical
attacks do not apply to trusted paths. Furthermore, we discuss the challenges
arising from the combination of SGX with a trusted hypervisor.

3.2.1 Distinction from SGX

SGX is an isolated execution technology with a small trusted computing
base (TCB). The TCB only contains the processor itself, which acts as a trust
anchor, and the code running within enclaves. Everything else is considered
potentially malicious, including not only all other software components (e.g.,
operating system, hypervisor) but also the hardware environment. Therefore,
SGX considers both logical attacks and physical attacks.
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Figure 3.1: In an online banking scenario, malware shall not be able to hijack a
banking session. Communication with the bank is encrypted via TLS,
while the banking app itself is protected with SGX. Both the user and
the bank want to be able to verify the security of the trusted path.

This threat model perfectly fits the requirements for secure cloud computing
in which a customer wants to protect enclave code and data against an untrusted
cloud provider, controlling the software stack and the hardware. In this use case,
all communication with an enclave can be performed using securely encrypted
and authenticated channels. Also, content providers can use SGX to enforce a
DRM scheme on an untrusted consumer PC.

In a local setting, however, a user wants to benefit from SGX by protecting
user-centric applications against a potentially compromised operating system.
Especially, communication via the user’s I/O devices needs protection from the
operating system via a trusted path. This setting contradicts the threat model of
SGX, which considers the physical environment, and hence, also the local user, a
threat. Currently, in order to achieve a trusted path with SGX, one has to rely
on encrypted interfaces like PAVP. However, the prevalence of unencrypted I/O
devices in today’s computers and the lack of support to securely communicate
with these devices demands other, more generic mechanisms.
SGXIO fixes these shortcomings by extending SGX with a generic trusted
path. Many user-centric applications can profit from this additional feature.
This covers local applications like confidential document viewers, anti-spoofing
password prompts, secure password generators, and password safes but also web
scenarios, such as secure conferencing and chat applications and online banking.

To take the latter as an example, SGXIO cannot only secure online banking
up to the user’s browser via TLS but up to the I/O devices via trusted paths, as
depicted in Figure 3.1. Hence, SGXIO can protect sensitive information, such
as login credentials, the account balance, or the transaction amount, even if
other software running on the user’s computer, including the operating system, is
infected by malware. Moreover, SGXIO’s path attestation allows both the user
and the online bank to verify that trusted paths are established and functional.

3.2.2 Threat Model

In general, SGXIO establishes trusted paths between a user and a user app. More
precisely, SGXIO connects a user’s I/O devices with an SGX enclave. Attackers
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try to subvert such trusted paths by breaking their confidentiality or authenticity
guarantees via logical attacks, as explained below.
Logical attacks are the primary concern of SGXIO. Attackers are assumed
to have full control over the operating system and know the whole software
configuration, including all enclave code. This is a realistic scenario, addressing
both local and remote software attacks, which might even yield kernel privileges to
attackers. Attackers can directly attack enclave interfaces visible to the operating
system, intercept enclave communication, run enclaves in a fake environment
(e.g., within the operating system), etc. Also, attackers can dynamically load and
execute custom user apps, enclaves, and drivers and open other trusted paths.

Moreover, indirect attacks on a trusted path can be performed by misconfigur-
ing devices under operating system control, as outlined by Zhou et al. [Zho+12].
The idea of such attacks is to manipulate noninvolved devices to interfere with a
trusted path. For example, a PCI device could be misconfigured such that its
address range overlaps those of the user device. Also, malicious Direct Memory
Access (DMA) requests could be issued, and interrupts could be spoofed.

All code in the TCB (i.e., secure user apps packed into enclaves, secure I/O
drivers, and the hypervisor) is assumed to be correct and not vulnerable to logical
attacks. Using a formally verified hypervisor such as seL4 [Kle+09] supports this
assumption. Also, all hardware (CPU, chipset, peripherals) is expected to work
correctly. As with SGX, Denial-of-Service (DoS), as well as side-channel attacks,
are out of scope. Note that SGXIO requires an Intel processor with SGX support
as well as support for TPM-based trusted boot.
Physical attacks are not considered in SGXIO. A physical attacker has direct
access to I/O devices and can impersonate the user without subverting trusted
paths. Thus, trusted paths can only protect against logical attacks but cannot
provide physical security. To put it differently: SGXIO trusts the user interacting
with the system.

3.2.3 Challenges

SGXIO combines SGX with a trusted hypervisor to provide a generic trusted
path. However, the hypervisor and SGX form two disjoint security domains with
two different trust anchors, which are not designed to collaborate. Subsequently,
connecting both domains is a non-trivial task.

This essentially breaks down to two challenges we solve with SGXIO: First,
the security domains of the hypervisor and SGX enclaves have to be linked.
More concretely, we need a way for SGX enclaves to check the presence and the
authenticity of the hypervisor. We name this problem hypervisor attestation.
Once the hypervisor is attested, it extends trust to any trusted path it establishes.

Second, the SGXIO architecture relies on multiple SGX enclaves that commu-
nicate using keys based on local attestation, as discussed in the following sections.
These enclaves are executed in different security contexts (trusted hypervisor
vs. untrusted operating system). However, in SGX, enclaves are unaware of
their context, making them vulnerable to enclave virtualization attacks. SGXIO
prevents such attacks via a careful interface design between both contexts.



3.3. SGXIO Architecture 30

Figure 3.2: The trusted HV stack consists of a hypervisor (HV), a Trusted Boot (TB)
enclave, and one or more secure I/O drivers. The virtual machine (VM)
operates an untrusted operating system (OS) which hosts secure user apps.
The driver obtains data from the user device (thin line) and encrypts it
(bold line) for a user app, providing a trusted path (solid line). The TB
enclave allows drivers to attest the hypervisor.

3.3 SGXIO Architecture

This section presents SGXIO and elaborates on its isolation guarantees. We
discuss the design of secure user apps, I/O drivers, and the hypervisor.

3.3.1 Architecture

SGXIO is composed of two parts: a trusted HV stack and a Virtual Machine (VM),
as seen in Figure 3.2. The trusted HV stack contains a small security hypervi-
sor (HV), one or more secure I/O drivers, which we simply call drivers, as well as
a Trusted Boot (TB) enclave. The VM hosts an untrusted commodity operating
system (e.g., Linux), which runs secure user applications, also abbreviated with
user apps. User apps are protected by means of SGX enclaves.

User apps want to communicate securely with the end user. They open an
encrypted and authenticated communication channel to a secure I/O driver to
tunnel through the untrusted operating system. Authentication is done via SGX
local attestation and indicated with a solid line in Figure 3.2. The driver, in
turn, requires secure communication with a generic user I/O device, which we
term user device. In order to achieve this, the hypervisor exclusively binds user
devices to the corresponding drivers. Note that any other device is directly
assigned to the VM. I/O on those unprotected devices directly passes through the
hypervisor without a performance penalty. The trusted path comprises both the
encrypted user-app-to-driver communication and the exclusive driver-to-device
binding. Drivers use the TB enclave to get assured of correct trusted path setup
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by attesting the hypervisor via trusted boot. Hypervisor attestation is indicated
by a dotted line.

3.3.2 Isolation Guarantees

SGXIO establishes a trusted path from a user app to the user device, which
requires isolation on several layers. First, all trusted HV stack memory needs to be
isolated from the untrusted operating system and Direct Memory Access (DMA).
Second, the trusted path itself requires isolation from the operating system.
Third, the user device needs isolation from all other devices which are under the
control of the operating system. This section outlines how SGXIO meets these
isolation requirements.
Trusted memory isolation is a prerequisite for securely executing trusted
code in an untrusted environment. It is relevant for user apps as well as the
trusted HV stack. We achieve memory isolation for the user app by executing it
within an enclave. SGX isolates all enclave memory from the untrusted operating
system. In order to achieve memory isolation for the trusted HV stack, the
hypervisor confines the untrusted operating system in a VM. Moreover, the
hypervisor implements a strict memory partitioning by configuring the Memory
Management Unit (MMU) appropriately. The MMU configuration prevents the
operating system from escaping the VM and tampering with the trusted HV
stack.

Direct Memory Access (DMA) is a more subtle threat to memory isola-
tion [Zho+12]. A DMA-capable device can directly access memory, thus bypassing
any MMU protection and potentially violating the integrity and confidentiality of
trusted memory. SGX prevents DMA from accessing enclave memory, hence the
user app is safe against DMA attacks [Int16a]. Likewise, the trusted HV stack
needs protection against such attacks. Modern chipsets typically incorporate an
I/O Memory Management Unit (IOMMU), also termed VT-d on Intel systems.
The IOMMU restricts device DMA to specific portions of RAM only. By properly
configuring the IOMMU, the hypervisor can protect the whole trusted HV stack
against device DMA attacks.
Trusted Path Isolation. The trusted path needs protection on two layers,
namely the communication between user app and driver as well as the interaction
between driver and user device. The user app communicates with the driver
via the untrusted operating system stack; hence a cryptographic channel is
necessary. The interaction between the driver and the user device is protected
by the hypervisor, as follows: The hypervisor establishes an exclusive binding
between a driver and the corresponding user device. Moreover, the hypervisor
mutually isolates all drivers. Thus, an attacker, loading arbitrary driver code at
will, cannot interfere with trusted paths established by other drivers.
User Device Isolation. As outlined before, a malicious operating system could
misconfigure devices to interfere with the trusted path. In that way, the operating
system could force PCI devices to overlap their MMIO region or I/O port range
with those of the user device, or issue forged interrupts on behalf of the user
device. To protect against these attacks, Zhou et al. implement several policies in
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the hypervisor to detect and prevent malicious device configurations. Thus, their
system effectively isolates a user device from other operating system-controlled
devices. This approach is also applicable to SGXIO.

3.3.3 User App Design

Secure user applications play a central role in concrete use case scenarios, such
as secure online banking. This section outlines principles for designing user apps
and shows how user apps securely communicate with drivers. In the end, we
elaborate on the enclave programming model.
Design Principles. Key to any secure user-centric application is a trusted path
that protects user I/O against advanced malware like keyloggers and likewise.
Without a trusted path, an attacker could impersonate the user and act on its
behalf, even if the user app itself is not compromised. In order to provide its
service, a user app might communicate with other user apps or exchange sensitive
data with a remote server using TLS, for example. One should perform any
operation on sensitive data within an enclave and keep unproblematic glue code
and untrusted libraries, such as file management and network access, outside. All
interaction with untrusted code needs careful validation inside the enclave [PG08;
CS13; BPH14]. In order to keep state between multiple invocations, enclaves can
encrypt sensitive data for offline storage using SGX sealing, for example.
Cryptographic Channel. The user app opens a trusted path by setting
up a cryptographic channel to a secure I/O driver. The channel protects the
confidentiality and authenticity of sensitive user I/O against the untrusted
operating system. In order to open such a channel, the user app needs to
exchange an encryption key with the driver. SGX local attestation can assist in
the key exchange by providing means to authenticate information between user-
app enclaves and driver enclaves. A straight-forward implementation provided by
the SGX SDK uses the Diffie-Hellman key exchange [Ana+13; Int16b]. However,
local attestation inherently provides a much faster way of exchanging key material.

We give a novel, lightweight key transport scheme, which comes with just a
single unidirectional invocation of local attestation. We reuse the already pre-
shared SGX report key to derive random 128-bit encryption keys. The scheme
works as follows: The user enclave generates a local attestation report over a
random salt, targeted at the driver enclave. However, instead of delivering the
actual report to the driver enclave, the user enclave keeps it private and uses the
report’s MAC as a symmetric key. It then sends the salt and its identity to the
driver enclave, which can recompute the MAC to obtain the same key. Details of
this scheme are given in Section 3.5.

Once a key is established, one can use any authenticated encryption scheme
to secure the data stream between the user app and the driver. The use of an
authenticated encryption scheme ensures the confidentiality and integrity of the
data stream. By doing key exchange via SGX local attestation, the user app
and the driver can also mutually authenticate each other. This property is also
referred to as origin integrity.
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Enclave Programming Model. SGXIO benefits from SGX’s simple enclave
programming model [Int17b; Ana+15]. User app enclaves are executed directly
on a host application running within the untrusted operating system. Hence,
secure user applications are treated similarly to normal application processes. The
operating system has control over memory management, process management,
and scheduling of enclaves, although SGX carefully validates any action that
might affect enclave security. Also, integration of multiple enclaves into a
bigger user application stack is easy since enclaves share parts of the register
set and the virtual address space with their host for communication purposes.
Moreover, SGX supports multithreading as well as enclave debugging. Also, SGX
natively provides verified launch and attestation of enclaves, which is tedious to
implement in software. To support enclave development, Intel provides a software
development kit [Int16b] as well as a developer guide [Int17b].

3.3.4 Driver Design

Secure I/O drivers are responsible for connecting user apps and user devices.
Drivers are hosted and protected by the hypervisor. Although hypervisor protec-
tion is sufficient to isolate drivers from the untrusted operating system, SGXIO
also executes actual driver logic inside an enclave. This helps in setting up
an encrypted communication channel with user apps, as previously described.
Also, driver enclaves are subject to attestation, allowing identification via their
MRENCLAVE values.

When designing a driver, one has to make specific design choices. We opt for
two strategies, namely domain multiplexing, and portability, targeting commodity
operating systems. Domain multiplexing allows the same driver and, thus, the
same user device to be shared across security domains. Portability refers to
drivers being compatible with different operating systems. Note that SGXIO
supports other choices as well.
Domain Multiplexing. A driver handles the data stream from and to a
user device and forwards it to the operating system or a user app, respectively.
Since many user devices, such as human interface devices or graphic cards, are
potentially shared between the untrusted operating system and user apps, the
driver has to multiplex the data stream between those security domains. In our
example (see Figure 3.2), the driver offers its service to the operating system via
two separate virtual devices. During normal operation, the driver simply routes
the unmodified data stream to the first virtual device, which matches the device
class of the user device. Thus, the operating system has transparent access to
the user device. If the user app requests a trusted path, the driver redirects all
traffic to the second virtual device, however, in an encrypted fashion. The user
app, knowing the proper decryption key, can access this second virtual device to
tunnel through the untrusted operating system. This second virtual device can
be any standard character device, for example, which just forwards the encrypted
data stream.

In our example, the driver implements strict temporal multiplexing between
the operating system and the user app. However, one could enforce arbitrary
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security policies. For example, the driver could implement spatial partitioning of
a graphic card’s frame buffer to allow secure screen overlays. Or it could intercept
and mask specific keystrokes to react on secure attention sequences [MPR09] and
encrypt password entry, for example.
Portability. In our example, we encourage virtual devices as a communication
interface between drivers and the operating system, cf. Figure 3.2. They have the
advantage of being compatible with commodity operating systems. No changes
to the operating system are required since the driver can emulate user devices
transparently. Also, the same driver implementation can be reused across different
operating systems without porting effort. One can put saved manpower in more
robust driver implementations. Note that specific high-throughput user devices
might still need cooperation by the operating system.

3.3.5 Hypervisor Design

The hypervisor is responsible for running the untrusted operating system in a
VM, as well as loading drivers and binding user devices to them. It can load
drivers statically at system boot, which makes sense for permanently installed
user devices, such as notebook keyboards and graphic cards. For plug-and-play
devices like USB, the hypervisor might dynamically load the corresponding
drivers. Note that typically the hypervisor delegates such resource management
tasks to a separate Virtual Machine Monitor (VMM).

The hypervisor enforces a bunch of isolation guarantees, as previously outlined:
First, it isolates all trusted HV stack memory. Second, it binds a user device
exclusively to the corresponding driver and mutually isolates drivers. Third, it
isolates user devices from malicious interference with other devices.
Formal Guarantees. The choice of an appropriate hypervisor fulfilling these
requirements is crucial for the overall system’s security. Since the hypervisor is
an essential part of the TCB, it is desirable to have some formal guarantees.

The seL4 microkernel is formally verified [Kle+09; Mur+13]. The proofs
cover not only functional correctness of the generic C implementation but also
help to find a correct kernel configuration under which isolation guarantees hold.
The developers of seL4 claim to have the first general-purpose microkernel with
such strong guarantees. Although they conducted initial proofs for the Arm
architecture, most of the proven generic code also applies to x86. We recommend
using seL4 as a hypervisor, as it allows a straight forward design of SGXIO.

Other kernels and hypervisors comprising at least partial formal proofs are
Microsoft Hyper-V [LS09; Coh+09], Verve [YH10], ExpressOS [Mai+13], µC/OS-
II [Xu+16], CertiKOS [Gu+16], Hyperkernel [Nel+17], the XMHF hypervi-
sor [Vas+13], and the üXMHF hypervisor [Vas+16].
seL4. seL4 implements a strict resource partitioning, which directly supports
the isolation of trusted memory as well as user device binding. seL4 manages
resources via capabilities [seL20]. By granting specific capabilities to the VM
or a driver, they get access to the underlying resources. With such a capability
system in place, isolation breaks down to a correct distribution of memory and
device capabilities among the VM and the drivers. For example, the VM, as well
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as each driver, gets assigned a disjoint set of memory capabilities, thus enforcing
memory isolation. Likewise, each driver gets capabilities to its own user device
only. Capabilities to other devices are given to the VM. This ensures trusted
path isolation.

To enforce its capability system, seL4 makes heavy use of Intel’s VT-x
hardware virtualization. Each illegitimate memory or device access, be it via
ordinary memory addressing, Memory-Mapped I/O (MMIO), or I/O ports,
is intercepted by means of VT-x. In the same way, VT-x helps in blocking
device misconfiguration attacks [Zho+12] and achieving user device isolation.
Furthermore, seL4 uses Intel VT-d, also referred to as IOMMU, to protect against
DMA attacks from misconfigured devices. Thus, seL4 is perfectly suitable to
implement all of the above isolation guarantees.

3.4 Domain Binding

The SGXIO concept fundamentally relies on binding the SGX security domain
with the trusted hypervisor domain. This section elaborates on the challenges that
arise and how to solve them. Specifically, this covers trusted boot and hypervisor
attestation. We discuss how to protect hypervisor attestation against remote
TPM attacks as well as enclave virtualization attacks. Having a domain binding
in place allows remote attestation of trusted paths as well as user verification.

3.4.1 Challenges

SGXIO enables a remote party as well as a local user to verify the security of
trusted paths. In the first place, this requires a domain binding between SGX
and the trusted hypervisor. In the second place, an appropriate user verification
mechanism needs to be in place, which is both secure and usable.
Domain Binding. In order to bind the SGX and the hypervisor domain,
the hypervisor must level up to certain security guarantees of SGX regarding
secure code execution. In SGX, all enclave memory is isolated from the rest.
Moreover, enclave loading is guarded by a verified launch mechanism, which
can be attested to other parties. SGXIO rebuilds similar mechanisms for the
hypervisor. Isolation of trusted hypervisor memory has already been discussed in
Section 3.3.2. Verified launch is implemented via trusted boot of the hypervisor,
with the help of the TPM. The TPM, in turn, allows hypervisor attestation.

With trusted boot and hypervisor attestation in place, SGXIO can bind the
SGX and the hypervisor domain. The binding needs to be bidirectional, allowing
both the hypervisor and SGX enclaves to put trust in the respective other domain.
One direction is simple: The hypervisor can extend trust to SGX by running
enclaves in a safe, hypervisor-protected environment. These enclaves can, in
turn, use local attestation to extend trust to any other enclaves in the system,
e.g., driver enclaves and, subsequently, user application enclaves. However, the
opposite direction is challenging: On the one hand, user enclaves need confidence
that the hypervisor is not compromised and binds user devices correctly to
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driver enclaves. Effectively, this requires driver enclaves to invoke hypervisor
attestation. SGXIO achieves this with the assistance of the TB enclave. On
the other hand, SGX is not designed to cooperate with a trusted hypervisor.
Recall that SGX considers all non-enclave code untrusted. In fact, SGX explicitly
prohibits the use of any instruction that an enclave might misuse to communicate
with the hypervisor [Int17b]. Even if hypervisor attestation succeeds, a driver
enclave cannot easily learn whether it is legitimately executed by the hypervisor
or virtualized by an attacker who intercepts the enclave’s input and output.
This makes both driver enclaves and the TB enclave vulnerable to virtualization
attacks. SGXIO defends against such attacks by isolating hypervisor attestation
from the untrusted operating system.
User Verification. An end user wants to ensure to indeed communicate with
the correct user app. This is non-trivial because the user cannot directly evaluate
a cryptographic attestation report. Instead, the user requires some form of
notification whether a trusted path is present. This notification needs to be
unforgeable to prevent the operating system from faking it. Moreover, it needs
to help the user distinguish different user apps, not least because an attacker
might also run arbitrary fake user apps.

3.4.2 Trusted Boot & Hypervisor Attestation

Trusted boot helps to verify the integrity of the hypervisor. Without it,
malware could silently hook into the boot process and disable any protection
offered by the hypervisor. As explained in Section 2.2.2, trusted boot makes use
of a TPM to measure the whole boot process, starting from a trusted piece of
firmware code up to the hypervisor image. Each boot stage measures the next
one in a cryptographic log inside the TPM using the extend operation. The
TPM cumulates all measurements in a Platform Configuration Register (PCR).
The final PCR value reflects the whole boot process. If any boot stage deviates
from the normal boot process, the PCR will contain a wrong value.
Hypervisor attestation allows enclaves to verify the trusted boot process
(i.e., the PCR value) in order to get assured of the hypervisor’s integrity. Since
the hypervisor is responsible for loading drivers and doing a trusted path setup,
its attestation also vouches for the security of all trusted paths.

To ease hypervisor attestation, SGXIO uses a Trusted Boot (TB) enclave,
which attests the hypervisor once. Afterward, any driver enclave running on
the system can query the TB enclave to get approval if hypervisor attestation
succeeded, see Figure 3.3. The driver enclaves in turn can communicate the
attestation result to user apps, which can finally implement a mechanism for
remote parties or the end user to verify a trusted path.

In order to attest the hypervisor, the TB enclave needs to verify the PCR
value obtained during trusted boot. For this, the TB enclave requests a so-called
TPM quote [TCG14], which contains a cryptographic signature over the PCR
value, alongside a fresh nonce. The quote ensures not only the integrity of the
PCR value but also prevents replay attacks.
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Figure 3.3: Hypervisor attestation (left): During trusted boot, the Firmware (FW)
measures the Hypervisor (HV) via a TPM. The TB enclave attests the
hypervisor via a TPM quote and, in case of success, approves other drivers
(DX) and (DY). II) Remote TPM attack (right): An attacker injects a
remotely-generated TPM quote to hide compromise of the hypervisor.

3.4.3 Attacks

The interaction between the TB enclave and the TPM is crucial for the security
of the hypervisor attestation scheme. One has to prevent remote TPM attacks
as well as enclave virtualization attacks, which are outlined in the following.
Remote TPM Attacks. If the TB enclave does not identify the TPM correctly,
hypervisor attestation becomes vulnerable to remote TPM attacks, also called
cuckoo attacks [Par08]. This is depicted in Figure 3.3 on the right side. If
the attacker compromises the hypervisor image, the PCR will yield a wrong
value during trusted boot, which is detected by the TB enclave. However, the
attacker can make hypervisor attestation work again by diverting TB enclave
communication to an attacker-controlled TPM. Since the attacker can feed the
remote TPM at will to generate a valid quote, the TB enclave successfully
approves the compromised hypervisor.
Defense. In order to stop remote TPM attacks, the TB enclave needs to be
bound to a particular computer. In other words, the TB enclave needs a priori
knowledge of the TPM, e.g., in the form of the TPM’s Attestation Identity
Key (AIK) used for signing the quote. Having the AIK enables the TB enclave
to verify the origin of the TPM quote. To make the AIK known to the TB
enclave, one has to provision it to the TB enclave, e.g., during initial system
integration. The TB enclave persistently stores the provisioned AIK through
SGX sealing. For hypervisor attestation, the TB enclave unseals the AIK and
uses it to verify the quote. Since sealing uses a CPU-specific encryption key, an
attacker cannot trick the TB enclave into unsealing an AIK not sealed by the
same CPU. Thus, the TB enclave is effectively bound to the TPM.

It is the responsibility of system integrators to provision AIKs correctly. One
has to introduce proper measures to prevent attackers from provisioning arbitrary
AIKs. For example, the TB enclave could encode a list of public keys of approved
system integrators, which are allowed to provision AIKs.
Enclave Virtualization Attacks. SGX is not designed to cooperate with a
trusted hypervisor, making driver enclaves as well as the TB enclave vulnerable
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Figure 3.4: Enclave virtualization attacks: An attacker diverts steps 3 to a fake
TB enclave (left) or step 4 to fake driver enclaves (right) running in a
virtualized, attacker-controlled environment inside the VM.

to enclave virtualization attacks. In an enclave virtualization attack, the attacker
does not compromise the actual trusted boot process. Instead, he virtualizes
driver enclaves or even the TB enclave in a fake environment on the same
computer, as depicted in Figure 3.4. To make hypervisor attestation for the
virtualized enclaves succeed, the attacker diverts the legitimate TPM quote or the
TB enclave approval to the virtualized TB enclave or driver enclaves, respectively.
As shown in Figure 3.5, the attacker can now impersonate the user by rerouting
user apps to a virtualized driver, reading the driver’s output and providing fake
input. Note that the attacker did not change any enclave code. Hence, SGX will
generate the same MRENCLAVE value and, thus, the same derived cryptographic
keys for both legitimate and virtualized enclave instances. Neither the TB enclave
nor the driver enclave or a user app can detect such virtualization.

While enclave virtualization attacks compromise the authenticity of secure
input, confidentiality is preserved. The attacker does not learn actual user
input, which still arrives at the legitimate driver enclave. Conversely, enclave
virtualization attacks break the confidentiality of secure output but are unable
to violate authenticity. The legitimate driver enclave will refuse to render altered
content from the attacker.
Defense. The problem of enclave virtualization stems from the design of SGX,
which treats all enclaves equally, regardless of their execution context (VM,
hypervisor, etc.). As a defense, SGXIO restricts the communication interface
between the hypervisor and the operating system context (i.e., the VM). Hence,
the hypervisor hides the TPM as well as the TB enclave from the untrusted
operating system. This breaks path 3 on the left and path 4 on the right side of
Figure 3.4, respectively. The hypervisor gives TPM access only to the legitimate
TB enclave. Thus, the TB enclave might only succeed in hypervisor attestation if
the hypervisor has legitimately launched it. Likewise, the hypervisor only grants
legitimate driver enclaves access to the TB enclave. A driver enclave might only
get approval if it can talk to the legitimate TB enclave, which implies that the
driver enclave too has been legitimately launched by the hypervisor.
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Figure 3.5: Virtualization of driver enclave DX can break the authenticity of secure
input (left) and the confidentiality of secure output (right).

Figure 3.6: Trust hierarchy of SGXIO.

Note that user app enclaves are not subject to enclave virtualization attacks
since they are already running in the operating system context and do not
exchange sensitive plain data with their untrusted environment.

3.4.4 Remote Trusted Path Attestation

As already mentioned, hypervisor attestation vouches for the security of trusted
paths and serves as a basis for remote attestation. This section describes the
whole trust hierarchy involved in remote attestation, as shown in Figure 3.6.

SGXIO has two main hardware trust anchors, namely SGX and the TPM.
SGX extends trust to all enclaves running on the system via verified launch.
This also includes enclaves with attacker-controlled code (Attk.). It is up to a
remote verifier and individual enclaves to build a trust hierarchy among ”good”
enclaves. To do so, the remote verifier can leverage SGX remote attestation and
subsequent local attestation. The verifier checks not only the validity of an SGX
attestation report but also the MRENCLAVE value, which uniquely identifies an
enclave codebase.

In a typical scenario, a remote verifier wants to establish a trusted path to a
user. It extends trust to a specific user app (UA) under its control, which in turn
entrusts appropriate secure I/O drivers (Drv). Drivers extend trust to the TB
enclave, which does hypervisor attestation, as previously outlined. If hypervisor
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attestation succeeds, trust is implicitly extended to the TB host and all driver
host processes, together with all trusted paths to user devices. If attestation fails
at any point in the trust hierarchy, the affected entities will terminate trusted
path attestation.

3.4.5 User Verification

SGXIO allows a user to assess whether a trusted path is present, i.e., that
all interaction is done with the correct user app. Verification does not require
additional hardware, such as an external handheld verification device [Zho+12]
or similar.

A common approach is to share a secret piece of information between the
user and the user app, such as secret welcome messages [Ver] or personalized
images [Mar+16]. For the sake of simplicity, we discuss the common scenario of a
trusted screen path and a trusted keyboard path. When the user starts the user
app, the user app requests a trusted input path to the keyboard and a trusted
output path to the screen from the corresponding drivers, including hypervisor
attestation. If, for any reason, one or both trusted path setups fail, the user
app terminates with an error. In the case of success, the user app displays the
pre-shared secret information via the screen driver to the user. The user verifies
this information to get assured of a valid trusted path setup for this user app.

This approach requires provisioning of secret information to a user app, which
seals it for later usage. Provisioning could be done once at installation time in a
safe environment, e.g., with the assistance of the hypervisor, or at any time via
SGX’s remote attestation feature.

3.5 Key Transport

We present a novel fast non-interactive key transport scheme between two enclaves.
It is based on SGX local attestation. First, we outline local attestation and
traditional SGX key exchange. Second, we discuss our scheme in detail.
SGX local attestation uses the two instructions, namley EREPORT and
EGETKEY, to generate and verify an attestation report, respectively. For the sake
of simplicity, we omit some details in the following description. Furthermore, we
denote MRENCLAVE of enclave X as XID, as it serves as an enclave identifier.

Algorithm 3.1: EGETKEYEID
(key type)

This SGX instruction generates secret keys for enclave E. This
involves a CPU-specific secret key as well as subsidiary key attributes.

keyEID
← derive key(cpukey,EID, key type, attributes)

return keyEID

Local attestation involves a so-called report key that is bound to one specific
enclave. As outlined in Algorithm 3.1, this key is derived from a CPU-specific
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secret key, which ensures that attestation only succeeds on the same physical
CPU. By choosing a key type, the enclave can not only request a report key but
also sealing keys. To attest itself to a target enclave T, enclave E generates a
report using EREPORT. As shown in Algorithm 3.2, this instruction first derives
the report key for the target enclave. It then uses the report key to compute a
signature over the current enclave’s ID as well as enclave-provided data. The
signature is essentially a message authentication code (MAC) computed with the
AES-based CMAC algorithm [Son+06].

Algorithm 3.2: EREPORTEID
(TID, data)

This SGX instruction generates a report for enclave E, targeted at
enclave T , containing additional user data ∈ {0, 1}256.

keyTID
← derive key(cpukey, TID,REPORT KEY, attributes)

mac← AESCMAC(keyTID
, EID||data)

return mac

The whole local attestation procedure is outlined in Protocol 1. Enclave E
wants to authenticate some data for enclave T. It first generates a report over
this data and then sends its identity, the data plus the signature (i.e., the mac)
to enclave T. To verify the report, enclave T queries its own report key via
EGETKEY and manually re-calculates the report signature. Only if both signatures
match, enclave T will accept the report and, thus, consider the provided data as
authenticated.

Protocol 1: Local Attestation

Enclave E attests itself to target enclave T , providing additional data to
be authenticated.

E: mac← EREPORTEID
(TID, data)

E → T : (EID, data,mac)
T : keyTID

← EGETKEYTID
(REPORT KEY)

mac2← AESCMAC(keyTID
, EID||data)

if mac = mac2 then
accept report

else
reject report

To open a cryptographic channel between two enclaves, they need to exchange
a cryptographic key. For that purpose, the SGX SDK provides a Diffie-Hellman
key exchange. Both enclaves generate a private nonce and compute their public
counterpart. In order to avoid man-in-the-middle attacks, the enclaves authenti-
cate their public Diffie-Hellman value towards each other via local attestation.
Hence, they can safely compute a shared key.
Our Non-Interactive Key Transport Scheme. The key exchange provided
by the SGX SDK is a straight forward application of Diffie-Hellman, which
involves expensive exponentiation of big numbers. Using elliptic curve Diffie-
Hellman could speed up computation. Nevertheless, we observed that this key
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exchange could be completely avoided, as follows: SGX local attestation is a
purely symmetric signature scheme using the same key for signature creation
and verification. Hence, local attestation already provides a shared symmetric
secret between enclaves, namely the report key. Any enclave can sign reports
for a target via the EREPORT instruction. Although it has no direct access to
the target enclave’s report key, it can indirectly use the report key by issuing
EREPORT. In turn, the target enclave can access its own report key via EGETKEY.
We use this symmetry of report keys to derive fresh encryption keys.

Our key transport scheme is outlined in Protocol 2. To establish a new shared
key, enclave A chooses a random nonce and generates an attestation report over
this nonce, targeted at enclave B. However, A never transmits this report to B
but uses the report’s MAC as a 128-bit shared symmetric encryption key. Instead,
enclave A sends its identity as well as the nonce to B, which can query its report
key and re-calculate the MAC to obtain the shared key.

Protocol 2: Non-interactive, symmetric key transport

Enclave A sends a fresh symmetric key to enclave B.

A: nonce
R← {0, 1}256 chosen uniformly at random

mac← EREPORTAID
(BID, nonce)

keyAB ← mac
A→ B: (AID, nonce)

B: keyBID
← EGETKEYBID

(REPORT KEY)
keyAB ← AESCMAC(keyBID

, AID||nonce)

Our scheme is non-interactive since it only involves a single unidirectional
transmission of the nonce. It has zero overhead since local attestation is supported
by SGX hardware. The only noteworthy enclave code, namely the AES-CMAC
implementation, is typically already part of an enclave codebase for doing local
attestation. Moreover, the scheme supports authentication. On the one hand,
enclave A binds the key to enclave B through local attestation. On the other
hand, enclave B knows the identity of the enclave for which it is deriving a shared
key. To also achieve liveness, enclave B could send the encrypted nonce back to
A.

3.6 Tweaking Debug Enclaves

Our architecture makes heavy use of SGX enclaves. In order to enable full security
of production enclaves, SGX enforces a licensing scheme on enclave code, as
outlined in Section 2.3.2. In this section, we show how to level up debug enclaves
to behave like production enclaves in the threat model of SGXIO. This requires
special handling of SGX remote attestation and sealing. Note that the debug
tweak does not apply to a secure cloud computing scenario with an untrusted
cloud provider.
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The only difference between debug and production enclaves is the presence of
SGX debug instructions (EDBGRD and EDBGWR), which we aim to disable manually.
The debug tweak leverages SGX’s support for VT-x instruction interception.
VT-x supports several configurable bitmaps, making selected instructions trap
into the hypervisor when executed from within a VM. The hypervisor configures
these bitmaps via the so-called Virtual Machine Control Structures (VMCS).
With the release of SGX, Intel added a new bitmap for SGX ENCLS instructions,
called ENCLS-exiting bitmap. This bitmap allows the hypervisor to intercept
ENCLS instructions selectively. Thus, the hypervisor can intercept all EDBGRD
and EDBGWR instructions that are ever executed from within a VM, by just
configuring the VMCS bitmaps accordingly. By doing so, the trusted hypervisor
is the only code that can debug enclaves. Since the hypervisor is trusted, we can
consider SGX debugging features as disabled. Hence, we have effectively turned
all debug enclaves inside the VM into production equivalents.
Tweaked Cloud Enclaves. As already mentioned, this tweak only applies to
a setting similar to SGXIO, where a trusted hypervisor is present. In general,
this is not the case for cloud scenarios where the cloud provider is untrusted
and expected to subvert the hypervisor. In such cases, one has to opt for real
production enclaves. Nevertheless, honest server administrators could use the
tweak to obtain SGX protection without licensing. This would help in strongly
isolating server code and reducing the TCB from the whole system down to the
hypervisor and the enclave code.
Remote Attestation. Tweaked debug enclaves require special care during
remote attestation. A remote verifier cannot easily determine whether the debug
tweak is correctly enabled or not. For example, an attacker could compromise the
hypervisor and manipulate (i.e., debug) the TB enclave to issue wrong approvals.
Next, the attacker could stealthily debug all enclaves on the system.

To do remote attestation with tweaked debug enclaves securely, one can run
only the TB enclave in production mode and do remote attestation towards it.
Once a remote party verified the TB enclave, it can be sure that the hypervisor
correctly enforces the tweak for all debug enclaves in the system.
Sealing. Both non-tweaked and tweaked debug enclaves share the same sealing
keys. This is no problem unless an attacker manages to compromise the hypervisor
and disables the tweak. Although hypervisor attestation would fail in that case,
the attacker would be able to extract all sealing keys by simply debugging all
enclaves. To prevent this, one can delegate sealing key derivation to the TB
enclave. The TB enclave, running in production mode, only derives actual sealing
keys if hypervisor attestation succeeds.
Local Attestation. Similar to sealing, local attestation for tweaked debug
enclaves is not straight forward. If an attacker retrieves report keys from a
tweaked debug enclave, e.g., during a compromised system boot, all further usage
of these report keys is insecure. This prohibits enclaves from attesting tweaked
debug enclaves. However, a tweaked debug enclave can still do local attestation
towards the TB enclave. Since the TB enclave is running in production mode,
the attacker cannot compromise its keys.
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3.7 Further Considerations

This section touches on advanced topics potential users of SGXIO should be
aware of, namely driver complexity and side channels.
Driver Complexity. Depending on the bus protocol, driver design might be
challenging. Especially multiplexed buses, such as USB, are non-trivial to deal
with. One has to identify proper policy rules which guarantee a trusted path.
Zhou et al. demonstrate how to establish a trusted path to one specific USB
device while keeping other USB devices accessible to the untrusted operating
system [ZYG14]. To deal with the complexity of the USB driver stack, they
identified all security-relevant parts and either moved them entirely into a trusted
domain or at least verified their results. All non-critical operations are kept in
the untrusted domain. This approach would, in principle, also be supported by
SGXIO with a cooperative design of the operating system and secure I/O drivers.
SGX Side Channels. The threat models of SGX and SGXIO do not consider
side channels [Int17b]. SGX enclaves are vulnerable to side channels, and
additional precautions need to be taken, as will be explained in Part II. Also,
the cryptographic channel between drivers and user app enclaves might leak
side-channel information, such as keystroke timings. One could send a constant
encrypted data stream to avoid such leakage, as done by [Esk+19].

3.8 Summary

In this chapter, we presented SGXIO, the first SGX-based architecture that
supports generic trusted paths. We augmented SGX with a small and trusted
hypervisor for setting up a generic trusted path while using SGX for protecting
user apps from an untrusted operating system. We solved the challenge of
combining the security domains of SGX and the hypervisor. We did so by
attesting the hypervisor with the assistance of a TPM towards a special trusted
boot enclave, which is bound to the local computer. Special care must be taken
to prevent enclave virtualization attacks. With SGXIO, both a remote party and
a local user can verify the security of trusted paths.

From an application developer’s perspective, SGXIO benefits from SGX’s
programming model. One can integrate sensitive enclaves directly in existing,
untrusted applications and open a trusted path through virtual device I/O. Fur-
thermore, we showed how SGXIO could omit enclave licensing by making debug
enclaves behave like production enclaves. In order to achieve this, the trusted
hypervisor disables SGX debugging instructions for the untrusted operating
system.

SGXIO demonstrates that SGX is not limited to cloud computing and DRM
scenarios. It addresses user-centric application security, making generic trusted
paths available to SGX enclaves and, thus, protecting against kernel-level key-
loggers and screen loggers, for example. SGXIO is compatible with unmodified
legacy operating systems and designed for off-the-shelf notebooks.
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TIMBER-V: Enclaves via Tagged

Memory

To be trusted is a greater compliment than being loved.

George MacDonald

Embedded computing devices are used on a large scale in the emerging Internet
of Things (IoT). Due to its openness and extensibility, the RISC-V architecture
is a particularly promising candidate for wide deployment in the IoT. As IoT
devices are built for long service life, means are required to protect sensitive code
in the presence of potential vulnerabilities, which might be discovered long after
deployment. Isolation technologies such as enclaves are a perfect fit for these
scenarios. Unfortunately, enclaves for small, constrained RISC-V processors are
largely unexplored. This chapter brings enclave technology to small, embedded
RISC-V processors utilizing tagged memory.

Research on enclaves has matured over the past years, as we have seen in
Section 2.2. The initial focus was on larger systems featuring virtual mem-
ory [Suh+03; TLL06; Int15; McC+08; Che+08; YS08; CL10; McC+10; Chh+11;
ANZ11; Vas+12; Owu+13; Hof+13; CDA14; Arm09; CL10; WB11; BW12;
McK+13; Evt+14; CLD16]. Later on, enclaves were brought to small embedded
devices as well [Eld+12; Noo+17; Göt+15; Koe+14; Bra+15; Arm17]. Those
devices typically employ MPU-based access protection on physical memory. How-
ever, small devices are often resource-constrained and suffer from poor memory
utilization due to memory fragmentation and inefficient isolation mechanisms.
Tighter integration of trusted memory in the limited physical address space would
demand more fine-grain isolation boundaries, which existing schemes either do
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not provide or only provide at the expense of high management overhead. Also,
more flexibility is beneficial for the dynamic management of trusted memory.

A technique that has the potential to offer fine-grained and flexible isolation
boundaries is tagged memory. Tagged memory transparently associates blocks of
memory with additional metadata. It has been used for dynamic information flow
tracking [Suh+04] as well as access control [WCA02] and is still an active subject
of research [Son+16; Joa+17] and development [Arm19]. While tagged memory
has been shown to support a variety of security policies like protection of control
data [CWC06], pointers [Dev+08] or capabilities [Wat+15], strong, efficient, and
flexible isolated execution is still an open problem for small embedded systems.
In particular, data flow isolation [Son+16] cannot provide strong isolation since
tags can be destructively written by untrusted software. Other existing solutions
are not appropriate for low-end embedded devices due to their memory overhead
stemming from large tags [Zel+08] or fully programmable but expensive tag
engines [Ven+08; Che+09; DS12; Dha+15]. Hence, currently, no existing tagged
memory schemes support efficient enclave isolation on small embedded devices.

In this chapter, we propose TIMBER-V: Tag-Isolated Memory Bringing fine-
grained Enclaves to RISC-V. TIMBER-V targets low-end RISC-V processors in
a hardware-software co-design. On the hardware side, we achieve fine-grained in-
process isolation with only two tag bits, thus maintaining low memory overhead.
Moreover, we combine tagged memory with a memory protection unit (MPU) to
support an arbitrary number of processes while avoiding the overhead of large
tags [Zel+08]. On the software side, we enforce isolation via a small trust man-
ager, called TagRoot. We isolate privileged from unprivileged security domains,
supporting both Intel SGX enclaves [McK+13] and the TrustZone [Arm17]
programming model. However, TIMBER-V comes with much finer isolation
granularity and more efficient memory utilization, which has several advantages.
On the one hand, data locality can be maintained by interleaving trusted and
untrusted memory, thus minimizing memory fragmentation. On the other hand,
TIMBER-V uses a tag update policy that allows highly flexible dynamic memory
management of trusted data. Dynamic memory support has been announced for
the upcoming Intel SGXv2 but involves costly interaction with the operating
system [Int16a]. In contrast, TIMBER-V enclaves can instantaneously claim
memory by using a single instruction.

To demonstrate these advantages, we show heap interleaving and a novel
stack interleaving scheme. That is, we use a single heap and stack across
different security domains while maintaining strong isolation. Moreover, we
demonstrate highly efficient inter-enclave communication over secure shared
memory. TIMBER-V supports real-time constraints by making all trusted
software interruptible. It is furthermore compatible with existing code. We
implement and benchmark TIMBER-V on the RISC-V Spike simulator. We
evaluate TIMBER-V under different CPU models, which highlights characteristics
of TIMBER-V rather than CPU implementation specifics. We show that the
runtime overhead of TIMBER-V is 25.2% for naive implementations, while tag
caching reduces the overhead to 2.6%. We have made TIMBER-V open source.
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Contributions. In summary, our main contributions are:

� We propose TIMBER-V, the first efficient tagged memory architecture for
enclaves on low-end processors

� We present a novel concept called stack interleaving that allows for efficient
and dynamic memory management

� We propose lightweight shared memory between enclaves

� We propose an efficient shared MPU design

� We extensively evaluated our proof-of-concept implementation1 on the
RISC-V simulator for different CPU models

This chapter is based on the publication [Wei+19b], of which I am the main
author. The rest of this chapter is structured as follows: Section 4.1 gives
background information on RISC-V and tagged memory. Section 4.2 specifies
our adversary model and design goals. Section 4.3 presents our TIMBER-V
design. Section 4.4 explains our trust manager. Section 4.5 discusses dynamic
memory management for TIMBER-V. Section 4.6 gives implementation details,
and Section 4.7 analyzes the security of TIMBER-V. Section 4.8 evaluates
TIMBER-V. Section 4.9 and Section 4.10 discuss related work and possible
extensions of TIMBER-V. We summarize in Section 4.11.

4.1 Background

This section gives background information about RISC-V and tagged memory.
RISC-V. RISC-V [WA17a] is an open and extensible instruction set architecture
and defines three privilege modes [WA17b], namely machine-mode (M), supervisor-
mode (S), and user-mode (U). M-mode has the highest privileges and is used for
emulating missing hardware features. S-mode and U-mode are meant to run an
operating system and user applications, respectively.
Tagged Memory. The idea behind tagged memory is to extend each memory
word with additional bits that store metadata. The concept of tagged memory is
very old and can already be found in early computer designs [Feu72]. In these
designs, tag bits were used for debugging or dynamically tracking of the data type.
Recent commercially available computer architectures hardly support hardware-
based tagged memory. Instead, one uses software-based tagging for dynamic
analysis tools [Ser+12; SS15; SAB10]. However, recent research on tagged-
memory architectures in the system security context [Son+16; Dha+15; BFM14]
hints that re-establishing hardware-support can considerably improve security.
In fact, Arm announced their memory tagging extensions in 2019 [Arm19].

1The source code is available at https://github.com/IAIK/timber-v

https://github.com/IAIK/timber-v
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4.2 Adversary Model and Design Goals

TIMBER-V is designed for stakeholders who want to securely execute pieces
of code on a small IoT device. However, the stakeholders distrust the IoT
device for various possible reasons. First, the device’s operating system might
not sufficiently isolate individual tasks to guarantee secure code execution, as
is the case for the popular FreeRTOS kernel, for example.2 Second, even if
the operating system provides sufficient task isolation, it might be subject to
exploitation, circumventing all isolation guarantees [Iga15]. Third, the operating
system might be controlled by a party that the stakeholders distrust and want to
protect intellectual property against. We consider the strongest attacker to have
complete control over the operating system. Thus, the attacker can not only deny
service but also use the system’s security features to spawn malicious enclaves
in an attempt to subvert benign ones, as depicted in Figure 4.1. However, we
assume that benign enclaves are properly protected against direct exploitation
via runtime attacks using concepts like memory safety [AHP18], for example. A
proper tag isolation architecture shall guarantee the security of benign enclaves
in the presence of such attacks. We assume that cryptographic primitives are
secure. We do not address physical attacks. The trusted computing base consists
of the hardware, including the hardware emulation mode (M-mode), as well as a
small trust manager (TagRoot) and the benign enclaves themselves.

TIMBER-V does not prevent software side-channel attacks. While mem-
ory interleaving provides the untrusted software with additional information
about enclave’s memory allocations, an enclave that follows the constant-time
paradigm [Ber05; Cop+09] is secure against address-based side-channel attacks.

We demand that a tagged memory architecture designed for enclaves shall
meet the following design goals:

G1 Security. It shall guarantee that sensitive code can leverage strong isolation
to maintain the confidentiality and integrity of its sensitive data. This
demands (i) strong memory isolation, (ii) secure entry points, (iii) secure
communication, and (iv) attestation and sealing.

G2 Flexibility. It shall be flexible with respect to fine-grained and dynamically
reconfigurable isolation boundaries as well as the programming model.

G3 Compatibility. Untrusted code shall run without modification to support
existing operating systems and apps.

G4 Low Overhead. It shall minimize the cost of tagged memory as well as
the performance overhead of switching security domains.

G5 Real-time. It shall support hard real-time constraints.
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Figure 4.1: TIMBER-V supports four security domains. TIMBER-V extends user
apps running in U-mode and the operating system running in supervisor
S-mode with trusted memory, namely TU-mode for enclaves and TS-mode
for TagRoot. User processes A and B integrate trusted enclave memory
within untrusted apps. The attacker controls all software in the N-domains
and can run malicious enclaves (cf. enclave B).

4.3 TIMBER-V Design

TIMBER-V is a novel tagged memory architecture that achieves lightweight, yet
powerful enclave isolation on small embedded processors. Specifically, we achieve
fine-grained and dynamic in-process isolation. TIMBER-V follows a hardware-
software co-design. On the hardware side, TIMBER-V uses tagged memory for
enforcing a strong and fine-grained isolation policy and for providing fast domain
switches. We augment tagged memory with a Memory Protection Unit (MPU)
for lightweight isolation between processes. Dedicated tag instructions allow
flexible dynamic memory management. For example, we demonstrate memory
interleaving across security domains not only for heap memory but also for stack
memory. On the software side, TIMBER-V delegates policy enforcement to a
small privileged trust manager called TagRoot, which provides various trusted
services to the operating system and to enclaves.

4.3.1 Enclave Isolation

TIMBER-V supports four security domains, as depicted in Figure 4.1. The
operating system and apps live in the “normal” N-domains, which are considered
untrusted. The N-domains support the traditional split between user mode (U-
mode) and supervisor mode (S-mode) and allow existing code to run without
modification (goal G3). We protect sensitive memory via fine-grained memory

2FreeRTOS allows elevating privileges via the prvRaisePrivilege syscall.
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Figure 4.2: Security domains are interleaved in flat physical memory. Tag isolation
protects T-domains while MPU isolation encapsulates and protects indi-
vidual processes across domains. T-domains can only be entered at trusted
callable entry points (TC-tag), which allows fast domain transitions.

tagging, which creates islands of trusted memory inside the N-domains. Trusted
user mode (TU-mode) can be leveraged for enclaves. Moreover, trusted supervisor
mode (TS-mode) allows running a trust manager like TagRoot, augmenting the
untrusted operating system with trusted services.

TIMBER-V combines security domain isolation with an MPU. It protects
individual processes or enclaves via MPU isolation. The trusted domains are
protected by a strict tagged memory policy, which we denote as tag isola-
tion. Memory accesses are only permitted if both mechanisms “agree”. Thus,
TIMBER-V supports a variety of different programming models, as demanded
by goal G2. For example, we achieve TrustZone’s [Arm17] security split via
memory tags; however, with much finer and highly dynamic isolation boundaries.
Also, TIMBER-V can embed enclaves directly in user processes, as done in Intel
SGX-like designs [McK+13], however, again with the benefits of tagged memory.
Tag Isolation. Tag isolation is depicted with arrows in Figure 4.2 and will
be discussed in detail in Section 4.6. TIMBER-V uses a two-bit tag per 32-bit
memory word for fine-grained protection of trusted memory (goal G2). Having
only two tag bits keeps the hardware cost of tagged memory low. This supports
goal G4 and, at the same time, retains the advantages of fine-grained memory
isolation. With two tag bits we encode four different tags, namely N-tag, TU-tag,
TS-tag, and TC-tag. We use them to identify untrusted memory (N-tag), trusted
user memory (TU-tag), trusted supervisor memory (TS-tag) as well as secure
entry points via the trusted callable TC-tag.

At every memory access, a hardware tag engine ensures that untrusted code
cannot access trusted memory, see Figure 4.2 (i). Moreover, enclaves (TU-tag)
cannot access trusted supervisor memory (TS-tag) used for TagRoot. In contrast,
trusted domains can access lesser trusted memory (ii), as long as the MPU
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Figure 4.3: TIMBER-V supports horizontal transitions between normal and trusted
domains via ordinary instruction fetches, as well as vertical transitions
via syscall instructions.

isolation policy allows it. Finally, tag isolation could be directly applied to other
peripherals, e.g., preventing DMA accesses to trusted memory.
MPU Isolation. Tag isolation enforces the protection of security domains.
However, an embedded system typically runs several independent processes within
the same security domain. Relying on tag isolation for process isolation would
require large tags, which is unacceptable for our goal G4. Instead, TIMBER-V
isolates individual processes via a memory protection unit (MPU) (see dashed
boxes and arrows (iii) in Figure 4.2). This minimizes tagging overhead while
supporting fine-grained in-process isolation.
Fast and Secure Domain Transitions. Our system distinguishes horizontal
and vertical domain transitions, as visualized in Figure 4.3. Both need to
be fast and efficient to achieve goal G4. We implement domain transitions
without introducing new instructions, thus maintaining compatibility (goal G3).
Horizontal transitions switch between N and T-domains while maintaining the
current privilege mode. In order to avoid code-reuse attacks, trusted domains
can only be entered at secure entry points (cf. goal G1). Entry points are
marked as trusted callable with the TC-tag and are denoted as “TUenter” and
“TSenter”, depending on the caller’s privilege mode. See also (iv) in Figure 4.2.
Whenever the CPU fetches an instruction tagged with TC-tag, it switches to the
trusted security domains. Likewise, when fetching normal N-tag memory, the
CPU switches back to the normal N-domains, leaving trusted execution, denoted
as “TUleave” and “TSleave” (v), respectively. More details about how TUenter
and TSenter are protected will be discussed in Section 4.6.

Unlike SGX, which involves costly checks in microcode for each domain
switch [Int16a], our design imposes zero runtime overhead. Unlike TrustZone-
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M [Arm17], it allows even faster and very compact transitions, keeping code
locality and compatibility to the maximum extent possible.3

Vertical transitions are, in fact, syscalls that transition between user modes
and supervisor modes, as seen in Figure 4.3 and (vi) in Figure 4.2. In the
N-domains, apps can issue syscalls to the operating system. Likewise, in the
T-domains, enclaves can request TagRoot services via trusted TSyscalls. When
finished, a syscall or TSyscall can return to the calling app or enclave, respectively.
On RISC-V, syscalls are issued with the ecall instruction and finished with the
sret instruction. To cleanly separate vertical transitions, TIMBER-V adds a
separate trusted syscall (trap) handler.
MPU Sharing. TIMBER-V shares a single MPU between the N-domains and
the T-domains. That is, we can use the same MPU slots for processes executing
in U-mode and TU-mode. Thus, TIMBER-V supports not only traditional apps
and secure enclaves but also mixed processes, as shown in Figure 4.2. In contrast
to using two separate MPUs, our approach reduces hardware and energy costs
since fewer MPU slots are required. In order to maintain compatibility (goal G3),
the operating system can always access and update shared MPU slots. Any such
updates are detected by the MPU, which then prevents enclaves from using the
updated slots until TS-mode validates the changes. To do so, we augment the
MPU with just two additional flags.

4.3.2 Dynamic Memory Management

TIMBER-V supports a highly flexible management of trusted memory. For
this, we add new tag-aware instructions. Usage of these instructions is optional,
and normal memory-related instructions also adhere to the tag isolation policy.
Nevertheless, tag-aware instructions help implement dynamic memory interleaving
as well as a simple but effective code hardening transformation.
New Tag-aware Instructions. TIMBER-V adds new checked memory in-
structions that allow fine-grained and dynamic management of trusted memory.
We call them “checked” instructions since they augment ordinary memory instruc-
tions adhering to tag isolation with one additional programmable tag check. This
additional tag check does not bypass our tag isolation policy but tightens it by
constraining memory accesses to a specific security domain. For example, when
enclaves process untrusted data, they can use checked instructions to prevent
accidentally accessing the wrong security domain.
Tag Update. In addition to the tag checks, checked store instructions allow
(de)privileging memory by changing memory tags, as follows: Tags can only be
updated within the same or a lower security domain. Checked store instructions
cannot be used to elevate privileges. As shown in Table 4.1, TS-mode (and M-
mode) have full access to all tags. TU-mode can only change tags between N-tag

3For example, one could split an unmodified program binary into untrusted and trusted
parts by mere tagging, that is, without the need for changing code or the memory layout.
However, in practice, one typically augments the program with secure argument passing, stack
handling, and register cleanup.
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and TU-tag to support dynamic interleaving of user memory. We prevent TU-
mode from manipulating TC-tags, which are reserved for secure entry points. Our
tag update policy makes isolation boundaries flexible during runtime (goal G2).
Dynamic Memory Interleaving. Checked memory instructions allow to
dynamically claim memory across security domains, thus maintaining data locality
and reducing management overhead. For example, an enclave can claim untrusted
memory during runtime by setting its tags from N-tag to TU-tag. We show that
this allows heap interleaving as well as a novel code transformation that we call
stack interleaving. That is, an enclave does not need to maintain a separate
secure heap or stack. In general, dynamic memory interleaving can help reduce
memory requirements to a single heap and a single stack per execution thread.
This has not only operational advantages, such as reduced memory fragmentation
and, thus, reduced memory consumption; it also improves overall security. One
can remove code, which is normally necessary for dynamic memory management,
from the trusted computing base (TCB).
Code Hardening Transformation. Checked instructions can be used for
additional code hardening against code-reuse attacks. In these attacks, one
misuses existing code to perform malicious actions, e.g., leak secrets from trusted
to untrusted domains. In contrast, normal code execution usually operates in
a single security domain, and this security domain predetermines all accessed
memory tags. Our code hardening transformation enforces this property by
replacing memory instructions with checked instructions. They check every
memory access for the correct tag and, thus, restrain code execution to the
current security domain. Only code interacting with untrusted memory on
purpose is left unmodified. As discussed later, this transformation adds negligible
performance overhead. We apply it to enclaves and TagRoot as an additional
layer of defense.

4.3.3 Trusted Services

We provide a small trust manager, called TagRoot. It serves as the trust anchor
for bootstrapping secure enclaves and maintaining their isolation properties, as
demanded by goal G1. TagRoot offers trusted OS services to the untrusted
operating system as well as trusted enclave services to the enclaves themselves.
Trusted OS services include enclave management, secure entry points, attestation,
and sealing. Moreover, in contrast to existing solutions, TagRoot supports fast

Table 4.1: Tag update policy, permitting (3) or refusing (7) tag updates from certain
security domains.

Can update tag N-tag TC-tag TU-tag TS-tag

N-domains 3 7 7 7
TU-mode 3 7 3 7
TS-mode 3 3 3 3
M-mode 3 3 3 3
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enclave-to-enclave communication via secure shared memory. It imposes zero
copying overhead and allows m:n connectivity. TagRoot and enclaves are fully
interruptible, thus meeting goal G5.
Enclave Life Cycle. TIMBER-V enclaves are created and loaded within an
ordinary user process at the discretion of the operating system but with the
assistance of TagRoot. Once loaded, enclaves can be directly invoked by user
apps to carry out security-critical tasks. For freshly generated enclaves, one
typically provisions secret data, such as cryptographic keys, to the enclave via a
secure remote channel. This channel is authenticated using enclave attestation
with the assistance of TagRoot. During their lifetime, enclaves can authenticate
and communicate with other enclaves or seal sensitive information for keeping
state across reboots, again with the help of TagRoot.
Possible Extensions. Independently of our TagRoot design, TIMBER-V
supports other services as well. For example, trusted I/O is straight forward by
tagging I/O memory as trusted. Depending on the requirements, I/O memory
could either be hard-wired to a particular tag, assigned a tag via memory ranges,
similar to a secure attribution unit [Arm17], or be fully configurable. Latter
requires additional tag storage, either in RAM or in a cache.

Also, TagRoot could implement services demanding availability, thus realizing
safety-critical systems, for example. However, since these additional services
enlarge the TCB, we did not implement them in our current prototype. We
discuss different design options in Section 4.10.

4.4 TagRoot Trust Manager

We develop a small trust manager for TIMBER-V, called TagRoot. It runs in
trusted supervisor mode (TS-mode) and offers privileged trusted services to the
untrusted operating system as well as unprivileged trusted services to enclaves.
All trusted services are listed in Table 4.2.

Table 4.2: TagRoot trusted OS and enclave services.

Trusted OS services Trusted enclave services

create-enclave(ecb) get-key(id)

add-region(ecb, region) shm-offer(targetEID, region)

add-data(ecb, region) shm-accept(ownerEID)

add-entries(ecb, entries) shm-release(region)

init-enclave(ecb)

load-enclave(ecb)

destroy-enclave(ecb)

resume()
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Figure 4.4: TagRoot trusted metadata includes enclave control blocks (ECB) and
interrupt frames with unforgeable headers.

4.4.1 Trusted OS Services

The operating system can invoke trusted OS services via TSenter (see Figure 4.3
and (iv) in Figure 4.2). These services provide enclave management such as
creation and cleanup, loading as well as handling of interruption. Also, during
enclave creation, the sequence of trusted OS service calls define the enclave’s iden-
tity similar to MRENCLAVE for SGX enclaves. This identity is used for subsequent
trusted enclave services.
Creation and Cleanup. TagRoot stores enclave metadata in a data structure
called enclave control block (ECB). When instantiating a new enclave with
create-enclave, TagRoot first creates a new ECB. The operating system can
choose where this ECB is placed in its memory. TagRoot will re-tag this memory
with TS-tag. Hence, an ECB is always kept in secure TS-mode memory, as shown
in Figure 4.4.

Once TagRoot created an enclave’s ECB, the operating system can add
memory regions (i.e., contiguous chunks of memory) to it via add-region. These
enclave regions will be loaded in the MPU when the enclave is about to run.
TagRoot ensures that enclave regions will never overlap with other enclaves but
are unique to each enclave. As mentioned before, an enclave region can cover
app memory as well. Thus, a single shared MPU region can hold enclave data
and app data.

Initially, an enclave region is untrusted and tagged with N-tag. In order to
add enclave data, the operating system repeatedly executes add-data. TagRoot
claims enclave memory by setting TU-tag, as long as the claimed memory is within
the enclave’s regions. add-data works on a word granularity, thus supporting
fine-grain memory interleaving. All claimed memory (TU-tag) constitutes the
actual enclave (TU-mode), while the rest (N-tag) constitutes the untrusted app
(U-mode) (cf. processes in Figure 4.2). While the enclave can access its app
counterpart, the opposite direction is prohibited by the tag isolation policy.

Similar to enclave data, the operating system can announce entry points by
a call to add-entries. TagRoot will mark all entry points with TC-tag, given
that they belong to the enclave’s regions. Finally, a call to init-enclave will
cause TagRoot to compute a cryptographic identity over the enclave and mark it
as runnable. We discuss this cryptographic identity at the end of this section.

Once the enclave is initialized, it is immutable and cannot be altered using
the above trusted service calls. Initialized enclaves can only be loaded, resumed,
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or destroyed. At the end of an enclave’s life cycle, a call to destroy-enclave will
unload and invalidate the ECB, preventing the enclave from further execution.
TagRoot clears all claimed enclave memory, releases enclaves regions, and clears
up ECB memory. It also reverts all enclave tags to N-tag. The operating system
can now repurpose the freed enclave memory for other tasks.
Loading enclaves. In order to run an enclave, the operating system first
loads the enclave regions into the MPU and then calls load-enclave. If another
enclave is currently loaded, TagRoot unloads it by invalidating stale enclave MPU
slots. Next, TagRoot validates the current MPU configuration, as configured by
the operating system. It acknowledges all updated MPU slots that correspond
to the enclave. Moreover, TagRoot locks the enclave’s ECB to prevent further
modifications and restores its runnable or interrupted state in a special register,
called STSTATUS. The app can now enter the loaded enclave by calling one of its
entry points (TUenter). In case of interruption, the app can resume the enclave.
Interruptibility. Trusted code execution is fully interruptible except for a small
trusted interrupt handler. Interruptibility is necessary to support real-time tasks
reacting to external I/O events or control loops that need to run periodically in
order to meet stability criteria, for example. Whenever an interrupt happens
during enclave execution, TIMBER-V raises a special “interrupted” CPU flag
that prevents re-entering the enclave. The CPU then invokes the trusted trap
vector of TagRoot. TagRoot saves the current enclave’s execution context in a
protected interrupt frame (see Figure 4.4) and erases sensitive CPU registers
to avoid accidental leakage of sensitive data. Moreover, it sets the interrupted
program counter to a dedicated resume function, before giving control to the
operating system. When the operating system returns from interrupt handling,
resume gets executed. TagRoot restores the enclave execution context, clears the
“interrupted” CPU flag, and resumes enclave execution. This process is completely
transparent and requires no changes to the operating system. Moreover, it also
supports the interruption of TagRoot (TS-mode) while processing trusted service
calls.
Enclave Identity. From a functional perspective, enclaves are defined by
their code base and initial data as well as their entry points. To capture this,
all trusted OS service calls from create-enclave to init-enclave contribute
to a continuous SHA256 computation, called measurement. The measurement
involves not only the sequence of trusted service calls but also its parameters,
that is, enclave regions, data as well as entry points. init-enclave stores the
final measurement as enclave identity (EID) inside the ECB and marks the
enclave state as runnable (see Figure 4.4). Since the EID is immutable, it reliably
identifies enclaves. This concept is similar to MRENCLAVE in SGX [Int16a].
Enclave identities are used for trusted enclave services.

4.4.2 Trusted Enclave Services

Enclaves can request trusted enclave services via TSyscalls (see Figure 4.3 and (iv)
in Figure 4.2). This includes sealing, attestation, and inter-enclave communication
via shared memory.
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Sealing and Remote Attestation. An enclave can call get-key to generate
enclave-specific cryptographic keys. Similar to SGX enclaves (see Algorithm 3.1),
those keys are derived from the enclave identity (EID) and a secret platform
key Kp, which is only known to TagRoot and remote verifiers. The keys are
derived as follows: ktypeEID = HMACKp(EID, type). By providing an additional
key type, the enclave can request keys for different purposes. For example, it
can derive sealing keys for encrypting and decrypting sensitive data for secure
offline storage. Also, it can derive remote attestation keys to compute a message
authentication code (MAC) over a challenge given by a remote verifier. The
remote verifier knowing the platform key Kp can then recompute the MAC, thus
remotely attesting the enclave. TagRoot can also be extended to asymmetric
remote attestation protocols [Ana+13].
Secure Shared Memory. TagRoot supports secure shared memory (shm)
as a fast and flexible inter-enclave communication method. An enclave can
offer another “target” enclave shared memory access to parts of its own enclave
memory regions via shm-offer. TagRoot creates a special entry in the offering
enclave’s control block (ECB), covering the offered shm region and the target
enclave’s EID. For this, the target enclave does not need to exist yet. It can
asynchronously accept the shm offer via shm-accept, which expects the offering
EID as an argument. When accepting shm, TagRoot scans the existing ECBs to
find the offering enclave via its EID. In case a valid shm offer exists, TagRoot
adds the offered shm region to the target enclave’s regions in the ECB and also
returns the memory region’s pointer back to the enclave to help it use the shared
memory. Once an enclave has accepted a new shared memory region, it has to
notify the untrusted operating system to load the shm region into the MPU.

The target enclave can close an accepted shm by issuing shm-release, which
removes the shm from the enclave’s memory ranges. An offering enclave can
withdraw a pending offer by offering the empty region. However, it cannot close
an offer that has been accepted already. This is because for any TSyscall TagRoot
only manipulates the ECB of the calling enclave.

Our secure shared memory allows m:n connectivity between enclaves, where
m is the number of offers an enclave can make, and n is the number of offers a
target enclave can accept. m is unlimited, and n is only limited by the number of
enclave regions that can be stored in the ECB, which is an implementation-defined
constant. Moreover, TagRoot’s shared memory supports a transitive trust model.
An owner enclave could subsequently offer the same shared memory to other
target enclaves, thus minimizing memory usage in case of broadcast channels, for
example.
Local Attestation. TIMBER-V achieves local attestation implicitly by using
shared memory without the involvement of cryptographic secrets. By offering and
accepting shared memory, both involved enclaves identify their communication
partner via its EID, thus mutually attesting each other.
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4.5 Dynamic Memory Management

TIMBER-V provides highly flexible and dynamic memory management. Different
security domains can claim memory during runtime with fine granularity. Dy-
namic memory has been an issue for enclaves before. For example, Intel SGX adds
dynamic management of enclave pages in SGXv2 via separate trusted service calls
in microcode. In contrast to Intel SGX, TIMBER-V naturally supports much
finer-grained dynamic memory management by simply updating tags. User soft-
ware can directly claim or release memory via checked store instruction without
the need for trusted service calls. This high flexibility and efficiency enable novel
application scenarios, such as dynamic memory interleaving schemes. Memory
interleaving minimizes memory fragmentation by keeping data locality across
security domains. For example, when passing large untrusted data structures to
an enclave, the enclave could avoid copying the data to enclave memory by just
updating tags. Thus, the data structures remain interleaved within the untrusted
memory. In the same way, memory interleaving can be used for dynamic memory
management–the dynamic allocation and deallocation of trusted memory.

In this section, we first explain heap interleaving from which we develop stack
interleaving, a novel memory interleaving scheme. We do this for both TagRoot
and enclaves, and show that we can entirely outsource dynamic memory from
TagRoot to the untrusted operating system, thus reducing the TCB. Finally, we
show that stack interleaving supports interrupts with arbitrary nesting levels.

4.5.1 Heap Interleaving

Heap interleaving reuses an untrusted heap to store trusted data. For this, trusted
code first instructs untrusted code to allocate a chunk of memory on its heap.
The precise heap layout is irrelevant as long as the requested memory chunk
lies within N-tagged memory. Since the complex task of memory allocation is
now outsourced to the untrusted domains, the TCB can be significantly reduced.
Next, the trusted code claims the allocated memory chunk. It does so via checked
store instructions, which atomically check memory for N-tag and update it to
TS-tag or TU-tag, respectively. This protects the newly created trusted heap
object against malicious access from the N-domains. However, care must be
taken to identify trusted heap objects reliably during their lifetime. In order to
free a trusted heap object, the trusted code simply clears it and reverts its tags
to N-tag via checked store instructions, and notifies the untrusted code to do the
heap cleanup.
User Heap Interleaving. Typically, an enclave actively requests heap space
for trusted heap objects, which it uses internally to satisfy its dynamic memory
demand. To reliably identify a trusted heap object, enclaves should always
keep a pointer to it inside protected enclave memory and only use this pointer
to reference the trusted object. If enclaves would interpret untrusted function
arguments as trusted heap pointers, memory corruption attacks become possible.
Supervisor Heap Interleaving. When creating a new enclave, the operating
system allocates a trusted enclave control block (ECB) on its heap and calls
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create-enclave, which claims the ECB for TS-mode. Since most trusted OS
service calls take the ECB as an argument from the untrusted OS, TagRoot
needs to verify its validity. It does so in two steps: First, TagRoot accesses an
ECB only via checked memory instructions, checking for TS-tag. This prevents
misinterpreting untrusted data as ECB. Second, since the ECB argument could
point to arbitrary TS-tagged memory, TagRoot identifies valid ECBs via an
unforgeable header at the start of each ECB, as will be explained in Section 4.5.3.

4.5.2 Stack Interleaving

Stack protection is crucial for enclaves. Typically, an execution thread is given
individual stacks for every security domain it can exercise. For example, SGX
enclaves use separate secure stacks that are isolated from their hosting app. Also,
operating systems usually maintain separate kernel stacks for each app. With
TIMBER-V, we can reuse the same stack across different security domains, thus
removing the need for maintaining multiple stacks per execution thread. This
reduces memory fragmentation, which is particularly relevant to the limited
physical address space of low-end embedded systems.

Stack interleaving is a simple program transformation that inserts additional
stack allocation code. Whenever allocating a new stack frame, we claim this
memory using checked store instructions, checking memory for N-tag and updating
it to TS-tag or TU-tag, respectively. When deallocating the stack frame, we clear
it and revert the tags to N-tag via checked stores. As with heap interleaving,
one needs means to check the validity of dynamic memory, that is, the validity
of stack pointers. We show stack interleaving (i) horizontally within supervisor
mode, (ii) horizontally within user mode, and (iii) vertically across TSyscalls.
We implement stack interleaving in a separate compilation step and defer details
to Section 4.6.
Horizontal Supervisor Stack Interleaving. When receiving trusted OS
service calls (TSenter), TagRoot reuses the S-mode stack maintained by the
untrusted operating system. The validity of the stack pointer is implicitly checked
by our stack interleaving transformation, checking untrusted memory for N-tag
before claiming it. This prevents TagRoot from accidentally overwriting trusted
memory. If the untrusted operating system provides an invalid sp, it can only
break the system’s availability, which it can do in any case. While processing
trusted service calls, sp cannot be manipulated because TagRoot does not leave
TS-mode until the service call is finished (or interrupted).
Horizontal User Stack Interleaving. When transitioning from an untrusted
app to an enclave (TUenter), the enclave claims and releases stack frames on
the untrusted app’s stack. An enclave might call untrusted functions from the
outside, e.g., to request dynamic heap memory or file access. Such transitions
are named “ocalls” and demand special treatment. First, a finished ocall needs
to return to the enclave’s call site, denoted as “oret”. We achieve this by making
the oret sites callable using TC-tag, as depicted in Figure 4.5. Second, orets need
to be protected against misuse, as follows: An attacker could directly jump to
an oret without a corresponding ocall and thus perform code reuse attacks. We
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Figure 4.5: User stack interleaving with nested TUenter and ocall.

address this by securely pushing the return address (i.e., the address of oret) onto
the stack before doing the ocall and verifying it afterward. Thus, an attacker can
only jump into active orets. However, the attacker could point sp to arbitrary
trusted data that contains a valid return address. E.g., he could confuse the
nesting level of multiple ocalls by returning to a previous ocall rather than the
latest one. Consider the code in Figure 4.5, where both TUentrA and TUentrB

perform ocalls, leading to a nested call sequence denoted with numbers 1) to 6).
When returning from ocallA in step 7), an attacker could confuse the context
of oretA by pointing sp to the first TUentrA frame instead of the correct fifth
one (see upper right corner). We prevent this by verifying the stack pointer sp

at each enclave oret site against SPTOP, which holds the sp of the latest ocall
in trusted enclave memory. To support nesting, we securely push the previous
SPTOP onto the stack and restore it afterward.
Vertical Stack Interleaving. When enclaves request trusted services via a
TSyscall, TagRoot reuses the enclave’s stack in the same way as outlined before.
However, care must be taken since the stack is now interleaved across different
privilege modes. Before TagRoot uses the enclave stack, it has to ensure that
sp points into the current enclave’s memory and that it has enough space for
processing the TSyscall. The stack requirements of TSyscalls can be statically
determined using profiling or static code analysis. Besides, the stack needs to be
able to hold one interrupt frame, as explained in the following.
Interrupt Handling. Stack interleaving naturally supports interrupt handling.
As outlined in Section 4.4.1, on interruption of trusted code, TagRoot stores the
current execution context in a secure interrupt frame. With stack interleaving,
TagRoot can directly store the interrupt frame on the current stack. As with
ocalls, care must be taken since the untrusted operating system can manipulate
the stack pointer before resuming from interruption. However, unlike horizontal
user stack interleaving, we cannot keep a copy of the last valid sp in secure
memory (cf. SPTOP) because the operating system might resume a different
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interrupted enclave first or resume an interrupted TagRoot service call. To allow
TagRoot to distinguish valid interrupt frames from other TS-tagged data, we
introduce an unforgeable header, which TagRoot can check on every resume call.

4.5.3 Unforgeable Headers

Trusted metadata such as ECBs or interrupt frames are protected via unforgeable
headers (see Figure 4.4). To make headers unforgeable, they are tagged with
TC-tag, which only TagRoot can set. ECB headers and interrupt frame headers
contain two distinct magic values. TagRoot uses them to identify valid ECBs
and valid interrupt frames. It takes care not to accidentally set the TC-tag on
any other data containing these magic values. Since headers are callable via
TC-tag, they could be misused as malicious entry points. In order to prevent
misuse, the magic values have to fulfill the following property: When interpreted
as assembler instruction, they shall divert control flow to some form of secure
error handling (e.g., an endless loop “j .” or a jump to an error handler).

4.6 TIMBER-V Implementation Details

We implemented TIMBER-V on the RISC-V Spike simulator and used it to
run our TagRoot implementation. Subsequently, we give more details about
tag isolation and the disambiguation of TUenter and TSenter, our tag-aware
instructions, the proposed code transformations, required efforts for enclave
developers, our MPU design, and additional CPU registers.
Tag Isolation Policy. Our tag isolation policy is given in Table 4.3. N-domains
can only access N-tagged memory. The only way to enter T-domains is by
fetching code tagged with TC-tag. Depending on the current privilege mode,
TIMBER-V performs a TUenter or a TSenter. When fetching N-tagged memory,
the CPU leaves trusted execution and switches back to the N-domains. This is
denoted as TUleave and TSleave. Enclaves in TU-mode cannot write TC-tags to
prevent the manipulation of secure entry points. TS-tagged memory is exclusive
to TS-mode and protects trusted metadata against malicious enclaves and the
operating system. For security reasons, we also prevent TS-mode from fetching
TU-tagged memory. This technique is well known and implemented as supervisor
mode execution prevention (SMEP) in Intel x86 CPUs [Int16a], for example.
M-mode has full access to all tags, as it is typically also responsible for emulating
missing hardware features.
TUenter vs. TSenter Disambiguation. Both TU-mode and TS-mode use
the same TC-tag to specify secure entry points. If not cleanly separated, this
would allow confusion attacks between TUenter and TSenter. For example, an at-
tacker could spawn a malicious enclave (TU-mode). While this malicious enclave
normally cannot access other benign enclaves, the attacker could invoke the en-
clave via a TSenter from S-mode rather than a TUenter from U-mode. Hence, the
malicious enclave would execute in higher-privileged TS-mode, thus undermining
all of TagRoot’s security guarantees. We prevent such attacks by constraining
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horizontal transitions to MPU regions of the same privilege mode: TUenter is
only allowed for user-mode MPU slots, while TSenter can only target MPU slots
marked for TS-mode. TS-mode slots cannot be manipulated from the untrusted
OS. Again, this resembles supervisor mode execution prevention [Int16a].
MPU Design. Each MPU slot holds not only base and bound information
together with rwx access permissions but also a TU and a TS flag. Slots marked
as TU are shared between enclaves and untrusted apps. Slots marked as TS
cannot be manipulated from untrusted code and are used to distinguish TSenter
from TUenter, as outlined before. Only TagRoot can enable these flags. While
the untrusted operating system cannot manipulate TS slots, it can overwrite TU
slots, which will automatically clear the TU flag. This prevents enclave execution
until TagRoot validates changes and reenables the TU flag.
Tag-aware Instructions. We add new instructions for checking and manipu-
lating tags, as listed in Table 4.4. Standard 32-bit RISC-V memory instructions
can operate on bytes (b), half-words (h), and words (w), optionally selecting the
upper (u) byte or half-word. We duplicate those instructions to checked variants
with the suffix ct. Checked loads preserve the semantics of loading memory from
address src into the register dst. Likewise, checked stores transfer the content
of the src register to the memory address dst. Unlike normal memory accesses,
the checked instructions trigger a trap if the memory tag of the memory address
being accessed does not match the expected tag, encoded in etag. Also, checked
stores overwrite the tag at dst with a new tag, encoded in ntag.

The accessed memory address is determined by a base address stored in a
register, and a 12-bit signed address offset, encoded as immediate. Also, etag
and ntag are encoded as immediate, stripping the upper bits of the address offset
to 10 bits and 8 bits for checked loads and checked stores, respectively.

For cases where memory tags are unknown, we add a separate load and test
tag ltt instruction.4 Similar to a checked load, ltt verifies the tag of a memory
location (src) against a given expected tag (etag). However, instead of trapping
on a mismatch, ltt stores the result in a register (dst). This allows subsequent
code to take appropriate action. We utilize ltt for enclave cleanup in order to
discharge TagRoot from keeping track of the exact enclave layout.

4Cf. the Test Target (TT) instruction of TrustZone-M [Arm17].

Table 4.3: Tag isolation policy for the memory accesses read (r), write (w), fetch or
execute (x) as well as the horizontal transitions TUenter/TSenter (e) and
TUleave/TSleave (l).

Access permitted N-tag TC-tag TU-tag TS-tag

N-domains rwx --e --- ---

TU-mode rwl r-x rwx ---

TS-mode rwl rwx rw- rwx

M-mode rwx rwx rwx rwx
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1 lw t0 ,24(sp)

2

3 lw t1 ,2048( a1)

4

5 add t0 ,t0,t1

6 sw t0 ,24(sp)

(a) Original code.

1 lwct ts,t0 ,24(sp)

2 addi a1,a1 ,2040

3 lwct ts,t1 ,8(a1)

4 addi a1,a1 ,-2040

5 add t0 ,t0,t1

6 swct ts,ts ,t0 ,24(sp)

(b) Transformed code.

Figure 4.6: Code hardening for TS-mode with overflow correction.

Code Transformations. We implement code transformations in a separate
compilation step. We compile source code to assembler code, which we then
transform using a custom awk script [Gaw]. The code hardening transformation
simply replaces all memory accesses with their checked instruction pedants,
as shown for TS-mode in Figure 4.6. In some cases, address overflows occur,
namely when the encoding space of memory offsets is insufficient for a direct 1:1
transformation due to the additional etag and ntag encoding. In these cases, we
insert correcting instructions that shift the overflowing part to the instruction’s
base register (lines 2–4).

For stack interleaving, the script detects stack allocations and deallocations
by searching for manipulations of the stack pointer sp. It then claims or unclaims
the stack frame by inserting checked store instructions accordingly, as seen in
Figure 4.7 lines 3–4 and 6–7.
Developer Effort. From a developer’s perspective, writing enclaves boils down
to placing memory into distinct linker sections, for which we provide macros.
One can mix enclave and non-enclave code in the same source file via annotations.
Entry points are specified via a simple array. Ocalls, in addition, require to
invoke an assembler macro. Code transformations are fully integrated into the
macros and the build system. For memory accesses across security domains, we
provide dedicated macros setting etag accordingly. Edge routines could further
reduce efforts, as done in the SGX SDK [Int16b].
Additional CPU registers. We add new control and status registers (CSRs)
that are only accessible to TS-mode (and M-mode). STSTATUS configures
TIMBER-V and controls enclave execution. It holds a flag indicating the current
security mode (normal or trusted). Moreover, whenever a running enclave traps

Table 4.4: TIMBER-V tag-aware instructions.

Checked Loads Checked Stores

lbct etag, dst, src sbct etag, ntag, src, dst

lbuct etag, dst, src shct etag, ntag, src, dst

lhct etag, dst, src swct etag, ntag, src, dst

lhuct etag, dst, src Load Test Tag

lwct etag, dst, src ltt etag, dst, src
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1 function:

2 addi sp,sp ,-8

3

4

5 ...

6

7

8 addi sp,sp ,8

9 ret

(a) Original code.

1 function:

2 addi sp,sp ,-8

3 swct n,ts,zero ,4(sp)

4 swct n,ts,zero ,0(sp)

5 ...

6 swct ts,n,zero ,4(sp)

7 swct ts,n,zero ,0(sp)

8 addi sp,sp ,8

9 ret

(b) Transformed code.

Figure 4.7: Stack interleaving for TS-mode.

due to an interrupt or exception, STSTATUS will raise a flag that prevents enclave
execution until resumed by TS-mode. To allow TS-mode to intercept traps,
we add a separate trap vector, called STTVEC. Whenever the CPU is in trusted
mode, traps are redirected to a trusted trap handler pointed to by STTVEC. Traps
happening in normal mode are forwarded to the standard trap handler, stored
in STVEC. We implement forwarding in a small M-mode trap delegation code.
To help the trusted trap handler in setting up scratch space, we duplicate the
supervisor scratch register for the trusted mode, called STSCRATCH. Besides, we
add a register denoted as SECB to hold a pointer to an enclave control block.
SECB identifies the currently loaded enclave and helps TS-mode in processing
trusted enclave service calls.

4.7 Security Analysis

Enclave systems such as TIMBER-V build upon various components to protect
sensitive data from being leaked (enclave confidentiality) or corrupted (enclave
integrity). As shown in Figure 4.8, this comprises tag isolation, MPU isolation,
and secure entry points plus secure interruption on the one hand. On the other
hand, enclaves can make use of sealing, attestation, and secure shared memory
provided by TagRoot. Since all enclave services are built atop of TagRoot, its
integrity is crucial. We reemphasize that a proper implementation of TagRoot, the
CPU, and the enclaves is assumed, and cryptographic primitives are considered
secure.

In the following, we discuss how TIMBER-V protects enclave integrity and
confidentiality against direct and indirect accesses. Furthermore, we discuss the
security of enclave shared memory with local attestation, the security of TagRoot,
and dynamic memory interleaving. We omit discussion of sealing and refer to
SGX instead [Ana+13].
Direct Access. During runtime, the tag isolation policy prevents N-domains
from directly accessing or tampering enclave memory. Also, our tag update
policy does not allow elevating the current privilege mode. To prevent (malicious)
enclaves from accessing other enclave’s memory, TagRoot ensures that (i) en-
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Figure 4.8: Relation graph of TIMBER-V security properties, building blocks, and
assumptions.

clave regions do not overlap upon enclave initialization, and (ii) the MPU only
holds regions of a single enclave at a time. This corresponds to MPU isolation.
(i) ensures exclusiveness, i.e., the only way for having enclave regions overlap is
via shared memory, as discussed later. (ii) ensures that enclaves cannot misuse
stale MPU entries of other enclaves. Also, our shared MPU design prevents the
forging of MPU entries. Whenever the untrusted operating system updates an
MPU slot, an enclave cannot use it until TagRoot acknowledges these changes
(cf. Section 4.6). This mechanism again contributes to MPU isolation.
Indirect Access. Indirect security violations are prevented by secure entry
points, secure interruption, and load-time attestation.

To prevent code-reuse attacks from leaking sensitive enclave data to an
attacker, TIMBER-V enforces secure entry points via the TC-tag. Since only
TagRoot can set TC-tags, they are tamper-proof. Of course, this does not prevent
code-reuse attacks in case of memory safety vulnerabilities in the enclave code
itself. Achieving memory safety is an ongoing field of research [AHP18]. If
memory safety cannot be guaranteed, our code hardening transformation can
make potential code-reuse attacks harder. It prevents an attacker from misusing
memory instructions to leak sensitive information.

TagRoot prevents indirect information leakage due to interruption. If an
interrupt occurs, TagRoot saves CPU registers and clears sensitive registers
before giving control to the operating system. The saved registers are stored in a
secure interrupt frame, protected with TS-tag.

During enclave loading, the operating system could manipulate an enclave’s
code to divulge secret information later on. In order to detect manipulation,
enclave loading is measured using a cryptographically strong hash function
(SHA256). Thus, whenever the untrusted operating system manipulates the
loading procedure, this will yield a different enclave identity (EID). Subsequent
attestation or unsealing of secrets will fail since the enclave’s cryptographic keys
changed.
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Shared Memory and Local Attestation. In general, TagRoot prevents
altering an enclave’s memory regions during runtime except for shared memory
(shm). By opening shared memory, enclaves willingly accept memory-region
overlaps with other enclaves. Enclaves must always target their shm offer towards
another EID. The target enclave needs to accept this shm offer by providing the
offering enclave’s EID. This enforces mutual authentication and prevents misuse
by opening bogus shared memory.

Shared memory also demands temporal isolation to prevent time-of-check
vs. time-of-use (TOCTOU) attacks in two directions. First, if an shm-offering
enclave gets destroyed, a target enclave still has access to the shm. As long
as the target enclave does not release it, the shm cannot be given to a newly
created offering enclave because TagRoot prevents enclave region overlaps. Thus,
TagRoot supports temporal authenticity of the offering enclave. Second, if the
target enclave gets destroyed after having accepted an shm offer, it might get
re-instantiated and accept the same shm offer again. This happens without
knowledge of the offering enclave, and TOCTOU attacks become possible. In
order to avoid TOCTOU issues, the offering enclave needs to close the shm offer
after being accepted. Furthermore, it needs to employ a simple handshake to
verify the aliveness of the target enclave. For example, both enclaves could agree
on a session identifier that changes for each enclave restart. This handshake
implicitly provides local attestation between two enclaves.
TagRoot. All of the analysis above critically depends on the integrity of Tag-
Root. We assume loading of TagRoot itself is protected using secure boot [Rua14a].
Once loaded, TagRoot can protect itself in an isolated execution container similar
to enclaves. It uses tag isolation via TS-tag, MPU isolation with TS-mode MPU
slots, and secure entry points protected via TC-tag. If TagRoot is interrupted, it
saves its own register state in a secure interrupt frame. Various internal data
structures are locked. Locking prevents race conditions, should an interrupted
TagRoot be re-entered instead of being resumed.
Dynamic Memory Interleaving. Here, untrusted code offers N-tag memory
to trusted code. Any untrusted arguments need to be validated by trusted code.
In particular, one needs to ensure (i) the validity of the memory when claiming
it, and (ii) the validity during usage. By claiming dynamic memory with checked
store instructions (etag = N-tag) one can ensure (i), namely that trusted code
does not accidentally overwrite trusted data in case of bogus memory pointers,
for example. Besides, vertical stack interleaving crosses privilege modes and,
thus, requires additional enclave region checks, as explained in Section 4.5.2.
Point (ii) is different for the various interleaving schemes we presented before. In
general, whenever pointers to trusted memory objects could be manipulated by
untrusted code, one needs means to validate them. For supervisor heap and stack
interleaving, we introduced unforgeable headers, uniquely identifying valid ECBs
and interrupt frames. This avoids the need for tracking valid objects. In contrast,
for user heap interleaving, we recommended tracking pointers to trusted heap
objects inside the enclave. Also, horizontal user stack interleaving with ocalls
needs additional checks of the stack pointer sp when re-entering the enclave.
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Here, we store the last valid stack pointer inside the enclave. By maintaining (i)
and (ii), dynamic memory interleaving is secure against corruption and direct
information leakage.

4.8 Evaluation

4.8.1 Methodology

We evaluate TIMBER-V by running various macro- and microbenchmarks in the
Spike simulator, which we extended to support TIMBER-V. We configure Spike
for the RV32IMAFD ISA and use it to record histograms of all executed instructions.
To estimate the runtime in CPU cycles, we map executed instructions to actual
CPU cycles using different pipelined CPU models. We first define a simple baseline
model against which we then compare two possible realizations of TIMBER-V.
Our Model A captures unoptimized implementations, and Model B represents
optimized designs with tag caching.

It should be noted that Model B is by no means an upper bound on the
maximum performance achievable. Instead, it presents a conservative performance
estimate based on related work about tagged memory architectures [Son+16;
Joa+17; Suh+04]. We outline these CPU models in the following and summarize
them in Table 4.5.
Baseline CPU Model. As a baseline, we assume that all register (reg)
or memory instructions (ld/st) take one CPU cycle. This is reasonable for
a load/store architecture as RISC-V with on-chip SRAM commonly used for
embedded processors. When instructions stall the execution pipeline, we assume
additional latency to refill the pipeline. Stalling applies to conditionally-taken
branches for indirect jumps, as well as to syscalls and returns, and is indicated
by the column stall. We assume that multiplication (mul) and division (div)
instructions also complete within one CPU cycle, which keeps our evaluation
results pessimistic. That is, comparing against this baseline will show higher
overhead than observed in practice, where multiplication and division typically
take multiple cycles.
TIMBER-V CPU Models. Each instruction fetch requires one additional tag
fetch for verifying the instruction itself. For the unoptimized Model A, we assume
that the prefetcher can effectively hide this additional tag fetch. Thus, linear
code fetches do not exhibit overhead, and all non-memory instructions (reg, mul,
div and other) take one cycle. However, when the execution pipeline stalls, the
tag fetching overhead gets visible for the first instruction after the stall. Thus,
we add one extra cycle for stalls.

For memory loads and stores, we assume one extra cycle to load and check
the tag on the accessed data. A checked memory load (lct) does not experience
additional overhead since the data’s memory tag is already loaded for enforcement
of the tag isolation policy and can be readily used for the additional tag check.
On the other hand, for checked memory stores (sct) we assume one additional
cycle to store the new tag to memory.
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Table 4.5: Expected CPU cycles per instruction.

CPU model ld st lc
t
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l

Baseline Model 1 1 - - 1 1 1 1 3
TIMBER-V Model A 2 2 2 3 1 1 1 1 4
TIMBER-V Model B 1.1 1.1 1.1 1.1 1 1 1 1 3.1

Model A does not make use of tag caching, which could significantly improve
performance. A tag cache can serve tags in parallel to ordinary memory accesses
and, thus, hide the tag checking latency for all cached tags. By comparing
state-of-the-art literature on tagged memory architectures, we observe that tag
caching can reduce the average overhead of tag accesses into the low single-digit
range [Son+16; Joa+17; Suh+04]. Considering that our work utilizes two tag bits
per word, we conservatively estimate the expected performance impact of the tag
operations with 10%, which is reflected in Model B. The resulting costs for the
individual instruction classes is depicted in the last line of Table 4.5. Again, the
prefetcher hides tag checking latency for instructions, while a stall is prolonged
by 10% of a cycle. Likewise, memory loads and stores experience 10% overhead.
We assume that checked stores (sct) are not slower than ordinary stores (st)
because the parallel tag cache can absorbe the additional tag update latency.

4.8.2 Macrobenchmarks

To benchmark raw CPU performance, we used the beebs benchmark suite [Ben+]
as well as CoreMark [EEM]. We compiled them with GCC version 7.3.0 with
“-O1”. We excluded beebs benchmarks with external dependencies. Also, we
filtered nettle-md5 and fdct due to verification mismatches. For newlib-log

and ns, we had to prevent the compiler from optimizing out essential code by
adding volatile and noinline statements. We ran beebs and CoreMark with
one iteration since our evaluation does not need warm-up iterations to fill CPU
caches but precisely captures all instructions.
Tag Isolation. Our tag isolation policy causes runtime overhead during code
execution for both N-domains and T-domains. Figure 4.9 (left) shows an average
runtime overhead of 25.2% for TIMBER-V Model A with a peak of 47% for
nsichneu, which uses frequent lookup table accesses. insertsort frequently
swaps memory locations, which causes higher overhead. statemate implements
a state machine with frequent state updates, and tarai uses recursion, causing
stack accesses to dominate over other operations. Interestingly, aha-compress
shows significantly less overhead than compress, because it benchmarks four
different CPU intensive compression algorithms with relatively few memory
accesses. The fibcall benchmark shows the least runtime overhead (3.4%)
because the recursive Fibonacci computation can be kept entirely within the
CPU registers. For the optimized TIMBER-V Model B, the average overhead
is only 2.6% with a minimum of 0.3% (fibcall) and a maximum of 4.7%



4.8. Evaluation 69

0 20 40 60 80

aha-compress
aha-mont64

bs

bubblesort

cnt

compress
cover

crc
ctl-stack

dijkstra
duff

edn

expint
fac

fibcall

fir

huffbench

insertsort

janne-cmplx

jfdctint
lcdnum

ludcmp
matmult-int

minver

ndes

nettle-arcfour

nettle-cast128

nettle-des

newlib-exp

newlib-log
newlib-mod

newlib-sqrt

ns
nsichneu

picojpeg

prime

qsort

qurt
recursion

select

sglib-binsearch

sglib-heapsort

sglib-quicksort

sglib-dllist

sglib-hashtable

sglib-listinssort

sglib-listsort

sglib-queue

sglib-rbtree
strstr

sqrt
statemate

tarai

ud

coremark

geo-mean

0.9

0.5

1.8

3.1

2

4

1.7

0.9

4.2

3.5

3.1

3

1.1

3.3

0.3

2.7

2.8

4.6

1.6

2

2.4

2.5

3.8

2.6

3

3.3

2.5

2.2

1.6

1.5

1.8

0.6

2.1

4.7

2.7

1.3

2.2

1.8

2.9

2.7

1.5

2.6

2.5

3.8

4

3.7

3.5

2.2

4

2.9

0.9

4.1

4.3

2.5

2.8

2.6

9.4

5.3

17.6

30.8

20

40.3

17

9.4

41.7

35.4

31.2

29.8

11.2

32.9

3.4

26.7

27.8

46.3

15.7

19.7

24.4

25

37.8

25.9

29.8

33.3

25.5

21.7

16.4

14.9

18

6.3

21.2

47

26.6

12.7

22.3

18.4

29

27.1

15

26.4

24.8

37.8

40.4

36.9

34.9

22.3

40.4

29.3

8.8

41.2

43.4

25.1

28.1

25.2

Runtime overhead (%)

0 5 10 15 20

0

0

0

0

0.2

1.7

0

0

0

0

0

0

0.2

0

0

0

5.1

0

0.8

2.9

0

0

0

3.9

0

0.1

16.2

0

0

0

0

0.3

0

0

3

0.1

0

0.8

0.1

0.1

0

0

1.3

0

0

0

0

8.9

6.9

0

0

7.9

0.5

0.8

0

1.1

0.5

0.6

1

9.3

5.7

17.3

0.2

1.5

8.4

5.4

11.6

1.8

0.9

7.8

0.4

0.2

8.1

14.9

1.7

10.4

4.2

0.4

6.2

4.7

5.7

9.5

15.2

1.2

0.2

0.2

0.5

0.7

0

0

9.4

0.3

0.7

4.3

7.5

0.3

1.7

4.8

4.3

4

5.8

2.6

2.1

11.8

10.3

0.3

0

20.2

13.7

4.7

4.1

4.8

Code hardening (%)

0 10 20 30

2

1.4

10.2

0

0.8

1.2

0.8

0.2

6

1.8

0.9

1

2.1

40.3

3.8

0.6

7.2

0

3.4

1.6

8.1

2.5

0

82

16.6

0.1

1.6

1.3

1.7

1.8

5

0.5

0.3

0

5.9

0.2

0.6

8.5

27.5

0.7

0.1

0

2.7

3.6

15.1

6.4

0

0.9

11.4

1

0.1

3.8

54

12.3

3.9

5.9

5.1

3.6

24

0

1.9

2.3

1.9

0.5

12

3.7

1.9

2

5.3

85.5

10

1.3

8.5

0

8.1

3.7

18.1

5.6

0

178.8

36

0.1

3.6

2.9

4.1

4.4

11.8

1.3

0.8

0

13.1

0.6

1.5

20

59.8

1.4

0.2

0.1

6

7.4

30.5

13.2

0.1

2

23

2.1

0.1

7.7

107.1

27

8.6

11.7

Stack interleaving (%)

Model B

Model A

Figure 4.9: Runtime overhead of TIMBER-V tag isolation (left), additional code
hardening (middle), and optional stack interleaving (right).
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(nsichneu). Our results indicate that even for memory-intensive benchmarks
Model B incurs small runtime overhead.
Code Hardening Transformation. Our code hardening transformation adds
only negligible overhead atop of the above runtime overhead. This is shown in
Figure 4.9 (middle). The overhead is low because the checked instructions are
almost a drop-in replacement for ordinary memory instructions. Since ordinary
memory instructions are subject to tag isolation, the memory tags for accessed
data are already loaded. This overhead is included in tag isolation above (see
Figure 4.9 (left)), and the additional tag checks are basically for free.

Few benchmarks show noticeable overhead because the code hardening trans-
formation, in some cases, inserts correcting instructions to handle address over-
flows, as discussed in Section 4.6. By integrating the transformation directly
into the compiler, one could leverage compiler optimization to avoid overflow
behavior.
Stack Interleaving. To benchmark the additional overhead induced by stack
interleaving, we compare each TIMBER-V model without stack interleaving
against a compilation with enabled stack interleaving. The results are shown
in Figure 4.9 (right). The overhead is highly dependent on good compiler
optimization and the used stack space. Many benchmarks (e.g., the memory-
intensive nsichneu) show zero overhead for stack interleaving since stack frames
are optimized out in favor of CPU registers. The highest overhead (178.8%)
occurs for minver, which allocates a temporary stack buffer of 500 words for
computing matrix inverses. The average runtime overhead of stack interleaving
is acceptable with 11.7% for Model A and 5.9% for Model B.

We see the potential for improvements in several directions: First, large
stack allocations should be avoided. This is considered bad practice in any case
since there exists no generic way of handling out-of-memory behavior on stack
allocations. We manually adapted minver to pre-allocate a large stack buffer
in the data segment and observed that the runtime overhead drops from 82%
and 178.8% to negligible 2.5% and 5.6% for Model B and Model A, respectively.
Second, since stack interleaving implicitly erases new stack frames, one can avoid
potential double clearing. We evaluated this for huffbench by manually removing
the calls to memset on stack buffers. This reduces overhead from 7.2% and 8.5%
down to 3.9% and 5% for Model B and Model A, respectively. A compiler could
assist in avoiding large stack allocations. Third, one could optimize frequent
stack frame allocation and deallocation in favor of less frequent pre-allocation.
For example, when having frequent calls to the same subfunction inside a loop,
one could pre-allocate the subfunction’s stack frame at the call site, thus reducing
the stack interleaving overhead from N loop iterations to one.
Heap Interleaving. For heap interleaving, we only evaluate benchmarks that
use heaps. We use a simple heap implementation provided with FreeRTOS,
namely, heap-4. Moreover, we wrap (de)allocation routines to claim and unclaim
allocated memory using checked store instructions. The runtime overhead of heap
interleaving is slightly below 14%, as shown in Figure 4.10, which is comparable
to stack interleaving. We believe further improvements are possible since our
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Figure 4.10: Runtime overhead of additional heap interleaving.

realloc wrappers currently do not reuse allocations but always request new
memory with malloc. The huffbench test shows negligible overhead because it
allocates only one out of many buffers on the heap.

Our secure malloc wrapper acts like calloc, clearing the whole buffer while
changing tags. Likewise, our secure free automatically erases all data while
restoring the original tags. Thus, for security-critical code that demands such
zeroing functionality already, heap interleaving comes virtually for free.

4.8.3 Microbenchmarks

In the following, we discuss the performance of trusted services as well as
horizontal transitions between apps and enclaves. The performance numbers are
summarized in Table 4.6. We depict SHA256 hashing costs in a separate column.
Trusted OS services. Trusted OS services are invoked like ordinary functions;
hence, the transition denoted as TSenter has minimal overhead. When returning
from a TSenter via TSleave, TagRoot clears all callee-saved registers to avoid
information leakage. The following results show the performance of the individual
trusted OS service calls without TSenter and Tleave overhead.

The base cost of create-enclave is dominated by claiming the ECB. We show
the runtime when creating the first enclave. The runtime slightly increases when
adding more enclaves since we chain all ECB’s in a linked list. For add-region,
we show the runtime for adding the first region. The runtime grows with the
number of regions and the number of enclaves due to the region overlap checks
add-region performs. This variability is acceptable since overlap checks are
cheap. Also, overlap checks are only performed at enclave initialization but not
during runtime. For add-data and add-entries, runtime increases with the
size of the added data blob or the number of added entries, respectively. This
is because changing memory tags as well as computing the hash measurement
depends on the amount of data. Also, performance slightly depends on the
position of the associated enclave region in the ECB. The base costs are shown
in Table 4.6 when adding one data word or one entry to the first enclave region.
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Table 4.6: Enclave performance in expected CPU cycles.

Functionality
TIMBER-V Model B TIMBER-V Model A
Base cost Hash cost Base cost Hash cost

TSenter 7.1 0.0 9.0 0.0
TSleave 27.4 0.0 32.0 0.0
create-enclave 527.5 5647.1 759.0 7175.0
add-region 396.3 5821.6 606.0 7483.0
add-data 212.0 11309.4 340.0 14365.0
add-entries 206.4 5616.2 348.0 7127.0
init-enclave 123.5 5236.6 208.0 6397.0
load-enclave 315.6 0.0 437.0 0.0
destroy-enclave 733.5 0.0 1057.0 0.0
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TSyscall 68.3 0.0 71.0 0.0
TSyscall dispatch 71.1 0.0 88.0 0.0
TSyscall return 49.2 0.0 66.0 0.0
get-key 337.5 12216.6 457.0 15686.0
shm-offer 1045.6 0.0 1560.0 0.0
shm-accept 1455.0 0.0 2062.0 0.0
shm-release 231.7 0.0 317.0 0.0
interrupt-enclave 107.7 0.0 175.0 0.0
resume-enclave 103.0 0.0 200.0 0.0T
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TUenter 1.0 0.0 1.0 0.0
TUleave 4.1 0.0 5.0 0.0
ocall 16.9 0.0 29.0 0.0
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ocall return 28.4 0.0 45.0 0.0

init-enclave has constant overhead. In contrast, destroy-enclave un-
claims all enclave memory with a linear sweep over the enclave. We show the
runtime of destroying an empty enclave. load-enclave validates the MPU con-
figuration against the loaded enclave’s ECB, hence the moderate overhead. Once
an enclave is loaded, horizontal transitions between U-mode (app) and TU-mode
(enclave) experience no principled overhead, as discussed later.
Trusted enclave services. Trusted enclave services are implemented as
TSyscalls, which experience slight overhead due to M-mode trap delegation.
TSyscall dispatching includes validation of the MPU configuration for vertical
stack interleaving and jumping to the correct service routine. A return from a
TSyscall unwinds the dispatcher context, clears all caller-saved registers, and
returns to TU-mode using the RISC-V sret instruction. In the following, we
exclude TSyscall, dispatch, and return overhead.

get-key computes an HMAC using two SHA256 computations, hence the
overhead.shm-offer needs to check the validity of the arguments–not only their
memory tags but also whether the arguments belong to the calling enclave.
Apart from that, the performance is constant and independent of other enclaves.
shm-accept traverses the linked list of ECB’s to find a matching shm offer. For
our benchmarks, the first enclave in the linked list has a corresponding shm offer.
shm-release only erases the accepted shm region from the enclave’s ECB, in
our case, the fifth enclave region.
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Interruption and resumption of enclaves (and TagRoot) is quite fast and
mainly consists of saving and restoring the execution context in the interrupt
frame. As before, the performance numbers of interrupt-enclave and resume

exclude TSyscall latency due to trap delegation, while TSyscall dispatch and
return overhead do not apply here.
TUenter and TUleave. As shown in the last rows of Table 4.6, TUenter has
no overhead, showing only one jump instruction into the enclave. TUleave only
takes longer because of an assumed pipeline stall of the ret instruction. When
enclaves call untrusted functions on the outside, these ocalls need to securely
store and verify the stack pointer, as discussed in Section 4.5.2. Moreover, an
enclave must clear sensitive CPU registers on TUleave as well as ocalls, which
can be automated, e.g., via so-called edge routines in the SGX SDK [Int16b].

4.8.4 Memory Overhead

TIMBER-V adds two tag bits to each 32-bit memory word, thus introducing
6.25% hardware memory overhead. Our TIMBER-V architecture directly runs
unmodified code and, thus, does not introduce software memory overhead. Like-
wise, our code hardening transformation does not introduce memory overhead,
since memory instructions are replaced 1:1 with checked instructions. Slight over-
head only occurs if additional instructions are inserted for fixing offset overflows,
as discussed in Section 4.8.2. Heap interleaving needs small constant-sized code
memory for the allocation hooks but, in turn, avoids the need for secure heap
implementations, which in total reduces code size. We do not give actual numbers
since this strongly depends on the heap implementation. Stack interleaving needs
additional code for stack frame allocation and deallocation. Currently, we insert
checked store instructions for each allocated word, thus showing 43% overhead
in assembler code lines for the expensive minver benchmark. However, when
optimizing for code size, one could simply achieve constant overhead per stack
(de)allocation by embedding checked stores in a loop. We manually optimized
stack interleaving for minver and reduced the code overhead to 1%.
TagRoot Code Size. We used sloccount to count the number of source code
lines as an estimate of TagRoot’s complexity. TagRoot consists of 369 lines
of assembler code and 1686 lines of C-code, from which 313 lines are used by
HMAC and SHA256. This code base is relatively small, which is desirable for a
trusted computing base as it reduces the risk of programming bugs. Also, the
small size is beneficial for formal verification techniques that could help certify
our TagRoot implementation [Kle+10]. As a comparison, the used FreeRTOS
operating system has approximately 12 500 lines of code.
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4.9 Related Work

In this section, we compare TIMBER-V against related work on enclaves as well
as tagged memory.

4.9.1 Enclave Architectures

Many architectures were designed during the evolution of enclaves, which we
outlined in Section 2.2. In the following, we compare TIMBER-V against other
enclave architectures designed for small embedded devices.

SMART [Eld+12], Sancus [Noo+17], Soteria [Göt+15], TyTAN [Bra+15], and
TrustLite [Koe+14] implement program counter-based memory access control
for isolating secure tasks. The memory of a secure task is only accessible when
the program counter is in the task’s code region. Sancus has a hardware-only
TCB and isolates a fixed number of small uninterruptible secure tasks stored
in predefined memory locations. TyTAN and TrustLite use an execution aware
MPU (EA-MPU) with multiple code and data regions per secure task. TrustLite
loads all secure tasks at boot time, while TyTAN allows dynamic loading and
unloading of secure tasks at runtime. The EA-MPU makes context switches
faster but limits the number of concurrently loaded secure tasks. In contrast,
TIMBER-V supports an arbitrary number of enclaves with fine-grained, dynamic
isolation, and multiple entry points.

Secure communication in TrustLite is done via a simple handshake protocol,
where two secure tasks first attest each other and then use cryptographic session
tokens to authenticate messages. In TIMBER-V local enclave attestation and
communication is done implicitly via shared memory, without any additional
encryption. TyTAN uses a dedicated IPC proxy task that forwards messages
between secure tasks, introducing copying overhead (1324 CPU cycles). In
contrast, our secure shared memory is a fast alternative for exchanging bulk data
between enclaves.

TrustZone-M [Arm17] supports four security domains like TIMBER-V. Hor-
izontal and vertical domain transitions require special instructions, while in
TIMBER-V domain switches are direct, thus imposing zero runtime overhead.
TrustZone-M only supports secure and non-secure tasks. Our architecture sup-
ports mixed processes, where enclaves are directly embedded in untrusted pro-
cesses. Moreover, our tagged memory approach has a finer granularity. TrustZone-
M optionally supports two separate MPUs, one for the secure and one for the
non-secure world. We reuse the same MPU across security domains, thus saving
hardware costs. Also, our dynamic memory interleaving allows for stack (and
heap) reuse, while TrustZone-M requires separate stacks for each domain.

4.9.2 Tagged Memory Architectures

The availability of metadata is the foundation for a multitude of runtime mon-
itoring techniques like various sanitizers [Ser+12; SS15], as well as dynamic
information flow tracking (DIFT) or taint tracking [SAB10]. Subsequently, many
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hardware-based tagged memory architectures have been developed. In particu-
lar, DIFT implementations range from single tag bit schemes with fixed policy
(e.g., Minos [CWC06] and CHERI [Wat+15]), over multi-bit schemes with par-
tially configurable policy (e.g., Raksha [DKK07], DIFT [Suh+04], DIFT with
coprocessor [KDK09]), to schemes with configurable bit width and fully pro-
grammable policy and enforcement (e.g., FlexiTaint [Ven+08], instruction-grain
lifeguards [Che+09], Harmoni [DS12], PUMP [Dha+15]).

Compared to DIFT architectures, TIMBER-V has notably different charac-
teristics. Firstly, DIFT schemes have a strong focus on performing tag/taint
propagation during ALU operations. TIMBER-V, on the other hand, does not
perform any tag propagation but utilizes tags for isolation purposes. While it is
possible to use a DIFT architecture solely for isolation in some schemes [DKK07;
Dha+15], this is needlessly wasteful. Secondly, TIMBER-V introduces a new
trusted security domain, and the isolation and update policies depend on the
currently active domain. Partially configurable DIFT architectures typically
do not support such a domain switch. Finally, even fully programmable DIFT
architectures are not necessarily suited for implementing TIMBER-V. Namely,
architectures that perform tag operations asynchronously to the main proces-
sor [Che+09; KDK09; DS12] introduce a TOCTOU gap that can potentially be
used to exfiltrate data from the trusted domain.

Besides DIFT-based architectures, other architectures use tagged-memory for
enforcing various kinds of memory protection. HardBound [Dev+08] implements
fat pointers in order to prevent spatial memory safety violations. HDFI [Son+16]
uses a single tag bit to protect sensitive data words. However, in HDFI, tag
checks are only performed when reading the data. This means that destructive
write operations on sensitive data can not be prevented but only detected. This
property corresponds to the weak low-watermark policy for objects of the Biba
integrity model [Bib77]. In contrast, TIMBER-V follows the stronger strict
integrity policy of the Biba model by refusing untrusted modifications of trusted
data. Compared to that, Mondrian Memory Protection [WCA02], which uses
two tag bits, and Loki [Zel+08], using up to 32 tag bits per word, are more
similar to TIMBER-V. However, both concepts solely use tagged memory to
implement word-wise access permissions, which is not sufficient to implement
efficient enclave isolation. Additionally, when different permissions are tightly
interleaved, Loki’s tag size is simply too large for low-end devices that we target.

4.10 Possible Extensions

The concept of TIMBER-V can be directly applied to other system components,
such as caches and I/O peripherals. Together with secure interrupts, one can
implement flexible safety-critical systems.
Secure Components and Peripherals. One can easily extend CPU caches
with our two tag bits and propagate them to main memory on cache eviction. Also,
memory-mapped I/O peripherals can benefit from TIMBER-V’s tag isolation
policy by pinning their tag bits in a tag cache. That way, TIMBER-V can
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facilitate secure I/O, that is, secure interaction with end users, sensors, actuators
or other networked devices.
Secure Interrupts. Most embedded systems react upon regular timer or
irregular I/O interrupts. TIMBER-V supports secure interrupts by modifying
the M-mode trap delegation mechanism to always route interrupts directly to
the trusted trap handler. Since this trap handler is not callable but protected
via TS-tag, fake interrupts from S-mode are prevented.
Safety-critical Systems. TIMBER-V is a lightweight enclave architecture
designed for security. Extending it for safety-critical systems with availability
guarantees is an interesting field of research and should be straight forward.
We denote safety-critical enclaves as safeclaves. In order to guarantee real-time
behavior, safeclaves must be protected against denial-of-service attacks (DoS).
Safeclaves are not triggered by untrusted code but by external I/O events or
recurring timer periods. TagRoot can intercept safeclave interrupts as discussed
before in order to trigger safeclave execution assuredly. One cannot simply use
dynamic memory interleaving for safeclaves, since untrusted code could trigger
security violations. Normal enclaves, however, can still benefit from interleaving.
Also, by slightly adapting our shared MPU design, one can exclude safeclave
MPU slots from being shared, making safeclaves safe against DoS from the
operating system.

4.11 Summary

We presented TIMBER-V, a security architecture that brings the concept of
enclaves to resource constrained RISC-V processors. TIMBER-V is the first
efficient tagged memory architecture for isolated execution of enclaves. It mini-
mizes memory overhead of tagged memory to 6.25% by augmenting tag isolation
with MPU isolation. Our MPU supports shared slots between enclaves and
their host applications. The runtime overhead varies between 25.2% for naive
implementations and 2.6% for CPUs with tag caching.

The flexibility of TIMBER-V enables fine-grained and dynamic management
of trusted memory. Dedicated tag-aware memory instructions can be used to
simply and instantly check and update memory tags. Thus, TIMBER-V enables
heap interleaving as well as interleaving of interrupt frames and other enclave
metadata within untrusted memory. We also present a novel stack interleaving
scheme that shares the same stack across multiple security domains. Interleaving
reduces memory fragmentation, which is particularly relevant to low-end devices.

A small trust manager provides trusted services to the untrusted operating
systems and enclaves. It manages the enclave life cycle, sealing, attestation,
secure interrupt handling, and shared memory. Our secure shared memory has
zero runtime overhead and allows m:n connectivity between enclaves. Shared
memory provides an implicit means for local attestation. We implemented
and evaluated TIMBER-V on the RISC-V Spike simulator to demonstrate its
practicality. TIMBER-V is fully open source.
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SGXJail: Defeating Enclave Malware

Beware of no man more than of yourself; we carry our worst enemies within us.

Charles Spurgeon

SGX enclaves can effectively shield good code from a bad operating environ-
ment. Even if any other part of the software is manipulated or compromised,
SGX maintains the security guarantees of enclaves. The strong isolation of SGX
enables many new use cases, such as trusted cloud computing, where tenants do
not only distrust the other tenants, but also the cloud provider and its hardware
and software infrastructure [BPH14; Sch+15; Gje+17].

However, what if the roles of good and bad were flipped? What if an enclave
started misbehaving and attacking their environment? Assuming an enclave
always behaves “good” seems like distributing a cloak of invisibility to criminals
for free. Multiple researchers already warned years ago that SGX’s strong isolation
guarantees might be abused to develop irreversible malware [Rut13; DF14; CD16].
Unfortunately, this enclave malware threat is no longer pure theory, as we are
evidencing functional attacks in the recent past. We have seen not only enclave
malware exploiting side channels [Sch+17] but also enclave ransomware and
shellcode [Mar18], however, with the help of a colluding host application. Recent
research showed that enclaves could effectively hijack and impersonate any benign
host application [SWG19], opening up enclaves for various types of userspace
malware. Having witnessed those early proof-of-concept attacks, we can expect
that more sophisticated and real-world attacks will appear in the future. Hence,
it is indispensable to explore the defense space providently, before real-world
attacks are being mounted.
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Unfortunately, little is known about how to address this emerging threat
adequately. While conventional programs can be scanned for misbehavior by
anti-virus technology, SGX is a complete game changer when it comes to enclave
analysis. On the one hand, SGX prevents runtime inspection of enclaves. On
the other hand, SGX allows lazy loading of malicious enclave content at runtime.
Thus, malware infection can be totally decoupled from enclave distribution and
installation. This renders all static analysis techniques checking for enclave
malware useless. In other words, SGX is a viable alternative to malware ob-
fuscation and analysis evasion techniques. So far, no practical defense against
enclave malware exists. If Intel chose to allow certified anti-virus software to
inspect enclaves, this would undermine essential security guarantees and is in
fundamental conflict with the very goal SGX has [Rut13]. Others proposed to
detect enclave malware via their I/O behavior [DF14; CD16]. Analyzing all
enclave I/O operations is not only prone to false positives and false negatives.
The effort for doing so is believed infeasible in practice [Mar18]. Others proposed
to embed malware analysis code within the enclave itself [CD16]. Enforcement
of such a policy raises several questions regarding its practicality and efficacy.
Consequently,

“[...] the release and adoption of SGX-protected enclaves is likely to
require a completely new approach to protecting our machines from
the very malware SGX was designed to prevent.” [DF14]

In this chapter, we propose the first practical defense mechanism against
enclave malware. To do so, we analyze enclave primitives and their resulting
attack vectors. We identify the root cause for the enclave malware threat as a too
permissive feature set available to enclaves. This forces applications to blindly
trust any enclaves they host. Consequently, a proper defense mechanism should
give applications means to confine enclave operation to a clearly specified interface.
To that end, we propose SGXJail, a lightweight yet effective measure to establish
mutual distrust between enclaves and their host applications. SGXJail does so
by confining enclave operation to a set of memory pages defined at the discretion
of the host application. This mitigates entire classes of runtime attacks (e.g.,
ROP, JOP, DOP) from the enclave to the host. Further reasoning about enclave
misbehavior can be purely based on the legitimate communication interface. We
instantiate SGXJail using process sandboxing and syscall filters and demonstrate
its efficiency. Furthermore, we propose HSGXJail, a minimal hardware extension
to the SGX specification. It leverages Intel memory protection keys to confine
enclave execution, which is even more efficient than SGXJail. (H)SGXJail is
opt-in, works on unmodified enclaves, and can be easily integrated with the SGX
software development kit. We provide the code open-source.1

With SGXJail, we expand possible SGX use cases beyond isolated execution.
We envision modern software, which is additionally hardened using SGXJail
against potentially malicious or misbehaving third-party code. Such hardening

1The code is available at https://github.com/IAIK/sgxjail

https://github.com/IAIK/sgxjail
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can be vital for any software making use of third-party plugins and add-ons, such
as browsers, mail clients, or password managers.
Contributions. We summarize our contributions as follows:

� We systematically break down the enclave malware threat and identify a
number of enclave malware primitives.

� We devise SGXJail, the first practical defense against enclave malware.

� We implement and evaluate SGXJail in software.

� We propose highly efficient HSGXJail via minimal hardware changes.

This chapter is based on the publication [Wei+19a], of which I am the main
author, while Michael Schwarz and Luca Mayr contributed a significant part to
the implementation of SGXJail. The rest of the chapter is organized as follows:
Section 5.1 describes the threat model. Section 5.2 analyzes various enclave
primitives and attack vectors. Section 5.3 presents (H)SGXJail. Section 5.4
discusses related work. We summarize our discussion of enclave malware in
Section 5.5 and conclude in Section 5.6.

5.1 Threat Model

In this section, we first outline various application scenarios of SGX and argue
why the original SGX threat model does not properly address enclave misbehavior.
We then present our extended SGX threat model addressing enclave malware.
Scenario A. In the near future, SGX technology will likely permeate consumer
systems and create diverse and many-faceted trust relations. Multiple independent
software vendors (ISV) can use SGX for mutually protecting their proprietary
library code (e.g., multimedia codecs, classification algorithms) or sensitive
customer data (e.g., user passwords, encryption keys, or bitcoin wallets) inside
third-party enclaves. Applications can embed such third-party enclaves to leverage
their functionality.

In this scenario, an attacker develops innocent-looking enclave malware (e.g.,
disguised as browser plugins) and distributes it as a third-party enclave via
existing software stores or repositories. A user installs those third-party enclaves
alongside other applications. The attacker defers the installation of malicious
payload to enclave runtime via a generic loader [Rut13]. Hence, neither the
maintainers of software repositories nor the user can detect malware installation.
The enclave can choose when to trigger its malicious activity.

Enclave malware might not only be invasive in nature like ransomware, bots,
or rootkits. A malicious enclave can also stealthily track the system by collecting
data about users without their knowledge or consent. Since the enclave shields
tracking logic, the enclave developer achieves plausible deniability.
Scenario B. As more software is moved into enclaves, chances increase for
exploitable vulnerabilities within enclave code. Enclaves are equipped with
increasingly complex software, such as fully-fledged TLS stacks [Int19] or library
OSes [BPH14]. Thus, it is just a matter of time vulnerabilities in the trusted
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code of enclaves are discovered and exploited. In fact, it has already been shown
that enclaves are prone to various attacks [Wei+16; Lee+17a; Sch+18a; Bul+19].
Such vulnerabilities could be used to infiltrate trusted enclaves with a malicious
payload at runtime.
A Holistic Threat Model. The original threat model of Intel SGX considers
all non-enclave code as untrusted, including application code hosting enclaves.
This model might be well-suited from an enclave’s perspective. However, it does
not fit more advanced application scenarios outlined before, leaving applications
completely unprotected against misbehaving third-party enclaves. This creates a
dangerous asymmetry, as also outlined by Schwarz et al. [SWG19].

In this chapter, we introduce a more holistic threat model that does not violate
the original threat model of SGX but augments it to address misbehaving enclaves
explicitly. We consider a commodity system running software from various
independent software vendors. On the one hand, third-party library vendors
protect their secret data (e.g., cryptographic keys or intellectual property) inside
enclaves. On the other hand, application developers include third-party enclaves
in their applications for implementing various tasks. They also want some form
of protection against third-party enclaves that are misbehaving, for the reasons
outlined before. SGXJail provides this protection mechanism. From a user’s
perspective, the computer (including the operating system and most applications)
are trusted. SGXJail needs to protect applications (and, subsequently, the
computer) from potential enclave misbehavior, even if a dedicated attacker fully
controls such enclaves (e.g., enclave malware).

SGXJail protects applications against any inspection or alteration of their
state (memory, CPU registers) by enclaves, apart from what they are exposing
to the enclaves via the ECALL/OCALL interface. SGXJail does not prevent
API attacks that exploit too permissive OCALLs or poorly designed interfaces.
Avoiding Iago attacks and confused deputy attacks is a separate, yet important
line of research, as we discuss later. SGXJail focuses on security rather than
availability. Hence, malware that exploits system resources such as CPU power
(e.g., cryptocurrency miners) is not prevented. Moreover, this work does not
focus on microarchitectural side channels, although SGXJail prevents specific
classes of side-channel attacks. Finally, the CPU hardware is considered trusted.

5.2 Analyzing the Enclave Malware Threat

In this section, we analyze enclave primitives leading to various memory safety
attack vectors on the application. Those primitives help us design a proper
defense mechanism and solve the enclave malware threat at the level of memory
safety. Attackers are left with high-level API attacks, as discussed at the end of
this section.
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Table 5.1: Enclave primitives leading to various attack vectors on the host application.

Attack
Requirement Arbitrary

Read
Arbitrary
Write

Arbitrary
EEXIT

Information disclosure 3 7 7
Control-flow attacks (3) 3 (3)
Data-only attacks (3) 3 7

5.2.1 Enclave Primitives

Intel SGX entrusts enclaves with powerful primitives leading to different memory
safety attacks, as depicted in Table 5.1. We outline them in the following.
Arbitrary read. An enclave can read arbitrary memory of the host application,
which is intended for exchanging data between enclave and host. Furthermore,
an enclave can use hardware transactions to suppress exceptions stemming
from reading inaccessible memory [SWG19]. Attackers can misuse hardware
transactions as powerful fault-resistant arbitrary read primitive.
Arbitrary write. An enclave can write arbitrary writable host memory,
which, again, is intended for data exchange. Furthermore, it can use hardware
transactions to suppress exceptions while writing inaccessible or non-writable
memory [SWG19]. This yields a fault-resistant arbitrary write primitive.
Arbitrary EEXIT. An enclave can choose the precise code location in the
application where execution shall continue after leaving enclave execution via the
EEXIT instruction. Moreover, the enclave has control over many CPU registers
immediately after an EEXIT, in particular the stack pointer. Hence, an enclave
can configure the application’s CPU state before resuming application execution.

5.2.2 Attack Vectors

Given the above primitives, a malicious enclave can mount a broad range of
attacks violating memory safety of the host application. In the following, we
cluster them into information disclosure, control-flow attacks as well as data-only
attacks and give representative examples of these attacks. A detailed overview of
attacks violating memory safety was presented by Szekeres et al. [Sze+13].
Information disclosure. A malicious enclave can use the arbitrary read prim-
itive to exfiltrate sensitive user data, such as cryptographic keys or passwords,
from the host application. Even if the application contains no such user secrets,
an enclave can disclose other sensitive information, e.g., as used in various runtime
protection mechanisms. For example, an enclave can derandomize application
protection schemes like ASLR [PaX03], stack canaries [Cow98], code randomiza-
tion [PPK12], or randomization-based control-flow integrity schemes [Kuz+14;
Mas+15]. The enclave can furthermore disclose the host application’s codebase
and, subsequently, generate targeted exploitation payload via ROP chains on
the fly. Thus, information disclosure is a powerful tool often used for subsequent
exploitation.
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Control-flow attacks. A malicious enclave can deliberately tamper with the
application’s control flow in several ways. For example, it can directly corrupt
code pointers, use rogue EEXITs and bypass various mitigation mechanisms.
Code pointer corruption. An enclave can manipulate an arbitrary code
pointer of the host using the write primitive. It might corrupt, e.g., return
addresses on the stack or virtual function pointers on the heap. As soon as the
application fetches a corrupted code pointer, execution diverts to an attacker-
chosen address. By carefully crafting a so-called ROP chain (cf. Section 2.1.1)
and diverting execution to it, the attacker can gain arbitrary code execution
with the privileges of the application, allowing to execute arbitrary syscalls in
lieu of the application. In order to prepare a ROP chain, the enclave scans the
host application for ROP gadgets using the arbitrary read primitive. It then
writes the corresponding addresses on a fake stack using the arbitrary write
primitive [SWG19].

A malicious enclave is by no means restricted to ROP attacks only. Similar
to ROP, it can craft jump-oriented programming (JOP) attacks, loop-oriented
programming (LOP) attacks, or call-oriented programming (COP) by overwrit-
ing indirect function pointers [Che+10; Ble+11; Lan+15; CW14; Gök+14].
COOP attacks are also possible by overwriting virtual function pointers in C++
applications [Sch+15]. SROP attacks [BB14] hijack a signal handler.
Rogue EEXIT. A malicious enclave can also mount control-flow attacks without
corrupting a single code pointer. By using the arbitrary EEXIT primitive, the
enclave can directly corrupt the CPU state. For example, it can manipulate the
stack-pointer register to point to an attacker-crafted ROP chain. By doing an
EEXIT instruction towards an arbitrary ret instruction of the host, the enclave
can immediately trigger the ROP chain. Thus, rogue EEXITs lead to the same
security implications as ROP.
Bypassing Defenses. Several defense mechanisms seek to protect the ap-
plication’s control flow. Stack canaries [Cow98] protect against linear buffer
overflows overwriting return addresses on the stack. ASLR [PaX03] hides code
addresses via randomization, while others randomize code itself [PPK12]. Both
make the generation of ROP gadgets harder. More elaborate mechanisms enforce
control-flow integrity (CFI), arguably at different granularity. CPI [Kuz+14]
hides code pointers in a shadow stack2 while CCFI [Mas+15] encrypts code
pointers. As these mechanisms rely on randomization, they can be easily broken
by the enclave via information disclosure. If CFI metadata is involved, it can
be easily corrupted using the write primitive. Stronger hardware-enforced CFI
schemes like CET [Int17a] are still unavailable on modern x86 CPUs, and it is
unclear to what extent they consider rogue EEXIT attacks.
Data-only attacks. Apart from control-flow attacks, enclaves can corrupt
application data other than code pointers or CFI metadata. For example, they
can corrupt loop counters, function arguments, or syscall arguments [Car+15;
Isp+18] using the arbitrary read/write primitives. Typically, data-only attacks

2This corresponds to the weaker randomization scheme since the stronger segment-based
isolation is unavailable for 64-bit execution mode.
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are much more restricted than control-flow attacks. For example, they can only
reuse code reachable in the normal control flow. However, data-only attacks
are agnostic to CFI protection schemes and can even achieve Turing-complete
computation in many cases by chaining together valid execution paths [Isp+18].

5.2.3 API attacks

The previous attack vectors all violate memory safety of the application by reading,
writing, and illegitimately executing application memory. Defeating these attacks
is paramount to protecting an application from misbehaving enclaves. Only
with such protections in place, it makes sense to reason about the application’s
security on the API level. SGXJail does not defend against too permissive
OCALLs, e.g., giving an enclave the ability to access arbitrary files. We need
to ask to what extent an enclave can attack its host application purely via the
ECALL/OCALL interface, that is, without relying on the above SGX attack
primitives. For example, an enclave can seek to attack the application by crafting
invalid API calls or returning malformed data. For a successful attack, either the
API itself needs to be flawed, or the underlying implementation misses important
validation steps (e.g., confused deputy attacks [Har88] and Iago attacks [CS13]).
Since such API-based attacks are highly application-specific, they cannot be
addressed by a generic defense mechanism anticipated in this chapter. We discuss
proper mitigation strategies in Section 5.5. Also, we do not address the misuse
of computational power (e.g., for cryptocurrency mining).

5.3 SGXJail

In this section, we present SGXJail, a novel mechanism to protect host appli-
cations from untrusted (third-party) enclaves. SGXJail defeats entire classes of
attacks by prohibiting enclave primitives outlined in Section 5.2 at the discretion
of the host application. SGXJail can be implemented purely in user space. It
relies on process isolation and syscall filters, similar to other sandboxing tech-
niques, such as Docker [Mer14]. We evaluate SGXJail under different workloads
to demonstrate its efficiency. Finally, we show how SGXJail can also be im-
plemented via minimal changes to the SGX specifications and corresponding
hardware, which we call HSGXJail.

5.3.1 SGXJail via Software Confinement

SGXJail defeats enclave malware by breaking all three enclave primitives described
in Section 5.2.1. SGXJail does so by confining enclave operation to a strict set of
memory pages.

Figure 5.1 illustrates the basic idea of SGXJail. To break the arbitrary
read and write primitives, we rely on the operating system’s ability to isolate
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processes.3 Namely, we run potentially malicious or misbehaving enclaves in
a separate sandbox process that does not have access to the host application’s
memory. To still allow benign ECALL/OCALL interaction, we establish shared
memory between the sandbox process and the host application to implement a
form of inter-process communication.

Even with the above process isolation in place, a malicious enclave can
perform attacks on the control flow of the sandbox process. An enclave can
choose between rogue EEXIT attacks and code-reuse attacks (e.g., ROP) that
directly manipulate the host stack [SWG19]. Once successful, the enclave can
issue arbitrary syscalls on behalf of the sandbox process. Breaking the primitives
that allow an attacker to change the control flow is not trivial. EEXIT can jump
to any executable page, and the target address cannot be restricted. Similarly, if
the enclave rewrites the saved return address on the stack, the sandbox process
cannot detect this modification.

A possible but rather expensive solution is to mark all executable pages of the
sandbox process (except for trampoline code) as non-executable before entering
the enclave. When leaving the enclave, the sandbox immediately traps to the
kernel. The kernel can then assess the legitimacy of the control flow and remap
the pages as executable. However, the extra kernel interaction and frequent,
expensive page remappings might add considerable runtime overhead.

Instead of trying to protect the control flow in the sandbox process, we
confine the damage of hijacking attacks. In particular, SGXJail restricts the
syscall interface of the sandbox process by using seccomp syscall filters [Lin17]
to whitelist only absolutely necessary syscalls. Even if a malicious enclave gains
arbitrary code execution inside the sandbox process, it can no longer perform
malicious actions. In contrast to sandboxing techniques such as Docker, which
isolate the entire system (e.g., via cgroups), we only need to restrict a single user
process for which syscall filters are the appropriate choice.
Life Cycle. A complete SGXJail life cycle works as follows: First, SGXJail
creates a new process, the sandbox process. It then loads the third-party en-
clave within the sandbox process. Moreover, SGXJail creates a shared memory
between the host application and the sandbox process and installs dispatchers
for routing all ECALLs and OCALLs through this shared memory. Afterward,
SGXJail activates seccomp filters to restrict the syscalls of the sandbox process
to an absolute minimum. Only syscalls required for the communication between
application and sandbox process, as well as syscalls required to terminate the
sandbox process, are whitelisted. After initialization, the application can issue
ECALLs and receive OCALLs, as follows: The application dispatcher automat-
ically encapsulates ECALLs into messages and transfers them via the shared
memory to the sandbox process. It copies ECALL function arguments from the
host application to the shared memory. The sandbox process dispatcher listens
for incoming messages, decapsulates arriving messages, and performs the actual

3Conforming with Intel’s and our extended SGX threat model, software-based side-channel
attacks circumventing such isolation, e.g., Meltdown [Lip+18] or Rowhammer [Kim+14], are
out of scope.
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Figure 5.1: With SGXJail, third-party enclaves are isolated within a separate sandbox
process. They can communicate with the host application only via shared
memory. Also, the sandbox is confined using seccomp filters.

ECALL towards the enclave. Results are returned to the application, again via
message passing over shared memory. The application dispatcher finally copies
ECALL results from the shared memory to application memory and hands over
control to the application. In the same way, OCALLs are routed from the sandbox
process through the shared memory to the application host and vice versa. Upon
termination of the application, the sandbox process is simply destroyed. Multiple
enclaves can be isolated via separate sandbox processes with individual shared
memory segments.
Compatibility. SGXJail is a transparent enclave confinement mechanism.
It does not require any changes to third-party enclaves themselves, i.e., it
is binary-compatible with existing enclaves and their existing cryptographic
signatures. Also, no enclave source code needs to be available. Instead, SGXJail
is tightly integrated within the SGX SDK [Int16b]. All glue code for dispatching
and redirecting ECALLs and OCALLs via shared memory is automatically
generated from an enclave’s EDL file [Int16b], which needs to be shipped together
alongside each pre-compiled third-party enclave. Also, SGXJail provides code for
instantiating the sandbox process, the shared memory, and activating seccomp
filters. When using SGXJail, one only has to recompile untrusted application
code under the SGXJail toolchain.

The installation of seccomp filters is independent of the enclave itself. Since
enclaves are not entitled to issue syscalls, the selection of proper syscall filters
solely depends on SGXJail and does not affect compatibility with enclaves.

SGXJail enforces benign enclave communication to follow the ECALL/OCALL
interface specified in the enclave’s EDL file. An enclave implementing other
communication methods (e.g., by directly accessing host memory) breaks as
soon as SGXJail is active. This is intentional, as enclave developers are strongly
encouraged to clearly define the enclave’s API via ECALLs and OCALLs. In
particular, SGXJail breaks unsafe usage of ECALLs and OCALLs where enclave
and host application exchange and dereference raw, unchecked pointers rather
than buffered data. For example, if one marks an ECALL function parameter
with the so-called user check attribute within the EDL file [Int16b], the SDK
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passes this function parameter without further checking and copying into the
enclave. A quick code inspection revealed usage of user check in some Intel
architectural enclaves and remote attestation code, all for performance reasons.
They could be updated to avoid user check at the cost of slight performance loss.
To yet support user check, one would need to manually share (i.e., map) host
memory with the sandbox process to which an enclave shall have unrestricted
access. Also, host application pointers passed to the enclave need to be translated
to the sandbox process due to ASLR. SGXJail could provide simple helper
functions for sharing host memory and translating pointers.

5.3.2 Implementation Details

For generating dispatcher code, we extend the edger8r tool [Int16b] accordingly.
An enclave always copies arguments to enclave memory before processing it,
because it distrusts the host. Conversely, before accepting an OCALL, our
dispatchers copy arguments from distrusted enclaves to host memory. Argument
copying prevents TOCTOU vulnerabilities, such as double-fetch bugs [Wan+18],
by design.

ECALLs and OCALLs are routed between the application and the sandbox
process via two distinct shared memory regions, one for each direction. The
dispatchers synchronize ECALL/OCALL interaction via shared semaphores.
Semaphores hav the advantage that processes (application and sandbox) are
consuming no CPU time while waiting for the other communication partner. For
receiving OCALLs, the application installs a separate listener thread that only
gets active upon incoming OCALLs.

Selection of appropriate syscall filters is crucial for the security of SGXJail,
as a malicious enclave can directly exploit a lax configuration (e.g., via rogue
EEXIT attacks). It is favorable to restrict both the number of syscalls as well as
their complexity to reduce the attack surface given by the whitelisted syscalls.
Syscall filtering also has an impact on the type of inter-process communication
between the sandbox and the application process. By choosing shared memory as
a communication channel, we do not require any syscall for the actual communica-
tion and only one syscall (futex) for synchronization. In summary, we configure
seccomp [Lin17] only to allow the syscalls futex necessary for semaphores as
well as exit group for terminating the sandbox process. Thus, the shared mem-
ory approach results in only one whitelisted syscall in addition to the required
exit group syscall. Unless the implementation of these two syscalls is buggy,
they cannot cause a security violation when issued by a malicious enclave.

The SGX SDK passes OCALL function arguments from the enclave to the
application via the application’s stack. The enclave knows the application’s stack
location via the stack pointer (RSP register), which is preserved by the EENTER

instruction. Hence, it can allocate a stack frame on the host stack via a function
called sgx ocalloc and store any outgoing OCALL arguments there. One can
leverage this mechanism for reducing SGXJail overhead, as follows: Currently,
when doing an OCALL, our sandbox dispatchers copy OCALL arguments from the
sandbox to the shared memory. By modifying RSP immediately before an EENTER
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to point to the shared memory, one can instruct the enclave to write OCALL
arguments directly to the shared memory instead of the sandbox application’s
stack. When the enclave EEXITs, one can simply restore the original sandbox
stack (namely, RSP).

In our current implementation, the size of the shared memory is hard-coded
to three pages for each direction. For ECALL/OCALL arguments exceeding
the shared memory, one can dynamically resize the shared memory on demand.
Although multithreaded enclaves are currently not supported by our prototype im-
plementation, support can be easily added: one would install separate semaphores
and shared buffers for all enclave threads that are enumerated in a public enclave
XML configuration file. Also, support for nested calls (OCALLs issuing ECALLs)
can be added by adapting the synchronization mechanism appropriately.

An interesting question arises whether SGXJail should be integrated with
the SGX SDK in a way that does not demand recompilation of the application.
Thus, system administrators could globally enforce SGXJail by just installing
corresponding shared libraries. Since the enclave’s EDL file is public already and
will be distributed alongside third-party enclaves, the generation of dispatcher
code is straight forward. One would also need to hook the enclave API of the
unmodified application binary and inject dispatcher code. This could be done by
preloading SGX SDK libraries (in particular, sgx urts.so).

5.3.3 Evaluation

SGXJail does not affect native runtime performance of host applications or
enclaves. That is, as long as no interaction between enclave and application takes
place, they can run without performance loss. The only performance overhead
occurs when doing ECALLs and OCALLs due to the message passing via shared
memory and the necessary synchronization. To evaluate this effect, we first
present microbenchmarks for bare metal ECALL and OCALL latency, which are
followed by macrobenchmarks on more representative workloads.
Test Setup. Evaluations are done on a commodity notebook featuring an Intel
i5-6200U CPU, a Samsung SM951 SSD, and running Ubuntu 16.04 Desktop
with SGX SDK version 2.4. For the benchmarks, we disabled the screen as
well as network interfaces to reduce noise from screen redrawing or external
interrupts. Also, we fixed the CPU frequency to its maximum (2.3 GHz) and
pinned benchmarks to a single core. The benchmarks include a warm-up phase.
Microbenchmarks. To measure the ECALL latency, we implemented a simple
ECALL and measured its execution time from within the host application.
That is, the ECALL latency includes EENTER, EEXIT, all glue code for the
enclave and the host, as well as context switching and synchronization between
application and sandbox for SGXJail. To measure the OCALL latency, we, in
addition, perform one simple OCALL from within the ECALL and subtract
the ECALL latency. We repeated the measurement 500 times. The resulting
latencies are shown in Table 5.2. The raw ECALL latency increases from 15.6 ·103

cycles to 22.1 · 103 cycles while the OCALL latency increases from 13.4 · 103

cycles to 19.5 · 103 cycles. Hence, the absolute latency remains small. Since
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Table 5.2: ECALL and OCALL latency in CPU cycles of SGXJail compared to the
unprotected Vanilla version. The standard deviation is shown in braces.

Latency ECALL OCALL

Vanilla 15 624 (± 301) 13 438 (± 1046)
SGXJail 22 094 (± 814) 19 515 (± 1360)

many practical usage scenarios of SGX involve somewhat complex computations
inside the enclave, the actual runtime overhead is much lower than the pure
ECALL/OCALL overhead.
Macrobenchmarks. Quantifying the performance of enclaves is highly
application-specific. Unfortunately, enclaves are not widely deployed yet, and
standardized benchmarking suites are unavailable to the best of our knowledge.
A common approach is to port existing programs to an enclave [WBA17]. While
this sounds appealing, it tends to introduce many unnecessary OCALLs to
the standard library, which well-designed enclaves would not perform, e.g., the
getpid syscall in openVPN [WBA17].

Instead, we quantify the performance of SGXJail as follows: First, we bench-
mark a synthetic workload under different OCALL frequencies. The results of
this benchmark are generic and can be applied to any enclave for which the
OCALL frequency can be determined. Second, we benchmark storage of sensitive
enclave data to disk via the Intel protected filesystem (PFS) [Sel16]. The PFS
is integrated within the SGX SDK and is likely to be used by a vast number of
enclaves.

For our first benchmark, we observe that an enclave typically issues OCALLs
to perform syscalls, e.g., writing to files. Our benchmarked OCALL performs
a close syscall on an invalid file descriptor. Such a fast syscall gives an upper
bound on the performance overhead since longer syscalls decrease the influence of
the OCALL overhead. We repeated each measurement 100 times. The OCALL-to-
enclave ratio (w.r.t. their runtime), as well as the overhead of SGXJail, compared
to unprotected Vanilla applications, is given in Figure 5.2. The simple standard
deviation is shown as an area under the curves. We execute a fixed baseline
workload inside the enclave, which corresponds to 2201.44 (± 25.67) ·106 cycles,
or 0.96 (± 0.011) s on our 2.3 GHz CPU. As this workload runs within the enclave,
we quantify it as enclave seconds or Esec. While we keep the enclave workload
constant, we issue OCALLs at different frequencies and measure the additional
OCALL work. The corresponding ratio is shown on the left axis of Figure 5.2. It
allows us to decouple the OCALL overhead from the OCALL frequency, which
we quantify as OCALLs/Esec.

One can see that the overhead of SGXJail is virtually non-existent for low-
frequency OCALLs, meaning that pure enclave execution is not impeded by
SGXJail at all. Even for 10 000 OCALLs/Esec, the overhead is below 3%,
and for a large number of 50 000 OCALLs/Esec the overhead is only around
11%. To put these numbers into perspective, Netflix observed a maximum
of 50 000 OCALLs/s across their systems [GHG18]. For even higher OCALL
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Figure 5.2: Benchmark on unprotected (Vanilla) and hardened (SGXJail) applications,
plotted over different numbers of OCALLs per enclave second (Esec).

frequencies, the OCALL workload starts to exceed the enclave workload in
the vanilla version already. With SGXJail, enclaves can issue up to 113 000
OCALLs/Esec before OCALL processing exceeds actual enclave computations
(ratio=1). For unprotected apps, this point is reached for 164 000 OCALLs/Esec.
Such situations should be dealt with in practice by redesigning the enclave API
and reducing or removing unnecessary OCALLs. Nevertheless, SGXJail only
introduces around 20% overhead, even in this extreme case.

Our first benchmark measures raw OCALL performance. However, this
does not reflect the performance of copying OCALL arguments between enclave
and application. To evaluate the maximum overhead of a real-world scenario,
we benchmark an enclave that only accesses files via the Intel protected file
system (PFS) library [Sel16]. PFS is shipped with the SGX SDK and is intended
for sealing sensitive enclave data on the host file system for persisting state across
reboots. To resemble a worst-case scenario of PFS, we implement and benchmark
a single ECALL that opens a new file (sgx fopen auto key), writes a fixed-size
buffer (sgx fwrite), and immediately closes the file again (sgx fclose). We
repeat the measurements 200 times. After each run, we delete the file and
synchronize the file system to capture the overhead of PFS reliably. Figure 5.3
shows the PFS performance for different payload sizes up to 1MB. The runtime
includes enclave as well as OCALL computation. The simple standard deviation
is shown as an area under the curves.

The maximum overhead for protecting PFS with SGXJail is roughly around
20%. There is almost constant runtime up to 2 kB payloads for SGXJail and
the unprotected vanilla enclave, with a sudden increase at 4 kB payloads. The
reason is that the PFS library caches smaller chunks of data and defers actual
file writing to closing the file with sgx fclose with 8 OCALLs in total. We
manually checked the PFS library and found that a PFS block can hold up
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Figure 5.3: PFS runtime of SGXJail compared to unprotected Vanilla enclaves for
different payload sizes.

to 3072 bytes (specified via MD USER DATA SIZE). When exceeding the internal
buffer of 3072 bytes, the PFS library flushes data to the file system using seven
more OCALLs, resulting in the sudden increase of the absolute runtimes for
SGXJail and the vanilla enclave.

For larger payloads (4 kB and more), the overall overhead does not increase
but falls below 20%. This suggests that argument copying itself is not the
bottleneck of PFS. We verified this by manually removing argument copying in
the sandbox for the actual file write OCALL. Using 1 MB payloads, the overhead
dropped by roughly 3%. Rather than argument copying, the runtime overhead
of SGXJail is dominated by the OCALL overhead since the PFS implementation
chops larger payloads into a sequence of smaller OCALLs. In fact, for 1 MB
payloads, we observed 313 OCALLs in total.

We have shown that SGXJail does not impede pure enclave computation (0%
overhead). For real-world workloads up to 10 000 OCALLs/Esec, the overhead
is below 3% (cf. Figure 5.2). Even for uncommonly high OCALL frequencies
(100 000 OCALLs/Esec), the overhead of SGXJail is still below 20%, whereas
plain writing of protected files with high OCALL interaction comes at only 20%
overhead. To further improve performance, SGXJail could use HotCalls for
faster enclave communication [WBA17]. Alternatively, we propose a lightweight
hardware extension (HSGXJail) that provides SGXJail isolation at virtually no
overhead.
Memory overhead. SGXJail requires one additional process for the sandbox.
As for site isolation in browsers [Rei18], this incurs a constant memory overhead
sandbox and the shared memory.
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5.3.4 HSGXJail via Hardware Confinement

In this section, we propose a more efficient defense mechanism via a minimal
change to the SGX specification concerning Intel memory protection keys (MPK),
i.e., disallowing one MPK instruction in SGX.

To prevent an enclave from accessing host application memory, we propose a
stricter page access policy. To that end, HSGXJail introduces two extensions:
first, data confinement and second, control confinement. First, memory regions
that are not supposed to be used by the enclave shall be inaccessible to the
enclave. Data confinement limits memory pages an enclave can read or write, thus
breaking the arbitrary read and write primitives. Second, EEXIT shall be only
allowed on well-defined exit points. Control confinement prevents the enclave
from misusing EEXIT to jump to arbitrary host application code, thus breaking
the arbitrary EEXIT primitive.
Data Confinement with Intel Memory Protection Keys. The central
issue of enclave malware is an asymmetry in the memory access policy, granting
enclaves unrestricted access to host-application memory. Data confinement uses
a recent protection mechanism called memory protection keys (MPK) [Int16a] to
partition virtual memory into enclave-accessible memory and protected applica-
tion memory. If the enclave attempts to access protected application memory,
the CPU raises a page fault. To prevent the enclave from reconfiguring MPK,
HSGXJail disallows specific MPK instructions in enclave execution mode. Similar
to SGXJail (cf. Section 5.3.1), we use this mechanism to confine enclave execution
to a narrow ECALL/OCALL interface, as shown in Figure 5.4.

Memory protection keys work as follows: they augment page-based read,
write, and execute permissions with additional access policies. Each application
page can be assigned one particular memory protection key. This protection
key is stored directly in the corresponding page table entry (PTE). By assigning
different protection keys to different pages, MPK allows to partition virtual
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memory pages into 16 disjoint protection domains. The PKRU CPU register
controls which access policy is applied to those protection domains. For each
of the 16 protection keys, PKRU allows to selectively disable write and read
access for the current execution thread. The PKRU register can be updated via
the unprivileged WRPKRU instruction, enabling frequent switching of protection
domains within the application. Since each CPU thread maintains its own local
PKRU register, MPK supports multithreading.

For HSGXJail, we partition the application into protection key KA comprising

all application pages and KE , covering enclave memory as well as argument
pages, as shown in Figure 5.4. Immediately before entering an enclave, the
application configures PKRU to confine memory accesses to the enclave only
(WRPKRU KE). During enclave operation, the enclave can only access argument
pages for ECALL/OCALL arguments. After leaving the enclave, the application
re-enables full access to the application itself ( KA ) as well as the argument pages

( KE ) via WRPKRU KA|KE.
To prevent the enclave from manipulating MPK by reconfiguring the PKRU

register, HSGXJail demands a slight modification to the SGX specification.
Whenever HSGXJail is active, the WRPKRU instruction is disallowed for the
enclave and raises an invalid opcode exception instead. This change should be
simple to deploy via a microcode update to the CPU.

HSGXJail poses no limit on the number of applications using third-party
enclaves. However, the number of enclaves within a single application is restricted.
Since MPK supports up to 16 different protection domains, HSGXJail can natively
secure applications utilizing up to 15 distinct enclaves. Note that one protection
domain is needed for the application itself. To support more enclaves per
application, one can follow various approaches: First, in many cases enclaves
provide simple functionality, e.g., ECALLs without OCALLs, or OCALLs for
issuing syscalls but not towards other enclaves. In these cases, enclaves are never
called in an interleaved way and, thus, are never concurrently active. Hence,
the application can safely share the same argument pages and also the same
protection key among those enclaves. This increases the number of supported
enclaves by the degree of enclaves which are not interleaved with other enclaves.
Second, memory protection keys can be dynamically updated and scheduled
among different enclaves. While this supports an arbitrary large number of
enclaves per application, it incurs additional performance penalty in updating
protection keys in the PTEs.
Control Confinement. Whenever leaving enclave execution (via ECALLs and
OCALLs), the enclave jumps into the host application via an EEXIT instruction.
However, since the enclave can freely choose the jump target of EEXIT, a variety
of code-reuse attacks become possible (cf. Section 5.2).

Data confinement already limits an enclave’s read and write access using
MPK. While MPK protects data accesses, it does not prevent fetching code from
other protection domains. This design choice is intentional to enable application
code to update protection domains without accidentally removing access to its
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own code. Hence, data confinement does nothing to protect an application from
rogue EEXITs.

To break the arbitrary EEXIT primitive, HSGXJail restricts EEXIT to a single
valid exit point. In particular, EEXIT can only target the instruction immediately
following a so-called CEENTER instruction. This exit point is similar to the enclave
entry points used to protect an enclave from malicious applications, both of which
are shown as call gates (CG) in Figure 5.4.

Control confinement can be easily implemented via small changes to SGX.
We propose to extend the semantics of EENTER via a novel confined CEENTER

instruction. From the enclave’s perspective, CEENTER behaves exactly as EENTER.
EENTER already stores the exit point (i.e., the address of the instruction immedi-
ately following EENTER) in register RCX. However, SGX leaves it up to the enclave
to store this exit point and later on pass it to EEXIT. In contrast, our CEENTER

instruction additionally stores the exit point in a protected, thread-local storage
called OEXIT which is inaccessible to the enclave. To make use of this exit point,
we propose to adapt the semantics of the EEXIT instruction, as follows: Instead of
jumping to a target provided by the enclave via register RBX, our EEXIT ignores
RBX and instead directly jumps to the address stored in the protected OEXIT

register. Both, CEENTER and EEXIT can be implemented in CPU microcode.
Compatibility. To be fully compatible with existing enclave software, we
activate HSGXJail only on demand. If the application issues a normal EENTER
instruction, HSGXJail is inactive, and SGX behaves as usual. When entering
the enclave via our new confined CEENTER instruction, HSGXJail is active until
EEXIT. Moreover, HSGXJail’s slim design is fully compatible with advanced
SGX features, such as multithreading, dynamic memory management, and
virtualization [Int16a]. The availability of HSGXJail could be indicated via a
model-specific register.
Software Considerations. HSGXJail protects applications from existing,
unmodified third-party enclaves. HSGXJail can be integrated entirely within
the SGX SDK [Int16b], thus being fully transparent to existing application code.
This allows using HSGXJail by recompiling applications without the need to
rewrite any application code.

To use HSGXJail, the SDK needs the following slight adaptations. First, the
SDK replaces EENTER with CEENTER in the untrusted urts library. The urts

library already uses a single exit point, which is the address immediately following
EENTER. The corresponding trusted trts library belonging to the enclave performs
EEXIT only towards this single exit point. Since our modified EEXIT instruction
enforces the same exit point, it does not change the behavior of benign enclaves.
No changes to the trts library are required. Benign enclaves compiled under
the original trts library work out of the box.

For data confinement, the SGX SDK needs to establish enclave-accessible
argument pages reflecting the ECALL/OCALL interface, and configure memory
protection keys accordingly. By default, all application code runs with protection
key zero. Thus, the SDK assigns protection keys, starting with one, to all enclave



5.4. Related Work 94

pages as well as the corresponding argument pages. Similar to the software-only
variant, SGXJail, the SDK can do this once when loading a new enclave.

When doing an ECALL, the SDK additionally copies all input arguments from
application memory to an enclave-accessible argument page. In the same way, the
SDK copies back any output arguments from the argument page to application
memory at the end of an ECALL. The same applies to OCALLs. While argument
copying causes some overhead, it is deemed necessary to generically prevent
TOCTOU attacks and guarantee the security of the application. For the same
reason, the enclave copies untrusted application arguments to enclave memory
before operating on it.

Before entering the enclave, the SDK saves all necessary CPU registers in
application memory, clears sensitive content from the registers, and configures the
application’s stack pointer RSP to point to one of the argument pages. Configuring
RSP in that way causes the enclave to read and write any OCALL arguments di-
rectly from/to the argument page, which is enclave-accessible, without additional
copying overhead. After leaving the enclave, the SDK restores the application’s
CPU registers, including the stack pointer.
Performance Estimates. The functional changes for HSGXJail are minimal.
For data confinement, CEENTER disallows usage of the WRPKRU instruction, which
can be easily implemented in the CPU. Data confinement via MPK shows the
same performance as for MPK without HSGXJail. For control confinement, the
microcode changes we propose to CEENTER and EEXIT are minimal as well. They
only comprise saving and restoring the exit point OEXIT in trusted thread-local
storage. One could store OEXIT in the thread control structure (TCS) [Int16a].
Hence, it is reasonable to expect a negligible overhead of HSGXJail in every
aspect, far lower than the overhead of the software-based SGXJail variant.

5.4 Related Work

Defense by Detection. Researchers proposed to detect enclave malware by
monitoring their I/O behavior [DF14; CD16]. However, this is believed to be
infeasible in practice [Mar18]. Others proposed analyzing enclave code before
actually running it [CD16], which is not feasible for generic loaders. Generic
loaders can remotely fetch arbitrary malicious code at runtime. Refusing such
generic loaders would annihilate all use cases for protecting intellectual property.
Instead, Costan et al. [CD16] proposed to force generic loader enclaves to embed
malware analysis code within the enclave. However, it is unclear how effective
this technique is in detecting malicious code. It also raises the question of who
decides which analysis code to embed and to ensure the analysis code does not
leak enclave secrets. Also, the analysis code cannot be easily updated, and
enclaves without analysis code cannot be executed without risk.
Defense by Prevention. While applying control-flow integrity (CFI) to the
host application sounds appealing, it does not close all attack vectors outlined
in Section 5.2. Although hardware-assisted CFI can prevent some control-flow
attacks [Int17a], they are not yet available and might miss rogue EEXIT attacks.
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Software CFI schemes [Kuz+14; Mas+15] can simply be bypassed by leaking
secrets and corrupting CFI metadata via the arbitrary read and write primitives.
Moreover, no CFI scheme can prevent data-only attacks.

Readactor [Cra+15], Heisenbyte [TSS15], and NEAR [Wer+16] severely limit
the arbitrary read primitive necessary for many attacks by forcing page faults
when trying to access sensitive code. However, they have significantly larger
overhead than SGXJail, and blind ROP attacks might still be possible [Bit+14].
Ryoan [Hun+16] executes malicious enclaves inside a software sandbox using
software fault isolation (SFI). However, Ryoan demands recompilation of the
enclave with SFI, which cannot be applied in our setting. Also, Ryoan severely
restricts the enclave life cycle to a single stateless invocation, which is incompatible
with generic third-party enclaves.

5.5 Discussion

Since the very first blog post in 2013 [Rut13], the enclave malware threat has been
discussed at a high level but was mostly disregarded by the research community.
With recent attacks showing powerful and practical enclave malware, research on
proper defense mechanisms becomes pressing.

In this chapter, we identified three enclave primitives, namely arbitrary
memory reads, writes, and EEXITs. We believe these primitives lie at the heart
of the enclave malware threat by exposing an application to a variety of runtime
attacks originating from misbehaving enclaves. Although these primitives might
increase the flexibility of different SGX programming models, they give rise to
enclave malware. In fact, they are unnecessary in practice, as enclaves ought
to strictly comply with the defined ECALL/OCALL interface. In particular,
the enclave runtime services offered by the SGX SDK demand precise EDL
specification of the data exchanged, and bypassing this specification is considered
bad practice. Moreover, the SDK uses only a single enclave exit point, from
which all ECALLs and OCALLs are dispatched.

Based on these observations, we proposed (H)SGXJail to confine enclave
primitives to the narrow interface specified by the EDL file. (H)SGXJail applies
the principle of least privileges [SS75] also to enclaves and closes an entire class
of runtime attacks, including information disclosure, control-flow attacks, as well
as data-only attacks. Even more, by automatically copying ECALL/OCALL
arguments from and to application memory, (H)SGXJail prevents double-fetch
bugs [Wan+18] by design.

SGXJail paves the way for reasoning about application security based on
application code only (i.e., without trusting any enclave code), and the ECAL-
L/OCALL interface in particular. While SGXJail defeats an entire class of
runtime attacks, it cannot solve the problem of too permissive host interfaces,
e.g., a syscall proxy [Mar18], which allows executing arbitrary syscalls. Further
research on designing and validating ECALL/OCALL interfaces is needed to
avoid API-level attacks via too permissive OCALLs or confused deputy [Har88]
and Iago attacks [CS13]. In general, one has to consider enclave-to-host commu-
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nication not as asymmetric (cf. the kernel’s syscall interface) but as part of a
mutually distrusted API where both communication parties distrust each other.
Mutual distrust is an integral part of designing secure web APIs. Since enclave
malware raises similar threats as web applications, we also see some overlap
in defense strategies. In particular, input validation or sanitization [OWA19,
Section V5] can help prevent Iago-style attacks while verification of the logical
execution flow [OWA19, Section V11] can prevent confused deputy attacks.
Closing Side Channels. Several side-channel attacks mounted against be-
nign SGX enclaves have been shown [Göt+17; Bra+17b; Lee+17b; Wan+17b;
MIE17; XCP15]. Moreover, malicious enclaves themselves can mount side-channel
attacks [Sch+17; Gru+18; SWG19]. Although not the primary focus of this
work, SGXJail prevents a variety of side-channel attacks that rely on accessing
host application memory, e.g., Flush+Reload on shared host libraries used by
the host application from within enclaves, Prime+Probe using host application
arrays [Sch+17], Rowhammer attacks from within enclaves [Gru+18] as well as
TSX-based address probing [SWG19].

5.6 Summary

While designed to increase the security of a computing system, secure enclave
technology, such as Intel SGX, might also be misused for shielding malware inside
enclaves. However, research on potential enclave malware is still in its beginnings,
and practical defense mechanisms are virtually non-existent.

In this chapter, we identified the root cause of enclave malware as insufficient
enclave-to-host isolation. We proposed SGXJail as a generic defense against a
wide range of enclave malware threats. It enforces mutual isolation between host
applications and enclaves, thus protecting applications from potentially misbe-
having or malicious third-party enclaves. SGXJail is an efficient and transparent
software defense, running third-party enclaves in an isolated sandbox. Our proof-
of-concept implementation shows zero overhead for pure enclave computation
and less than 3% for realistic workloads. SGXJail is tightly integrated within the
SGX SDK and can be used out of the box. Furthermore, we proposed SGXJail
directly in hardware. Our HSGXJail mechanism provides enclave confinement
utilizing Intel MPK with slim extensions to the SGX specification at virtually no
cost. We believe HSGXJail should be immediately rolled out via a microcode
update to SGX-enabled CPUs to enable our SGX malware defense proactively.
However, support for MPK is still rare. Although some server CPUs support
MPK [Zha19], it is unclear when x86-based desktop CPUs catch up.

Apart from defending against enclave malware, (H)SGXJail opens up new use
cases for Intel SGX and similar isolation technologies. For example, we envision
that (H)SGXJail can be used as a lightweight and secure sandboxing mechanism
for browser site isolation or plugin management, where third-party code has
proven to be both potentially malicious and potentially security-critical.
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6
Software Side Channels

But when you give to the needy, do not let your left hand know what your
right hand is doing, so that your giving may be in secret. Then your Father,

who sees what is done in secret, will reward you.

Jesus Christ – Gospel of Matthew

Side channels are a subtle yet dangerous threat to security architectures and
enclaves, in particular. A side-channel vulnerability might leak cryptographic
keys or other secret information and, thus, completely circumvent traditional
isolation boundaries. To understand their nature, we first introduce the notion
of the main channel. In Section 2.1, we gave two prominent classes of threat
models. In the first example, an attacker provides malformed input to trigger
vulnerabilities in a piece of software and gain arbitrary code execution. In the
second example, the attacker wants to elevate privileges further by corrupting
other components on the system. In either case, the attacker misuses a designated
communication interface, i.e., the main channel, in order to subvert a system.

Side channels, on the other hand, are not designed on purpose but unintended.
They rather occur as a side effect of various optimizations, resource sharing, or
other design decisions. Also, side channels do not violate the integrity but the
confidentiality of certain operations. A prominent example is the timing channel
that leaks the amount of time an algorithm or program takes to complete or
react. Cache timing channels exploit memory access patterns on a shared cache,
which again influences execution timing. Enclave architectures, such as Intel
SGX, even exhibit strong page-fault side channels by design.

In the following, we introduce prominent side-channel attacks that are relevant
to this thesis. We discuss many software side-channel vulnerabilities found
in literature and their consequences. We also put various vulnerabilities we
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discovered and described in Chapters 7 to 9 into the context of related work.
Furthermore, we outline how to defend against side-channel attacks on three
layers. First, one can try to harden the architecture against the exploitation of
side channels. Second, one can close side-channel vulnerabilities in software to
prevent secret information leakage. This requires knowledge of where in the code
actual vulnerabilities reside. Third, we discuss several tools that were developed
to ease the search for and analysis of side-channel vulnerabilities. Again, we
compare our analysis tool developed in Chapter 8 against related work.

6.1 Side-channel Attacks

Various side channels exist. They range from physical side effects, such as power
consumption [KJJ99], electromagnetic [Eck85], or acoustic emanations [Bac+10],
over side channels leaking keystroke timings [SWT01], and action-based side
channels in the IoT [BBS18] towards powerful software side channels undermining
the security of cryptographic implementations. In this thesis, we focus on the
latter.
Address-based Side Channel. Most side-channel attacks analyze timing
behavior to derive secret input. Measuring and analyzing the overall execution
time of cryptographic primitives has been shown to leak private keys of asymmetric
encryption schemes [Koc96] as well as symmetric encryption schemes [Ber05].
The timing channel might be purely on an algorithmic level [Koc96] or caused by
the underlying microarchitecture [Ber05].

In this thesis, we primarily focus on side channels that stem from memory
access patterns. We generalize them as so-called address-based side channels in
Chapter 8 since different memory addresses are accessed, depending on some
secret value. We distinguish between data and control-flow leakage. Data leakage
occurs if accessed memory locations depend on secret inputs. Control-flow leakage
occurs if code execution depends on secret inputs. Many microarchitectural
attacks [Ber05] operate on an address-based side channel. Also, algorithmic
channels, such as [Koc96], fall into this category, as executed code addresses
depend on the secret key.
Data-based Side Channels. Orthogonal to address-based side channels are
attacks that exploit data leakage. For example, instructions with variable exe-
cution time can leak the processed data. Some Arm processors have variable
time multiplication [Gro+09] and division [PPM17] instructions, where the ex-
ecution time depends on the input operands. On x86, variable-time behavior
was observed for floating-point instructions [And+15], as well as integer divi-
sion [CCS12]. Tsai et al. [Tsa+20] showed that compression of cache lines leaks
data stored therein and allows so-called Pack+Probe attacks. Also, transient exe-
cution attacks [Lip+18; Koc+19; Che+19; Kor+18; Bul+18; Sch+19a; Sch+19b;
Sch+20a; Mur+20] fall outside the category of pure address-based side channels.
They exploit speculation on actual data (e.g., branch decisions, jump targets, or
written data) rather than addresses only.
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6.1.1 Microarchitectural Attacks

Microarchitectural side-channel attacks rely on the exploitation of information
leaks resulting from the contention of shared hardware resources. Especially
microarchitectural components, such as the CPU cache, the DRAM, and the
branch prediction unit, enable powerful attacks that can be conducted from
software only. In these examples, the contention is based on memory addresses.
For instance, attacks exploiting the different memory access times to CPU
caches (aka cache attacks) range from pure timing-based attacks [Ber05] to
more fine-grained attacks that infer accesses to specific memory locations by
manipulating cache state. Cache attacks can target code access patterns via
Flush+Reload [GBK11; YF14] or data accesses via Prime+Probe [Per05; OST06;
TOS10]. Flush+Reload flushes individual cache lines. Thus, an attacker can
observe memory accesses on a cache-line granularity, which is typically 64 bytes.
However, Flush+Reload demands that both the victim and the attacker process
share some common code pages, such as a shared library, for example. In contrast,
Prime+Probe also works on data memory. It can even be carried out over the last
level cache [Liu+15b] across different virtual machines. However, Prime+Probe
has lesser accuracy and requires knowledge of physical addresses. In a hyper-
threaded setting, the level one cache lines are further divided into cache banks.
Hence, attacks on a sub-cache-line granularity become possible [YGH16]. DRAM
row buffers have been used to launch side-channel attacks [Pes+16] by exploiting
row buffer conflicts of different memory addresses. Other shared components
can be exploited as well, such as translation lookaside buffers [HWH13] or the
branch predictor [AGS07; AKS07b; AKS07a]. Branch prediction represents a
special type of cache attack that exploits the branch target buffer (BTB) cache
in order to learn information about executed branches. For a detailed overview
of microarchitectural attacks, we refer to recent survey papers [Ge+18; Sze19].

6.1.2 Attacks in SGX Settings

Most microarchitectural attacks also apply in an SGX setting. Even worse, SGX
promotes existing side channels and creates new ones since an SGX attacker
typically has full control over the operating system.
Cache Attacks. Since enclaves do not share the memory with other processes,
Flush+Reload attacks are not directly possible against enclaved programs. An
enclave could, however, perform Flush+Reload attacks via its host application
memory towards another non-enclaved program. Nevertheless, other techniques
such as Prime+Probe can be applied to enclaves. Götzfried et al. [Göt+17]
demonstrated a Prime+Probe attack on an SGX enclave running an AES T-
table implementation. They queried the performance monitoring unit (PMU) in
order to observe the number of cache hits and cache misses precisely. While the
PMU does not directly monitor performance metrics of enclaves, Götzfried et al.
inferred enclave cache behavior indirectly by probing their own memory accesses
with the PMU. Similarly, Moghimi et al. [MIE17] demonstrated a Prime+Probe
attack against enclaves running an AES T-table implementation as well as an
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S-box implementation. They increased the accuracy of the cache observations by
interrupting the enclave repeatedly using the Advanced Programmable Interrupt
Controller (APIC). These cache attacks naturally suffer from false positives and
false negatives, even though the operating system can be instrumented to minimize
the influence of noise. Brasser et al. [Bra+17b] performed a Prime+Probe attack
against an SGX enclave running RSA decryption. Schwarz et al. [Sch+17] showed
that the Prime+Probe attack against an enclave itself could be hidden inside
another enclave.
TLB. Although Flush+Reload cannot be applied to enclaved programs directly,
van Bulck et al. [Bul+17] proposed to use Flush+Reload to attack the page
table entries managed by the operating system. This reveals which pages have
been accessed by the enclave. Thereby, they defeat countermeasures that aim to
detect page faults [Shi+17a; Shi+16] or that mask the accessed and dirty flags
of page table entries. However, their attack comes at the cost of an even coarser
granularity (32 KB) since one cache line holds eight PTEs.
DRAM. Wang et al. [Wan+17b] showed that DRAM-based side-channel at-
tacks [Pes+16] could also be applied in an SGX setting across different SGX
enclaves. They improved DRAM-based attacks by combining them with a
Prime+Probe attack. Prime+Probe ensures that enclave memory accesses by-
pass the enclave page cache (EPC) and reach DRAM.
Branch Prediction. Lee et al. [Lee+17b] observed that SGX does not clear
the branch history when switching between enclave mode and non-enclave mode,
which enables branch shadowing attacks. Branch shadowing represents an en-
hanced version of branch prediction analysis (cf. [AKS07a]), which relies on the
last branch record (LBR). They used APIC timer interrupts to increase precision.
Evtyushkin et al. [Evt+18] target the directional predictor rather than the branch
target buffer (BTB). Huo et al. [Huo+20] expand this attack on the two-level
directional predictor.
Hyper-threading. On hyper-threaded systems, multiple logical cores share
the same execution units. Aldaya et al. [Ald+18] exploit contention of exe-
cution ports to attack enclaved programs running on the same physical core.
Moghimi et al. [MES18] show that level one caches can be exploited to attack
hyper-threaded enclaves. Unlike [YGH16], they exploit false dependencies due
to read-after-write operations. By accessing aliased addresses, they introduce
false dependencies in the CPU pipeline, causing an artificial delay if the victim
enclave accesses specific target addresses.
Controlled-Channel Attacks. Xu et al. [XCP15] demonstrated a new class of
attacks on Intel SGX, called controlled-channel attacks. They are also referred to
as pigeonhole attacks [Shi+16] or page-level attacks [Xia+17]. Controlled-channel
attacks rely on the fact that the untrusted operating system controls the mapping
between virtual and physical pages for all processes, including enclaves. Hence,
the OS can modify the present bit for page table entries (PTEs) to induce page
faults into enclaves. Whenever an enclaved process accesses unmapped pages,
the CPU delivers a page fault to the OS. Thus, the OS can observe the memory
accesses or executed code paths of an enclave at page granularity. Unlike prior
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side channels, this controlled channel yields noise-free observations. Instead of
using the present bit, page faults can also be triggered by making pages non-
executable [Xia+17] using the non-executable (NX) bit, or by setting a reserved
bit [XCP15; Xia+17].
Interrupt-driven Attacks. Previous page-fault based attacks could not
monitor the execution of single instructions on a page. Hähnel et al. [HCP17]
and van Bulck et al. [BPS17] relied on frequent timer interrupts of the Advanced
Programmable Interrupt Controller (APIC) in order to suspend enclave execution
with an asynchronous exit event (AEX). By reading and clearing the accessed bit
of the enclave’s PTEs, they can even single-step page table accesses during enclave
execution. As an example, they suggested attacking a string comparison function,
where the APIC interrupts the SGX enclave after every single memory access
(byte granularity). Those interrupt-driven attacks were further refined [BPS18;
Mog+20] to single-step enclave execution with zero noise in practice, which
constitutes an instruction-granular side channel. Interrupt-driven attacks can
also be used to identify software versions running inside an enclave [Kim+19].
Gyselinck et al. [Gys+18] further showed how segmentation could be misused
in specific configurations to leak individual instructions executed in an enclave,
even on a byte level. He et al. [He+18] showed that also the interrupt latency
could be misused as a side channel to distinguish code patterns.

6.2 Side-channel Vulnerabilities

In the previous section, we have seen various side channels and exploitation
techniques to observe runtime behavior of normal programs as well as enclaves.
A successful attack, however, needs to be able to extract useful information
from side-channel observations. If an attacked program does not leak sensitive
information via side channels, it is secure against side-channel attacks. This
property is often referred to as constant time. On the other hand, a software
side-channel vulnerability might leak cryptographic keys, for example. For
address-based side channels, this means that either code access patterns or data
access patterns leak secret information. In the following, we survey various
address-based side-channel vulnerabilities in popular cryptographic software.

Recall that transient execution attacks fall outside this category. Since they
exploit not only address leakage but also data leakage, it is tough to make a piece
of code constant time in the presence of transient execution attacks. Talking
about mere software vulnerabilities here would do software developers injustice.
We believe that a proper defense mechanism against transient execution attacks
inevitably needs to be rooted in the CPU design [Yu+19].

6.2.1 Modular Exponentiation

Square&Multiply is a common technique for computing modular exponen-
tiations bit-by-bit. Aciiçmez et al. [AKS07b] exploited the different branches
of squaring and multiplication in the OpenSSL RSA implementation. Their
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branch prediction attack recovers most exponent bits from a single RSA com-
putation. Yarom and Falkner [YF14] introduced Flush+Reload by attacking
RSA square&multiply in GnuPG. Similarly, Prime+Probe attacks have been
launched against ElGamal decryption implemented via square&multiply for both
GnuPG [Liu+15b] and libgcrypt [Zha+12].
Sliding Window. A faster alternative than square&multiply is the sliding
window approach [BC89]. Here, multiple exponent bits are grouped together to
reduce the total number of multiplications. Percival [Per05] attacked OpenSSL’s
sliding window implementation of RSA, thereby introducing the concepts behind
the Prime+Probe technique [TOS10]. Aciiçmez [Aci07] proposed the first attack
exploiting the instruction cache (I-cache) to infer executed instruction paths
taken by square&multiply operations. He attacked sliding window exponen-
tiations in the OpenSSL RSA implementation. Similarly, the sliding window
implementations of GnuPG ElGamal [Liu+15b] and libgcrypt RSA [Ber+17]
have been attacked.
Fixed Window. Using fixed exponent windows eradicates leakage due to
conditional code execution in the sliding window approach. However, Aciiçmez
and Schindler [AS08] managed to attack the extra reduction step of the Mont-
gomery multiplication routine by exploiting the I-cache. Also, an implementation
flaw in OpenSSL allowed bypassing the fixed window implementation for DSA
signing operations [GBY16]. Fixed window exponentiation does not prevent
Prime+Probe attacks on the window multipliers [Liu+15b]. To close this data
leakage, OpenSSL implemented the scatter-gather technique, which aligns multi-
pliers in memory such that the same cache lines are accessed irrespective of the
active multiplier. Scatter-gather has been further improved in [Gop+09; Gue12].
Yarom et al. [YGH16] attacked OpenSSL’s scatter-gather implementation by
exploiting cache-bank conflicts within a cache line [Ber05; TOS10]. For a 4 096-bit
RSA modulus, they recovered the key from 16 000 decryptions.
SGX. Brasser et al. [Bra+17b] launched Prime+Probe attacks from the operat-
ing system against an enclave running the Intel IPP library. They attacked the
fixed-window exponentiation during RSA decryption. Schwarz et al. [Sch+17]
demonstrated Prime+Probe attacks from one SGX enclave against another SGX
enclave in order to extract an RSA key from mbedTLS [Sch+17]. They extract
96% of a 4096-bit RSA key within a single trace. To reduce measurement noise,
both attacks gathered several traces [Bra+17b; Sch+17].

In Chapter 8, we discover a side-channel vulnerability that leaks DSA keys via
unprotected modular exponentiation to an SGX attacker during the process of
key loading. In Chapter 9, we identify multiple novel side-channel vulnerabilities
in OpenSSL and LibreSSL that leak the length of secret exponents (i.e., secret
nonces) in a preparatory step for constant-time exponentiation. They are tied
to the internal data representation in so-called big numbers. We demonstrate a
full key recovery attack on DSA-256 with 36 traces by using an SGX controlled-
channel attack.
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6.2.2 ECDSA Scalar Multiplication

Double&Add is a technique analogous to square&multiple for computing scalar
multiplications over elliptic curves. Brumley et al. [BT11] targeted constant-
time double&add in OpenSSL ECDSA by measuring the total number of itera-
tions. Yarom et al. [YB14] exploited conditional code during double&add via
Flush+Reload, bypassing the constant-time implementation. In Chapter 9, we
identify similar side-channel vulnerabilities as for modular exponentiation also in
ECDSA implementations of OpenSSL and LibreSSL.
Windowed Multiplication. Brumley et al. [BH09] attacked the windowed
Non-Adjacent Form (wNAF) multiplication of OpenSSL on the secp160 curve via
Flush+Reload. Similar attacks on the popular secp256k1 curve leverage better
side-channel observations and better recovery methods [Ben+14; PSY15; FWC16;
All+16]. Dall et al. [Dal+18] attacked a fixed-window scatter-gather version of
Intel EPID by exploiting a leak in the number of iterations. In Chapter 9, we
also present a new side-channel vulnerability in the constant-time point addition
of OpenSSL and BoringSSL, which leaks whether a nonce window is all-zero. It
could be exploited in an SGX setting [Mog+20].

6.2.3 GCD

The Euclidean algorithm is a key ingredient for public-key cryptography. It can be
used to compute the greatest common divisor (GCD) of two numbers. OpenSSL
uses an optimized binary Euclidean algorithm (BEA) to test co-primality RSA
parameters during key generation. The susceptibility of BEA to side-channel
attacks has already been shown before [AGS07; AT07; GB17].

In Chapter 7, we introduce a controlled-channel attack against RSA key gener-
ation by exploiting conditional branches in the BEA implementation of OpenSSL.
We managed to recover a full RSA key by observing a single key generation
operation inside an SGX enclave. Concurrently to our work, Aldaya [Ald+19]
mounted a Flush+Reload attack on the vulnerable BEA implementation in a
non-enclave setting, with a success rate of 27%.

6.2.4 Modular Inversion

The Euclidean algorithm cannot only be used for computing a GCD. The ex-
tended Euclidean algorithm (EEA) also allows doing modular inversion in prime
fields. Modular inversions are used to compute RSA private keys, or (EC)DSA
signatures, amongst others. In the past, software implementations relied on an
optimized variant of EEA, namely the binary extended Euclidean algorithm
(BEEA) [MOV96, Algorithm 14.57]. Similar to the BEA, the BEEA executes
input-dependent (i.e., secret-dependent) branches. Aciiçmez et al. [AGS07] sug-
gested attacking the modular inversion during RSA computations by means of
branch prediction analysis (cf. [AKS07a]). They proposed an attack that relies
on precise monitoring of all executed branches. Concurrently, Aravamuthan
and Thumparthy [AT07] analyzed BEEA with respect to power analysis attacks.
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Later on, Garćıa and Brumley [GB17] performed a Flush+Reload attack on the
BEEA used in OpenSSL ECDSA. They recovered parts of the secret nonce, which
allowed them to recover the full secret key from 50 traces. In order to mitigate
these attacks, OpenSSL introduced a Euclidean modular inversion algorithm that
reduces secret-dependent branches.

In Chapter 8, we identify a programming bug similar to [GB17] where the
initialization of RSA keys leaks secret prime numbers to an SGX attacker. In
Chapter 9, we demonstrate that the improved Euclidean inversion is not free
of side-channel leakage. In fact, it leaks the topmost bit of secret DSA nonces,
which could be used in an advanced Bleichenbacher attack [Ble00] to recover
secret keys. In response, OpenSSL adopted Fermat inversion, which replaces
the Euclidean algorithm with modular exponentiation. Recently, Aldaya and
Brumley attacked BEEA on mbedTLS with an SGX-stepping attack [AB20].
Similarly, Moghimi et al. [Mog+20] performed an interrupt-driven SGX-stepping
attack on BEEA in WolfSSL.

6.2.5 Modular Reduction

Aciiçmez and Schindler [AS08] attacked the final reduction step of the Mont-
gomery multiplication routine. Ryan [Rya19] discovered an early-abort condition
in OpenSSL’s modular reduction and exploited it with a Flush+Reload attack to
recover ECDSA private keys.

6.3 Side-channel Defenses

Side-channel attacks can be tackled on different layers, which we address in
the following. First, one could attempt to close side channels by redesigning a
microarchitecture or the operating system, in particular with respect to shared
resources. Second, one could remove the source of leakage by closing side-
channel vulnerabilities in software. The first approach is likely necessary to
address transient execution attacks. However, we believe that closing side-
channel vulnerabilities in software is the preferred way to go for address-based
side channels. This requires the detection of side-channel vulnerabilities for which
appropriate tool support is needed.

6.3.1 Closing Side Channels

Cache attacks can be addressed by redesigning caches, as partially surveyed
in [DXS19]. Page [Pag05] described a partitioned cache architecture in which
the operating system can segregate critical applications in the cache. Partitioned
caches were further explored in [WL08; Dom+12]. Liu et al. [Liu+16] relied on
Intel’s cache allocation technology (CAT) to partition the last-level cache and,
thus, prevent cache-line sharing. Others [Raj+09; Shi+11; ZRZ16] used software-
only page coloring in order to partition the last-level cache via a careful page
mapping. Hardware transactional memory can be used to mitigate cache attacks
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by keeping all sensitive data in the cache during the computation [Gru+17]. To
thwart attacks in a hyper-threaded setting, coscheduling [Cor18a] can group
mutually trusted processes on the same CPU cores. The above partitioning
approach can be expanded to avoid any resource sharing in hardware while
executing sensitive programs [AA18].

Researchers called for designing better instruction set architectures (ISA)
and OS abstractions reflect side-channel properties accurately [Hei18; GYH18;
Ge+19]. Yu et al. [Yu+19] designed and implemented a data-oblivious ISA atop
of the RISC-V BOOM processor. Gao et al. [Gao+20] proposed and implemented
an ISA extension for addressing physical side channels.

Randomized caches can help thwart cache attacks as well [WL07; Kon+08;
LL14; Qur18; Tri+18; Wer+19; Ram+19; Tan+20]. Moreover, oblivious RAM
(ORAM) [GO96] has been proposed as a generic countermeasure against data
leaks by hiding memory access patterns on the address bus. While ORAM can
address DRAM-based attacks [Pes+16], it does not necessarily stop cache attacks.
Several research prototypes integrate ORAM-based techniques in their processor
design [ZZP04; FDD12; Maa+13; Liu+15a; Nay+17; Ren+19]. Smart memory
that has built-in computing capabilities can be used to relax the overhead of
ORAM [AN17; Awa+17; Lia+18].
SGX. To thwart cache attacks on enclaves, the Sanctum processor designed by
Costan et al. [CLD16] assigns enclaves DRAM regions that are also segregated
in the cache. Dessouky et al. [DFS20] proposed a hybrid cache design, which
selectively enables side-channel defenses only for enclaves.

To address controlled-channel attacks, Shinde et al. [Shi+16] proposed hard-
ware support that guarantees to deliver enclave page faults directly into the
enclave. Similarly, Aga et al. [AN19] proposed that enclaves should handle their
own page faults and manage their page tables, which demands changes to the
CPU. SGX-LAPD [Fu+17] considers large pages (i.e., 2 MB instead of the usual
4 KB) in order to reduce the overall number of page faults. The enclave relies on
the EXINFO data structure, which tracks page fault addresses of an enclave, to
verify that the OS indeed provides large pages. Strackx et al. [SP17] proposed
hardware modifications to preload all critical page mappings in the translation
lookaside buffer (TLB) whenever entering the enclave. Moreover, they protect
the TLB mapping from being tampered during enclave execution.

Shih et al. [Shi+17a] observed that transactional synchronization extensions
(TSX) could be used to detect exceptions, such as page faults, and report them to
enclave-internal code only rather than to the OS. They proposed T-SGX, in which
they execute blocks of enclave code inside TSX transactions. If an exception
is thrown, the transaction aborts, and the enclave decides whether or not to
terminate its execution. Chen et al. [Che+17] proposed to detect side-channel
attacks within enclaves by detecting frequent page faults. They rely on the
execution time within the enclave as an indicator of an ongoing side-channel
attack. Their in-enclave timing source (i.e., a timer variable) is protected via
TSX. TSX can also be used to detect cache misses inside SGX enclaves [CTZ17]
to thwart cache attacks.
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Detection of page faults or cache misses does not prevent stealthier at-
tacks [Bul+17; Wan+17b]. These attacks derive page access patterns either
by monitoring the accessed and dirty bits of page table entries or by mounting
cache-attacks like Flush+Reload attacks on page table entries.

To thwart hyper-threading attacks on enclaves, Chen et al. [Che+18] proposed
that enclaves can occupy a whole physical CPU using shadow threads. Since
the operating system cannot be obliged to schedule shadow threads on the same
CPU, they establish repeated side-channel measurements to detect co-residency.

6.3.2 Closing Side-channel Vulnerabilities

Software side channels can be closed by randomization or equalization, also
referred to as constant time.
Randomization. For cryptographic operations, randomization is a common
technique to hide leakage of secrets. Kocher [Koc96] proposed blinding as a means
to prevent timing attacks on modular exponentiation. OpenSSL also employs base
point blinding in their generic double&add code. mbedTLS adopted exponent
blinding in their RSA implementation in response to [Sch+17]. To fix leakage in
modular reductions [Rya19], OpenSSL also blinds DSA calculations done after
modular exponentiation.

Randomization cannot only be applied on an algorithmic level but also on
the generated code. Seo et al. [Seo+17] proposed SGX-Shield, which randomizes
the memory layout of enclaves via ASLR in a multi-stage loading step. While
primarily intended as a countermeasure against runtime attacks, it also raises
the bar for controlled-channel attacks. Shih [Shi19] discussed weaknesses of
SGX-Shield against interrupt-driven attacks such as [BPS17]. He proposed a
side-channel resistant defense named SGX-Armor that randomizes the code layout
in a switching network via a primitive called oblivious swap. Shih furthermore
developed a generic SGX framework called Pridwen [Shi19] for applying various
side-channel defenses to enclaved programs. Priwden applies side-channel defenses
on Web Assembly, before compiling enclaves to native binaries.
ORAM. Costa et al. [Cos+17] compared various ORAM schemes in an SGX
setting and observed runtime overheads well above 1000x. Sasy et al. [SGF18]
developed the ZeroTrace SGX library, which hides data access patterns via ORAM.
However, they do not report macrobenchmark results. Ahmad et al. [Ahm+19]
optimized ORAM for enclaves. Their Obfuscuro defense protects against data
leakage and control-flow leakage. However, it still shows an average overhead of
51x–83x. Brasser et al. [Bra+19] proposed Dr. SGX, which hides data access
patterns via continued light-weight re-randomization, as opposed to ORAM. Dr.
SGX reduces the average overhead to 4.36x; however it does not hide code access
patterns. Zhang et al. [Zha+20] designed an ORAM scheme for SGX called
Klotski. It hides both code and data access patterns behind a virtualized memory
subsystem, managed in software. Klotski shows runtime overheads between 16.7x
and 50% on web servers and image compression, respectively.
Constant Time. Leakage of data accesses frequently occurred due to lookup
table implementations of symmetric primitives. They can be mitigated by bit-
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slicing [RSD06; Kön08; KS09]. Bitslicing reformulates symmetric encryption
operations as boolean equations that can be parallelized via vectorized instruc-
tions, for example. This can even improve overall throughput [KS09]. To hide
data accesses in fixed-window RSA exponentiation, the scatter-gather technique
interleaves data buffers in memory such that the same cache lines are accessed
irrespective of the used data buffer. For attacks in a hyper-threaded setting, a
finer-grained block size needs to be chosen [YGH16].

A rich body of literature exists on automated code transformations that
mitigate side-channel leakage. Agat [Aga00] proposed a program transformation
that pads unequal branches to avoid timing leakage. Hedin et al. [HS05] extended
Agat’s work towards a larger subset of Java bytecode. However, padding does
not take into account stronger attacks leveraging address leakage (e.g., cache
attacks) rather than pure timing leakage. Barthe et al. [BRW06] proposed a
program transformation for sequential, object-oriented programs with support
for exceptions. Their transactional branching executes both branches but only
commits the desired one. Still, transactional branching shows control-flow leak-
age. Coppens et al. [Cop+09] proposed compiler transformations to eliminate
key-dependent control flows. More specifically, control-flow dependencies are
transformed into data-flow dependencies by means of conditional instructions.
Rane et al. [RLT15] expanded the idea of transactional branching. Their Raccoon
compiler always executes all secret-dependent branches in a leakage-free fashion.
Data leaks are mitigated by always streaming across the whole data buffer in
question. This is much faster than ORAM, according to their evaluation. Average
runtime overheads are 16.1x, with peaks of more than 600x. The threat model of
Raccoon closely resembles our notion of address-based side-channel attacks.
SGX. All the above equalization methods also work in an SGX setting. If
applied correctly, this closes controlled-channel and cache attacks on enclaves (e.g.,
by using Raccoon). Nevertheless, researchers explicitly tailored defenses for SGX
enclaves. To mitigate controlled-channel attacks in software, Shinde et al. [Shi+16]
introduced the notion of page-fault obliviousness. This means that the page-
fault pattern observed by the operating system is independent of the secret
input. They proposed a compiler-based approach for code balancing similar
to [Cop+09]. van Bulck et al. [Bul+17] demonstrated an interrupt-based attack
bypassing page-fault obliviousness. Sinha et al. [SRS17] developed a compiler
for achieving page obliviousness inside enclaves, together with a verifier. They
resort to balancing the number of instructions in each secret-dependent branch by
inserting nop instructions. This neither prevents cache attacks nor does it remove
timing leakage, since nop instructions execute much faster than regular ones.
To address branch shadowing attacks, Lee et al. [Lee+17b] proposed a system
called Zigzagger, which obfuscates conditional branches via indirect branches.
Zigzagger does not withstand fine interrupt-driven attacks [BPS17].
Constant Time by Proof or Design. In order to check whether a program is
indeed constant time, several verification methods have been developed [Alm+13;
Bar+14; Alm+16; DK17; BPT19]. They typically demand programmer anno-
tations. Bond et al. [Bon+17] developed the Vale framework for programming
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side-channel secure cryptographic primitives in low-level language constructs.
Similarly, Almeida et al. [Alm+17] developed a programming language and a
compiler called Jasmin, which allows developing high-performance cryptography
that is side-channel secure.

Also, the compiler itself might introduce side-channel vulnerabilities and,
thus, ruin verification guarantees given on the source code or some intermediate
representation. Barthe et al. [BGL18; Bar+20] and Besson et al. [BDJ19] studied
whether compilation passes provably preserve constant-time properties.

6.3.3 Detecting Side-channel Vulnerabilities

In order to apply constant-time techniques to a program, one requires means to
find actual side-channel vulnerabilities in the code. Tools for verifying constant-
time properties alone do not provide comprehensive information about existing
vulnerabilities. In the following, we survey existing detection tools, as listed in
Table 6.1.
Terminology. We consider a program secure if it does not contain address-
based information leaks. We further distinguish between deterministic and non-
deterministic programs. Non-determinism might be due to the randomization of
intermediates (blinding) or results (probabilistic constructions). Latter include
any kind of non-determinism, such as randomization of intermediates (blinding)
or results (probabilistic constructions). A false positive denotes an identified
information leak that is, in fact, none. A false negative denotes an information
leak that was not identified.
Timing Leakage Detection. Reparaz et al. [RBV17] measures the overall
execution time of implementations in a blackbox fashion for different classes
of inputs. Their dudect tool relies on statistical tests to infer whether or not
the implementation leaks information. More advanced approaches use symbolic
execution to give upper leakage bounds [PPM16]. Themis [CFD17] is a static
analysis tool for assessing timing leakage (or leakage of other resources) in
Java applications. However, these approaches fall short for more fine-grained
address-based attacks, such as cache attacks.
Static Address Leakage Detection. CacheAudit [KMO12; Doy+13], as well
as follow-up works [DK17; MWK17], are static analysis tools that symbolically
evaluate all program paths via abstract interpretation. They detect leakage on
a cache line or byte granularity. Rather than pinpointing the leakage origin,
CacheAudit accumulates potential leakage into a single metric, which represents
an upper-bound on the maximum leakage possible. While a zero leakage bound
guarantees the absence of side channels, a non-zero leakage bound could become
somewhat imprecise (false positives) due to abstractions made on the data of the
program. Abstraction also fundamentally prohibits analysis of interpreted code,
which is encoded in the data plane of the interpreter. Analyzing large code bases
such as OpenSSL with many potential leaks demands higher precision.

CacheS [Wan+19] uses abstract interpretation for finding secret-dependent
branches. CacheS increases the precision of full abstract interpretation (e.g., as
done by CacheAudit) by only tracking secrets in a precise way.
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Dynamic Address Leakage Detection. Dynamic analysis relies on concrete
rather than symbolic execution. This increases precision (and typically also
performance) but introduces false negatives if leakage is not triggered during
concrete execution.

Ctgrind [Lan10] dynamically tracks unsafe usage of secrets with the Valgrind
memory error detector on annotated secrets. It detects control-flow leaks and
data leaks. Ctgrind suffers from false positives as well as false negatives [Alm+16].

CacheD [Wan+17a] combines static and dynamic analysis. It taint-tracks in-
structions accessing secret data and evaluates them symbolically to find potential
data leaks. CacheD does not model control-flow leaks. Since it only analyzes a
single execution, CacheD miss leakage in other execution paths (false negatives).
Its static analysis could further introduce false positives.

Zankl et al. [ZHS16] use binary instrumentation to build a histogram of all
executed instructions. They correlate the histogram against the Hamming weight
of the private key, thus finding control-flow leaks in modular exponentiation.

Stacco [Xia+17] uses binary instrumentation to record instruction traces rather
than histograms only. Stacco specifically finds padding oracle vulnerabilities
used for Bleichenbacher attacks [Ble98]. It does not consider data leakage, and
it does not consider reducing false negatives, i.e., finding multiple control-flow
leaks within the traces. If Stacco did, it would suffer from false positives due to
improper trace alignment (it uses the Linux diff tool).

In Chapter 8, we present DATA. We introduce the notion of more generic
address traces, capturing instruction and data addresses. Similar to Stacco,
DATA records address traces via binary instrumentation. By matching address
traces, DATA finds potential control-flow and data leaks. DATA aligns traces
in a way to also detect nested control-flow leaks. Moreover, DATA provides
statistical methods for distinguishing secret-dependent leaks from unrelated ones
due to non-determinism (e.g., blinding), and it supports dedicated leakage models
similar to [ZHS16]. The statistical methods are not part of this thesis but can be
looked up in the original publication [Wei+18a].

MicroWalk [Wic+18] also records all accessed addresses by means of binary
instrumentation to detect control-flow and data leakage. Instead of processing
the whole trace, MicroWalk collapses the execution context via hash functions.
This improves performance at the expense of losing, e.g., call stack information.
MicroWalk performs Mutual Information (MI) estimation to assess the amount of
leaked bits. It could find unknown leakage in proprietary, closed-source programs.

TriggerFlow [Gri+19] is a side-channel regression testing tool that uses selec-
tive source-code annotations and the GDB debugger to check critical functions
that were subject to side-channel vulnerabilities in the past. If a breakpoint
is hit, a potentially dangerous code path is being executed. Accuracy mainly
depends on proper annotation.
Attack-based Approaches. Some tools base their analysis on concrete at-
tacks. Hence, they do not generalize to other attacks. For instance, Brum-
ley and Hakala [BH09], as well as Gruss et al. [GSM15], suggested detecting
implementations vulnerable to cache attacks by relying on template attacks.
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Table 6.1: Comparison of leakage detection tools.  means that the tool suffers from
false positives/negatives. # means that the tool’s design does not suffer
from false positives/negatives (although the prototype implementation
might do). #S denotes statistical guarantees.
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CacheAudit [Doy+13] Static Cacheline 3 3   # Leakage bound no 3

CacheAudit 2 [DK17] Static Byte 3 3   # Leakage bound no 3

CacheS [Wan+19] Static Cacheline 3 3   # Leak origin no 3

CacheD [Wan+17a] Both Cacheline 7 3    Leak origin no 7

ctgrind [Lan10] Dynamic Byte 3 3    Leak origin yes 3

Zankl et al. [ZHS16] Dynamic Byte 3 7 #S #S  Leak origin, HW no 3

Stacco [Xia+17] Dynamic Byte 3 7 #a   Leak origin no 7

MI-Tool [Ira+17] Dynamicb Cacheline 3 3 #S #S  Leak origin, MI yes 7

DATA [Wei+18a] Dynamic Byte 3 3 #S #S G# Leak origin, FR, HWc no 3

MicroWalk [Wic+18] Dynamic Byte 3 3 #S #S  Leak origin, MI no 3

TriggerFlow [Gri+19] Dynamic Breakpoint 3 3    Hit breakpoints yes 3

a Only the first control-flow leak is reliably identified. Reporting multiple leaks could cause
false positives.

bAttack-based rather than trace-based.
cDATA uses a generic fixed-vs-random (FR) test. Apart from the Hamming Weight (HW),

analysts can also program their own leakage models.
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Irazoqui et al. [Ira+17] use cache observations and a mutual information metric
to identify control-flow and data leaks. Basu et al. [BC17] and Chattopad-
hyay et al. [Cha+17b] quantify the amount of information leaked via cache
attacks.
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7
RSA Enclave Side-channel Leakage

A gossip betrays a confidence, but a trustworthy person keeps a secret.

Solomon – Proverbs

Side-channel attacks represent a serious threat to cryptographic implemen-
tations, especially in the setting of enclaves. We outlined several attacks in
Chapter 6. Popular cryptographic libraries such as OpenSSL [Ope] are often
hardened against software side-channel attacks on secret key operations, including
decryption and signature generation of digital signature schemes. However, the
process of key generation has been mostly neglected in these analyses. This is
especially fatal if, for example, RSA signature keys are generated inside an SGX
enclave, as we demonstrate in this chapter.

In the past, side-channel attacks against RSA key generation routines relied
on power analysis [CC07; FGS09; VEW12; Bau+14] and targeted the prime
generation procedure. Prime generation is usually sped up with a sieving process
that shows secret-dependent branches. Recent work [Lee+19] performed a simple
power analysis attack (SPA) on the Miller-Rabin primality test. All these side-
channel attacks either target the primality test or the prime generation itself.
They were purely based on observing the power consumption as side channel,
although software side-channel attacks might be possible as well.

Prior to the publication of our original paper, software-based side-channel
attacks on key generation have been mostly considered out of scope for at least
two reasons. On the one hand, key generation is usually a one-time operation,
limiting possible attack observations to a minimum. Especially in case of noisy
side channels, e.g., timing attacks and cache attacks are hard to conduct, given
a single observation. Recently, and concurrently to our work, Aldaya [Ald+19]
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managed to mount the first Flush+Reload attack on RSA key generation, although
with a success rate of only 27%. On the other hand, key generation might be done
in a trusted environment that is entirely inaccessible to a side-channel attacker.

The situation, however, has changed with the introduction of enclaves that
aim to support secure software execution in untrusted environments. As discussed
in Chapter 6, SGX enclaves enable new attack techniques such as controlled-
channel attacks [XCP15; Shi+16; BPS17]. By monitoring enclave page faults,
the operating system can gather noiseless measurement traces of executed code
paths and accessed data at page granularity. In order to thwart controlled-
channel attacks, the SGX documentation demands enclave code to be side-
channel resistant, namely to avoid leaking information through page access
patterns [Int17b].

In light of this powerful attack technique, we investigated the RSA key
generation routine of the Intel SGX SSL library, which is based on OpenSSL.
Surprisingly, we identified a critical vulnerability that allows us to fully recover
the generated private key. The identified vulnerability is due to an optimized
binary Euclidean algorithm (BEA). The BEA features input-dependent branches
for checking the correctness of the generated prime factors p and q, i.e., whether
p− 1 and q − 1 are coprime to the public exponent. By launching a controlled-
channel attack, we recover the executed branches of the BEA running inside
an enclave program and establish linear equations on the secret input, i.e., the
prime factors p or q. Based on these equations, we factor the modulus N = pq
with minor computational effort on a commodity PC, i.e., in less than 12 seconds
for a 8 192 bit modulus, which trivially allows recovering the private key.
Differentiation from Existing Attacks. The attack presented in this chapter
differs from previous attacks on RSA key generation as follows: First, contrary to
related work which target the prime generation itself [VEW12] or the primality
tests [CC07; FGS09; Bau+14], we target the subsequent parameter checking
routine. Clavier et al. [CC07] described a side-channel attack on the fast prime
generation algorithm proposed by Joye and Paillier [JP06]. By observing branch-
ing behavior in the generation of candidate primes, e.g., with a simple power
analysis attack (SPA), one can recover their parity bits and, subsequently, the
least significant bits of the generated prime. Finke et al. [FGS09] performed an
SPA on another fast prime generation procedure [BDL91]. They exploited leakage
of the number of trial divisions before the Miller-Rabin primality test [MOV96,
Algorithm 4.24] is applied. Vuillaume et al. [VEW12] considered differential
power analysis (DPA), template attacks, and fault attacks on the prime genera-
tion procedure. They attacked the Fermat primality test [MOV96, Algorithm
4.9], which is rarely used in practice due to false positives. Bauer et al. [Bau+14]
attacked the prime sieve procedure during prime number generation. Recently,
Lee et al. [Lee+19] performed an SPA on the Miller-Rabin primality test. They
exploited collisions in a side-channel protected square&multiply exponentiation.

Second, the above attacks rely on power analysis while we use a pure software
attack. To the best of our knowledge, software side-channel attacks on the RSA
key generation procedure have not been demonstrated before.
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Different from other microarchitectural attacks on RSA implementations
that targeted modular exponentiations [Aci07; AS08; Bra+17b; Sch+17], the
attack presented in this chapter targets the binary Euclidean Algorithm (BEA).
The extended BEA (BEEA) is used for modular inversion. It has already been
attacked before in the setting of RSA decryption [AGS07] or ECDSA signature
generation [GB17], which typically requires several measurement traces. In
contrast, we target the BEA implementation used for RSA key generation, for
which, by definition, only one measurement trace is available.

Concurrent to our work, Aldaya et al. [Ald+19] attacked the same vulnerable
RSA implementation, thus demonstrating the first cache attack on RSA key
generation. Their setting considers a Flush+Reload attacker and applies only to
non-enclaved programs. Due to measurement noise, they performed extensive
pruning steps to narrow down the search space. For example, over a period of 45
days of CPU time, they recovered 2285 out of 9434 RSA keys. In contrast, we
demonstrate the first controlled-channel attack on RSA key generation, which
succeeds within seconds with a 100% success probability.

Controlled-channel attacks have been studied before. Xu et al. [XCP15]
used them to extract sensitive data such as images and processed texts from
enclaved programs. Shinde et al. [Shi+16] studied known information leaks in
cryptographic primitives of OpenSSL and Libgcrypt with respect to controlled-
channel attacks. However, they did not analyze RSA key generation routines.
Xiao et al. [Xia+17] used controlled-channel attacks to mount Bleichenbacher
and padding oracle attacks on various TLS implementations.
Contributions. We sum the contributions presented this chapter as follows:

1. We identify a critical controlled-channel vulnerability in the RSA key
generation routine of Intel SGX SSL/OpenSSL, which relies on the binary
Euclidean algorithm (BEA) to check the validity of generated parameters.

2. We present an attack to recover most of the bits of one RSA prime factor,
which allows us to factor N = pq and, thus, recover the generated private
key.

3. We implement a proof of concept attack that recovers generated RSA keys
with a single observation only and with 100% success probability.

4. We provide a patch to mitigate the vulnerability, which is even faster than
the original implementation.1

This chapter is based on the publication [WSB18a], of which I am the main
author, while Raphael Spreitzer and Lukas Bodner contributed a significant
part to the practical evaluation. The remainder of the chapter is structured
as follows: In Section 7.1, we present the threat model underlying our attack.
In Section 7.2, we describe the RSA key generation procedure and the binary
Euclidean algorithm as implemented in OpenSSL. In Section 7.3, we discuss the
identified vulnerability and our key recovery attack on RSA. In Section 7.4, we
evaluate our attack in a real-world setting. In Section 7.5, we present our software

1The patch is already merged upstream by OpenSSL.
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patch to fix the identified vulnerability. We discuss further vulnerabilities in
Section 7.6 and conclude in Section 7.7.

7.1 Threat Model

We consider an enclave that dynamically generates RSA keys, which are intended
never to leave the enclave. Dynamic key generation has already broad applications
in other trusted execution environments, such as trusted platform modules and
smart cards. Also, dynamic key generation is a fundamental operation for
most SGX applications. For example, scenarios like audio and video streaming
with SGX [Hoe+13] fall into our threat model. Here, a streaming enclave
dynamically generates an RSA key pair and registers the public key at its
streaming counterpart. Latter delivers all streaming content encrypted under
this key, allowing the enclave to decrypt it securely and to display it to the user.
Another example is a document signing enclave, generating its own signature
keys inside the enclave and issuing a certificate signing request to an external
certification authority. Thereby, the enclave protects the signing key against
malware. In any case, the compromise of a private key could lead to signature
forgery, espionage, or video piracy with all its legal and financial consequences.

In line with SGX’s threat model, the operating system (OS) is considered
untrusted and compromised, trying to extract secret keys from the enclave. In
general, attackers in SGX settings are considered to be able to trigger enclave
operations arbitrarily often by repeatedly invoking the enclave with a fresh
state.2 However, our attacker is naturally limited to at most one observation
of the enclave’s key generation, as the next invocation will generate a different,
independent key.

Using a noiseless controlled-channel attack [XCP15; Shi+16; Xia+17], the
attacker can observe page access patterns of the executing enclave. While this is
sufficient for the attack presented in this chapter, we note that, without loss of
generality, an attacker could also resort to different techniques. Among them are
side channels using branch shadowing [Lee+17b], single-step approaches based
on the APIC timer interrupts [HCP17; BPS17], or even attacks with fewer or no
page faults [Wan+17b; Bul+17], given that enough information can be extracted
from a single execution.

7.2 RSA Key Generation

The Intel SGX SSL library [Int19] is a cryptographic library for SGX enclaves.
It is built on top of OpenSSL [Ope], a widely-used toolkit for cryptographic
purposes. Since Intel SGX SSL operates on OpenSSL, it inherits all of OpenSSL’s
side-channel properties, including mitigation techniques but also potential vulner-
abilities. In particular, OpenSSL employs several side-channel countermeasures
to thwart traditional side-channel attacks such as cache attacks.

2SGX does not prevent roll-back attacks, which would require persistent storage [SP16].
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The RSA public-key cryptosystem [RSA78] provides public key encryption
as well as digital signatures. The RSA key generation routine of OpenSSL–
implemented in rsa_gen.c–starts by generating two primes p and q, which
are then used to compute the public modulus N = pq. While p and q are
chosen randomly during the key generation procedure, it is common practice that
the public exponent is fixed to e = 65 53710 = 0x01000116 (cf. [Bon99]). The
private key is later computed as d ≡ e−1 mod φ(N), with φ being Euler’s totient
function. For two prime numbers p and q, φ(N) = φ(p) · φ(q) = (p− 1)(q − 1).

Among other checks, the key generation routine ensures that (p − 1) and
(q − 1) are coprime to e, i.e., that the greatest common divisor (GCD) of the
public exponent e and (p−1) as well as (q−1) is one. These checks are performed
by relying on a variant of the Euclidean algorithm, which we attack.

7.2.1 Binary Euclidean Algorithm

A well-known algorithm to compute the GCD is the Euclidean algorithm [MOV96,
Algorithm 2.104]. For two positive integers a > b, it holds that gcd(a, b) = gcd(b, a
mod b). Since this algorithm relies on costly multi-precision divisions, a more
efficient variant is usually implemented for architectures with no dedicated
division unit, using simple (and more efficient) shift operations and subtractions.

Listing 7.1 depicts an excerpt of the Euclidean algorithm as implemented in
OpenSSL. It is an optimized version denoted as binary GCD [MOV96, Algorithm
14.54] that has been introduced by Stein [Ste67]. As can be seen in Listing 7.1,
OpenSSL uses the BIGNUM implementation for arbitrary-precision arithmetic.
The functionality of each BIGNUM procedure is indicated with comments.
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1 BIGNUM *euclid (BIGNUM *a, BIGNUM *b) {

2 BIGNUM *t;

3 int s = 0;

4 while (! BN_is_zero(b)) { // b != 0

5 if (BN_is_odd(a)) {

6 if (BN_is_odd(b)) { // a is odd , b is odd

7 BN_sub(a, a, b); // a = a-b

8 BN_rshift1(a, a); // a = a/2

9 if (BN_cmp(a, b) < 0) {

10 t = a; a = b; b = t; // swap a and b

11 }

12 } else { // a is odd , b is even

13 BN_rshift1(b, b); // b = b/2

14 if (BN_cmp(a, b) < 0) {

15 t = a; a = b; b = t; // swap a and b

16 }

17 }

18 } else {

19 if (BN_is_odd(b)) { // a is even , b is odd

20 BN_rshift1(a, a); // a = a/2

21 if (BN_cmp(a, b) < 0) {

22 t = a; a = b; b = t; // swap a and b

23 }

24 } else { // a is even , b is even

25 BN_rshift1(a, a); // a = a/2

26 BN_rshift1(b, b); // b = b/2

27 s++;

28 }

29 }

30 }

31

32 if (s)

33 BN_lshift(a, a, s); // a = a * 2^s;

34 return a;

35 }

Listing 7.1: Binary GCD (a.k.a. Stein’s algorithm) in OpenSSL.

The binary GCD works as follows: If b is zero, a holds the GCD, and the
algorithm terminates. Otherwise, the algorithm distinguishes the following cases
in a loop:

� Branch 1 (lines 7–10): If a and b are odd, the gcd(a, b) = gcd((a− b)/2, b).
The division by 2 (implemented as a right shift) accounts for the fact that
the difference of two odd numbers is always even, but 2 does not divide
odd numbers.

� Branch 2 (lines 13–15) and branch 3 (lines 20–22): If either a or b is
odd, then the even number is divided by 2 through a right shift since 2 is
not a common divisor.

� Branch 4 (lines 25–27): If both a and b are even, then 2 is a common
divisor and, therefore, both a and b are divided by 2. In this case, the
resulting GCD is a multiple of 2, and the variable s holds the number of
times this branch is executed.
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During the execution, the algorithm always ensures that a > b. It swaps a and
b as soon as this condition is not satisfied anymore (see lines 9–10, 14–15 and
21–22).
A Note on the Implementation. In the OpenSSL source code, the function
BN gcd(...) used to compute the GCD calls the function euclid(...) as depicted in
Listing 7.1, but the compiler inlines the corresponding function into BN gcd(...).
Hence, in the remainder of this chapter, we will refer to BN gcd(...) when talking
about the vulnerable code.

7.3 Attacking RSA Key Generation

During RSA key generation, the binary GCD variant described in Section 7.2 is
used to ensure that p − 1 and e are coprime. In order to do so, the algorithm
depicted in Listing 7.1 is executed with a = p− 1 (with p being the secret prime)
and b = e (the public exponent). The crucial observation is that the binary GCD
executes different branches depending on the input parameters. An attacker
who is able to observe the executed branches can recover the secret input value
a = p− 1 and, hence, the secret prime factor p.

Without loss of generality, we describe the attack by targeting the prime
factor p, but the presented attack can also be applied to recover the prime factor
q. Once we recovered either of the two prime factors, N can be factored trivially,
which also allows us to compute the private exponent d.

7.3.1 Idealized Attacker

We first consider an attacker who can precisely distinguish all executed branches
of the binary GCD algorithm (BEA), including the swapping operations in lines
10, 15, and 22. This attacker model, for example, accounts for branch shadowing
attacks [Lee+17b] and the generalized attack described in Section 7.3.4.

Let a be the unknown secret input to be recovered, b the known input, and
ai, bi, i ≥ 0 all intermediate values calculated by the BEA. To recover the secret
a, we build a system of linear equations, starting with a = a0 and b = b0. We
then iteratively add equations, depending on the executed branches, as follows:

First branch: ai+1 = ai−bi
2

Second branch: bi+1 = bi
2

Third branch: ai+1 = ai

2

Fourth branch: ai+1 = ai

2 and bi+1 = bi
2

We increment i by one before proceeding with the next iteration. In addition, if
a and b are swapped, i.e., BN cmp(a, b) < 0 yields true, we add the following
two equations and increment i again: ai+1 = bi and bi+1 = ai. The algorithm
finishes after n steps with an = gcd(a, b) and bn = 0. By recursively substituting
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a=odd
b=odd

BN sub(a, a, b)
BN rshift1(a, a)
BN cmp(a, b)

yes

a=odd
b=even

BN rshift1(b, b)
BN cmp(a, b)

yes

no

a=even
b=odd

BN rshift1(a, a)
BN cmp(a, b)

yes

no

a=even
b=even

BN rshift1(a, a)
BN rshift1(b, b)

yes

no

BN sub(...)

BN gcd(...)

BN cmp(...)

BN rshift1(...)

Page 1:
0x00C4

Page 2:
0x00CA

Page 3:
0x00CE

Page 4:
0x00D8

Figure 7.1: Relevant control flow of the BEA (left) and the page layout (right).

all equations one can express the unknown a as a linear equation a = f(an, bn) =
f(gcd(a, b), 0), which is trivial to solve, given that gcd(a, b) is known to be 1 in
case of valid RSA parameters.

7.3.2 Controlled-channel Attacker

Considering our powerful idealized attacker can indeed be a realistic assump-
tion [Lee+17b]. However, we resort to a weaker assumption in the rest of this
chapter. We consider a controlled-channel attacker [XCP15; Shi+16], who recov-
ers the secret input a from even fewer observations (up to the point where the
two variables are swapped) and with a coarser granularity (page level).

Figure 7.1 illustrates an excerpt of the control flow of the binary GCD for
the four branches in question. For illustration purposes, also the mapping of
specific functions to their corresponding code pages are drawn.3 If an attacker
can distinguish executed branches based on page-access observations, the BEA
can be reverted, and the secret input a can be recovered. Indeed, the functions
BN sub(...) and BN rshift1(...) reside on different pages within memory, namely
page 1 and page 4, while BN gcd(...) is on page 2.
Observations. If this algorithm is executed with RSA parameters (a = p− 1
and b = e), we observe the following:

3The mapping depicts the actual offsets of the commit 899e62d of OpenSSL 1.1.0g.
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1. Since p is a prime number, a = p− 1 is even. The second parameter (b = e)
is always odd. Otherwise, we have invalid RSA parameters. Hence, the
first iteration always executes the second branch.

2. The execution of the first branch can be observed by consecutive accesses
to the code pages of BN sub(...) and BN rshift1(...), i.e., page 1 and 4.

3. The second or the third branch are executed if either a or b is odd. These
two branches, however, cannot be distinguished based on code page accesses
since both branches execute the functions BN rshift1(...) and BN cmp(...)
in the same order. Nevertheless, recall that in our setting, the algorithm
is always executed with an odd b = 65 537, which is much smaller than a.
Thus, in the beginning, the algorithm will only execute the third (and the
first) branch, reducing the value of ai, but bi remains an unchanged odd
value. This is true until ai and bi are swapped for the first time, which is
the case if ai < bi. Since each iteration reduces ai by one bit (in general)
due to the right shift operation, the first swap will approximately occur
after log2(p − 1) − log2(e) iterations. Until then, every time we observe
a single access to code page 4, we can be sure that branch 3 has been
executed.

4. The fourth branch will only be executed if the greatest common divisor of
the parameters a and b is a multiple of 2. Since the parameter a = p− 1 is
even and b = e is odd, this branch will never be executed (indicated as a
red branch), as otherwise, we would have invalid RSA parameters.

5. The end of a branch and the start of the next iteration can be detected by
monitoring accesses to BN gcd(...) on page 2.

6. Although a controlled-channel attacker can observe when the BN cmp(...)
function is executed, our restricted controlled-channel attacker cannot
decide whether or not the variables are swapped (i.e., whether or not the
conditional branch depending on the result of BN cmp(...) is executed).4

This is because the corresponding code for swapping the two numbers
is on the same page as the binary GCD algorithm BN gcd(...) itself.
More specifically, our controlled-channel attacker cannot decide whether
BN gcd(...) directly continues with the next iteration, or whether a and b
are being swapped first.

These observations, combined with the fact that the public exponent e is
known, allow us to “revert” the computations for all bits of a = p−1, except about
log2(e) bits. As mentioned before, the public exponent is fixed to e = 65 537.5

This means that about log2(65 537) ≈ 16 bits of a = p− 1 cannot be recovered
based on the accessed code pages. However, they can be easily determined based
on the relations established from these observations.
Memory Layout. As mentioned, the functions BN sub(...) and BN rshift1(...)
reside on different pages within the memory. In our tested implementation, they

4See Section 7.3.4 for a more generalized controlled-channel attacker.
5This choice of the public exponent has been widely established as quasi-standard among

RSA cryptosystems (cf. [Bon99]).
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are even 20 pages apart. Thus, it is very unlikely that a different compiler setting
would link them to the same page, which would make them indistinguishable to
a controlled-channel attacker monitoring these functions only. Even if this would
happen, one could easily distinguish them by monitoring the sub-functions called
by BN sub(...) only, i.e., BN wexpand(...), BN ucmp(...), BN usub(...), etc.

7.3.3 Exploiting the Information Leak

We denote the sequence of page accesses observed by an attacker as P =
(p0, . . . , pn). Without loss of generality, let us assume the same mapping from
functions to code pages, as in the previous example. For instance, the function
BN sub(...) resides on page 1 (0x00C4), BN gcd(...) resides on page 2 (0x00CA),
and the function BN rshift1(...) resides on page 4 (0x00D8). That is, the sequence
of interesting page accesses consists of pages pi ∈ {P1, P2, P4}.

In order to recover the prime factor p (or p− 1 respectively), we observe a
sequence of page accesses up to the point where the two variables are swapped for
the first time. All later page accesses are discarded. We denote this number of
iterations as m. Given the modulus N or its bit size log2(N), we denote the bit
size of p and q as K = log2(N)/2. Thus, m is upper-bounded by dK − log2(e)e.
Similar as before, we build a system of linear equations based on ai, starting
with the unknown input a = a0. Since i < m, b will remain unchanged and we
only need to distinguish two branches:

Access to page 1, and page 4: ai+1 = ai−b
2

Access to page 4: ai+1 = ai

2

Accesses to page 2 allow distinguishing different iterations. After m iterations,
we express these equations by recursive substitution as a linear equation a =
f(am, b), or, more precisely

a = am · ca + b · cb

with known constants ca and cb, which result from the substitution.
Both, a and am are unknown. However, we additionally know that swapping

occurred after m iterations, i.e., am < b. Hence, we can determine the correct a
by iterating over values am ∈ [1, e) and evaluating the above equation. We use
the resulting values a to check the GCD of (p = a+ 1) and N . In case the GCD
is greater than 1, we recovered a as well as the corresponding prime factor p. We
can then factor the modulus N by computing q = N/p.

As mentioned before, the iteration counter m is upper-bounded by the value
dK − log2(e)e with K being the bit size of the prime numbers. This is because
each iteration reduces ai by at least one bit due to the right shift operation.
For example, a 4 096 bit RSA key will have prime numbers of length K = 2 048
bits, yielding m = 2 032 iterations to consider. However, a prime number which
is closer to 2K−1 than to 2K combined with the subtraction in branch 1 could
reduce ai by one additional bit. This would make swapping occur one iteration
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Table 7.1: Executed and recovered operations when calling BN gcd(...) for a = 11082
and b = 17.

a b
Performed a < b Page Recovered Substituted
operation swap observation operation equation

0010 1011 0100 1010 0001 0001 ai+1 = ai

2 no P4, P2 ai+1 = ai

2 a1 = a
2

0001 0101 1010 0101 0001 0001 ai+1 = ai−bi
2 no P1, P2, P4, P2 ai+1 = ai−b

2 a2 = a
4 −

b
2

0000 1010 1100 1010 0001 0001 ai+1 = ai

2 no P4, P2 ai+1 = ai

2 a3 = a
8 −

b
4

0000 0101 0110 0101 0001 0001 ai+1 = ai−bi
2 no P1, P2, P4, P2 ai+1 = ai−b

2 a4 = a
16 −

5b
8

0000 0010 1010 1010 0001 0001 ai+1 = ai

2 no P4, P2 ai+1 = ai

2 a5 = a
32 −

5b
16

0000 0001 0101 0101 0001 0001 ai+1 = ai−bi
2 no P1, P2, P4, P2 ai+1 = ai−b

2 a6 = a
64 −

21b
32

0000 0000 1010 0010 0001 0001 ai+1 = ai

2 no P4, P2 ai+1 = ai

2 a7 = a
128 −

21b
64

0000 0000 0101 0001 0001 0001 ai+1 = ai−bi
2 no P1, P2, P4, P2 ai+1 = ai−b

2 a8 = a
256 −

85b
128

0000 0000 0010 0000 0001 0001 ai+1 = ai

2 yes P4, P2 ai+1 = ai

2 a9 = a
512 −

85b
256

0000 0000 0001 0001 0001 0000 bi+1 = bi

2 no P4, P2 ai+1 = ai

2 a10 = a
1024 −

85b
512

...
...

...
... discard

0000 0000 0000 0001 0000 0000 Return a as the GCD

earlier. We would erroneously consider an incorrect equation due to swapping,
and determining the correct a might fail. In this case, we simply omit the last
erroneous equation am from the recursive substitution and try to determine
a again by iterating over values am−1 ∈ [1, e). As we will see in Section 7.4,
this happens in approximately 25% of all runs, meaning that about 75% of the
generated RSA keys can be recovered in the first run.

In case p− 1 is not coprime to e–which is the reason why the binary GCD
algorithm is executed–the RSA key generation will discard this prime factor
candidate p and re-generate another prime factor candidate p. Nevertheless, by
observing the page fault pattern, an attacker is also able to detect this (extremely
rare) case, and we run the same attack on the newly generated p.

Example. For an illustrative example let us assume the following hypothetical
parameters: the public exponent is e = 17 = 0x1116 and the two 14-bit primes
are p = 11083 = 0x2B4B16 and q = 9941 = 0x26D516, respectively. In the course
of validating the selected parameters, the OpenSSL implementation calls the
binary GCD function with a = 11082 and b = 17. Table 7.1 illustrates the
executed operations for the given input parameters a and b. In the first loop
iteration, a is even and b is odd, which means that the function BN rshift1(...)
will be called. In the second loop iteration, a is odd and b is odd, which means
that BN sub(...) followed by BN rshift1(...) will be executed, and so on. Finally,
the algorithm returns 1 as the GCD of a = 11082 and b = 17.

Based on a controlled-channel attack, we are able to observe accesses to pages
P1, P2, and P4, and to precisely recover the executed operations up to the point
where a and b are swapped. We recursively substitute the recovered operations
on ai, which leads to the equations shown in the last column of Table 7.1. Recall
that the first swap will happen at latest after m = d14− log2(17)e = 10 iterations.
In our example, swapping is done already in iteration 9 due to a smaller p and
additional subtractions. This leads to the erroneously recovered operation marked
bold in Table 7.1. To recover the secret a, we start with the m-th substituted
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equation a10, not knowing that it is erroneous. If the attempt to recover a
based on a10 fails, we would need to fall back to equation a9. However, in this
particular case, the error cancels out, and we already succeed with a10. Recall
that a10 = a

1024 −
85b
512 . With b = 17, we can rearrange it to

a = 1024 · a10 + 2890 (7.1)

The unknown variable a10 is bound by the parameter b. Since a and b have been
swapped, a10 must be smaller than b. We try to solve this equation by iterating
over a10 ∈ [1, b) and checking the GCD of a+ 1 and N . If the GCD is greater
than 1, we can factor N . Indeed, for a10 = 8 the equation yields a = 11 082
and gcd(a + 1, N) > 1. Thus, we recovered the first prime p = 11 083, which
allows to factor N (q = N/p = 9941) and to recover the secret exponent d ≡ e−1

mod (p− 1)(q − 1). To see why recovery on the erroneous equation a10 works
in this case, we compare it to the valid equation a9 = a

512 −
85b
256 , which can be

rewritten as
a = 512 · a9 + 2890 (7.2)

Here, recovering a succeeds for a9 = 16. Observe that in equations (7.1) and (7.2)
the first constants are only off by a factor of 2 because the erroneous operation
does not introduce a subtraction but only a right shift. Hence, we hit the correct
guess with a10 = a9/2 = 8.

7.3.4 Generalization

The proposed attack on RSA key generation is not limited to code pages only.
One could also monitor accesses to data pages, especially those on which the
heap buffers a and b reside. If a and b are located on different heap data pages,
we can distinguish which of these buffers is accessed and, thus, which arguments
are provided to the BIGNUM functions. This allows to distinguish all relevant
branches, enabling the idealized attack described in Section 7.3.1. For example,
one can distinguish branch 2 and 3 based on the input of BN rshift1(...) in lines
13 (accessing b only) and line 20 (accessing a only) of Listing 7.1. Also, one can
detect swapping of a and b, after which their pointers map to the opposite page,
respectively. For example, if BN is zero(...) in line 4 accesses buffer a instead
of b, or the call to BN cmp(...) (line 9, 14 or 21) accesses b before a, one can
infer that swapping occurred in the previous iteration. Thus, one could derive
equations over all iterations and recover the key without the need for guessing
values for am ∈ [1, e).

Even if a and b are located on the same heap page, attacks might still be
possible. An enclave might copy variable-sized user input onto the heap such as
messages to sign, for example. By carefully crafting this user input, an attacker
can shift the targeted buffers a and b onto different heap pages. We did not
investigate such generalized attacks further, since our attack already recovers the
full key by monitoring page faults on code memory.
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Figure 7.2: Basic principle of the performed attack.

7.4 Attack Evaluation

We evaluate the presented attack on an Intel Core i7-6700K 4.00 GHz platform
running Ubuntu 17.10 (Linux kernel 4.13.0-37). In order to do so, we developed
an SGX application that generates an RSA key based on the latest version of
Intel SSL SGX.6 We used the Linux Intel SGX software stack v1.9, consisting
of the Intel SGX driver, the Intel SGX software development kit (SDK), and
the Intel SGX platform software (PSW).7 For controlling the page mapping, we
used the SGX-Step kernel module as well as the corresponding SGX-Step library
functions (cf. [BPS17]). Note that we do not use the single-stepping feature of
SGX-Step but rather its page mapping capability. Since Intel SGX considers an
untrusted OS, the application of SGX-Step is in line with the threat model. We
describe the implementation details below.

7.4.1 Implementation Details

We consider a victim enclave using the Intel SGX SSL library to generate an RSA
key pair. The enclave is hosted by a malicious attack application that interacts
with the OS to manipulate page mappings and to record page accesses within
the corresponding fault handler. Figure 7.2 depicts the principle of the attack.
After this recording step, we evaluate the collected trace of page accesses in order
to recover the secret key.
SGX Enclave Application (Victim Enclave). We developed an enclave
program that generates a single RSA key using the Intel SGX SSL library and
outputs the public parts only, i.e., the modulus N . We implemented an ECALL
function for invoking key generation, as well as an OCALL function that prints
the modulus of the generated key to the standard output. Recall that the public
exponent is fixed to e = 65 537. The project is built in pre-release hardware
mode, i.e., it uses the same compiler optimizations as a production enclave in
release mode and yields the same memory layout.

6We relied on the most recent commit 654f94d of Intel SSL SGX, which in turn is based on
OpenSSL version 1.1.0g (https://www.openssl.org/source/openssl-1.1.0g.tar.gz).

7https://github.com/01org/linux-sgx.

https://www.openssl.org/source/openssl-1.1.0g.tar.gz
https://github.com/01org/linux-sgx
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Attack Application. Based on the SGX-Step framework [BPS17], we devel-
oped an attack application that enables and disables executable regions (pages)
of the enclave program. More precisely, it toggles the NX bit of the page table
entries belonging to the code pages to be traced. One could also use the present
bit or a reserved bit [XCP15; Xia+17] for the same purpose. The application
registers a fault handler (via a sigaction standard library function call), which
is executed whenever the enclave encounters a segmentation fault due to a non-
executable page. This fault handler conveniently serves as the basis to monitor
page faults, which later on allow recovering the executed code paths.

7.4.2 Mounting the Attack

In order to determine the pages of interest, i.e., the ones where the BN gcd(...),
BN sub(...), and BN rshift(...) functions are located, we dissect the enclave
binary by means of objdump. In our case, objdump reveals the following page
frame numbers: 0x00CA for BN gcd(...), 0x00C4 for BN sub(...), and 0x00D8 for
BN rshift1(...). When starting the victim enclave, the attack application disables
execution of the BN gcd(...) page by setting the non-executable (NX) bit in the
corresponding page table entry. This causes the enclave to trap as soon as it
attempts to execute this page.

When the fault handler function is executed for the first time, i.e., when a
page fault (segmentation fault) occurs, we start recording subsequent page faults.
On the one hand, we enable execution of the current page, which caused the
page fault by clearing its NX bit in order to allow the enclave to continue. On
the other hand, we also disable the other pages of interest by setting their NX
bits. Whenever the page fault handler is triggered, we record the accessed page
and toggle the non-executable bits accordingly. Thus, we are able to monitor
each access to these pages precisely.

Our practical evaluation confirmed that we observe the following page fault pat-
terns. Executing branch 1 leads to consecutive page faults on 0x00C4 (BN sub(...))
and 0x00D8 (BN rshift1(...)), interleaved with page faults on 0x00CA (BN gcd(...)),
whereas executing branch 3 leads to a page fault on 0x00D8 (BN rshift1(...)) only.
When the attack application finished gathering the page faults, we process the
page-fault sequence from left to right and build up an equation system according
to the rules in Section 7.3.3. That is, whenever we observe consecutive accesses
to pages 0x00C4 and 0x00D8, we add ai+1 = (ai − b)/2. For a single access to
page 0x00D8 we add ai+1 = ai/2. Based on these equations, we run a SageMath
script that recursively substitutes the equations, recovers the remaining bits by
solving the equation for am, and finally recovers the private key.

The execution time of the attack, including the gathering and the parsing of
the page-fault trace, is negligible, even when attacking larger RSA keys. Causing
page faults on the above-mentioned pages increases runtime slightly. Compared
to normal key generation, running the attack causes moderate overall slowdowns
of 65 ms (15,5%) for 4,096 bit keys and 248 ms (5,87%) for 8,192 bit keys due to
the intentionally induced page faults. The largest share of the execution time is
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Figure 7.3: Key recovery complexity for different bit sizes of the modulus N.

consumed by the generation of the two random primes, i.e., the random number
generation and the primality test, during RSA key generation.

7.4.3 Key Recovery Complexity

We developed a simple script for SageMath8 that iterates over all possible values
for 1 ≤ am < 65 537, evaluates a = f(am), and checks the GCD of a + 1 and
N . Figure 7.3 illustrates the complexity for the task of recovering the remaining
bits. The complexity has been averaged over 100 runs per modulus size and
the computations are evaluated with SageMath on an Intel Xeon E5-2660 v3
(2.60GHz). The area plot (right x-axis) indicates that in about 75%–80% of
all cases, the prime factors can be recovered at the first attempt, considering
m = dK − log2(e)e equations. In only about 20%–25% of all cases the first
attempt fails due to an early swapping in the binary GCD algorithm. In this
case, we need to remove the last equation am and restart the search in the range
1 ≤ am−1 < 65 537. The asymptotic complexity of the key recovery is O(1). This
means that the number of iterations is bound by the public exponent e, which is
a constant value. In contrast, the computation time of the GCD for candidates
a increases due to the larger bit sizes of the modulus N . In 75% of all cases,
a 8 192-bit modulus can be factored in less than 5 seconds on average, after
gathering the measurement trace. In only 25% of all cases, we need approximately
12 seconds on average. Although 15 360-bit RSA keys (providing 256-bit security
according to NIST [Bar16]) are currently not being used in practice, we provide
the results here for the sake of completeness.

8http://www.sagemath.org/
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1 diff --git a/crypto/rsa/rsa_gen.c b/crypto/rsa/rsa_gen.c

2 index 4ced965 ..4051933 100644

3 --- a/crypto/rsa/rsa_gen.c

4 +++ b/crypto/rsa/rsa_gen.c

5 @@ -41,6 +41 ,7 @@ static int \

6 rsa_builtin_keygen(RSA *rsa , int bits , BIGNUM *e_value ,

7 {

8 BIGNUM *r0 = NULL , *r1 = NULL , *r2 = NULL , \

9 *r3 = NULL , *tmp;

10 int bitsp , bitsq , ok = -1, n = 0;

11 + unsigned long error = 0;

12 BN_CTX *ctx = NULL;

13

14 /*

15 @@ -88,16 +89 ,25 @@ static int \

16 rsa_builtin_keygen(RSA *rsa , int bits , BIGNUM *e_value ,

17 if (BN_copy(rsa ->e, e_value) == NULL)

18 goto err;

19

20 + BN_set_flags(rsa ->e, BN_FLG_CONSTTIME);

21 +

22 /* generate p and q */

23 for (;;) {

24 if (! BN_generate_prime_ex(rsa ->p, bitsp , 0, \

25 NULL , NULL , cb))

26 goto err;

27 if (! BN_sub(r2 , rsa ->p, BN_value_one ()))

28 goto err;

29 - if (! BN_gcd(r1 , r2 , rsa ->e, ctx))

30 - goto err;

31 - if (BN_is_one(r1))

32 - break;

33 + // Inverse only exists if GCD = 1

34 + if (BN_mod_inverse(r1 , r2 , rsa ->e, ctx))

35 + break; // GCD = 1

36 + else {

37 + error = ERR_peek_last_error ();

38 + if (ERR_GET_LIB(error) == ERR_LIB_BN &&

39 + ERR_GET_REASON(error) == BN_R_NO_INVERSE)

40 + ERR_clear_error (); // GCD != 1

41 + else

42 + goto err; // Another error occurred

43 + }

44 if (! BN_GENCB_call(cb, 2, n++))

45 goto err;

46 }

47 @@ -110 ,10 +120 ,17 @@ static int \

48 rsa_builtin_keygen(RSA *rsa , int bits , BIGNUM *e_value ,

49 } while (BN_cmp(rsa ->p, rsa ->q) == 0);

50 if (! BN_sub(r2 , rsa ->q, BN_value_one ()))

51 goto err;

52 - if (! BN_gcd(r1 , r2 , rsa ->e, ctx))

53 - goto err;

54 - if (BN_is_one(r1))

55 - break;

56 + // Inverse only exists if GCD = 1

57 + if (BN_mod_inverse(r1 , r2 , rsa ->e, ctx))

58 + break; // GCD is 1

59 + else {

60 + error = ERR_peek_last_error ();

61 + if (ERR_GET_LIB(error) == ERR_LIB_BN &&

62 + ERR_GET_REASON(error) == BN_R_NO_INVERSE)

63 + ERR_clear_error (); // GCD != 1

64 + else

65 + goto err; // Another error occurred

66 + }

67 if (! BN_GENCB_call(cb, 2, n++))

68 goto err;

69 }

Listing 7.2: Patch for RSA key generation in OpenSSL.
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7.5 Patching OpenSSL

We discussed several possible countermeasures against controlled-channel attacks
in Chapter 6. The most straightforward approach to prevent the attack described
in this work is to fix the RSA key generation procedure at the implementation
level. We propose an appropriate patch in Listing 7.2.

Instead of relying on BN gcd(...) to ensure that p− 1 and e are coprime, we
compute the modular inverse of p− 1 modulo e using a side-channel protected
modular inversion algorithm (BN mod inverse(...)). The inverse only exists if
gcd(p− 1, e) = 1. Hence, if BN mod inverse(...) signals through an error that
the inverse does not exist, we know that gcd(p− 1, e) 6= 1. This corresponds to
lines 33–43 and 56–66 in Listing 7.2.

In order to ensure that the side-channel protected inversion is called, we
need to set the BN FLG CONSTTIME flag on the public modulus e (see line
20). In this case, BN mod inverse(...) internally calls the protected function
BN mod inverse no branch(...), which has some side-channel protection in place.
In Chapter 9, we will show that also this side-channel protected inversion can
leak one bit of information in some cases. While this is problematic for DSA-
based signature schemes where an attacker can query a large number of “leaky”
signatures, it does not threaten the security of RSA key generation.
Performance Impact. An appealing benefit of our proposed patch is that
it is even faster than the vulnerable implementation.9 We benchmarked 10 000
coprimality checks for a random number a and e = 65 537, and provide the
corresponding cumulative execution times in Table 7.2. As can be seen, our patch
is by one to two orders of magnitudes faster than the original implementation on
our first test machine. On an Intel Core i7-5600U 2.6 GHz CPU (notebook), the
speedup exceeds even a factor of 500 for 8 192 bit numbers.

The reason for this massive speedup is that inversion, as implemented in
OpenSSL, uses the original Euclidean algorithm with gcd(a, b) = gcd(b, a mod b).
This algorithm requires far fewer loop iterations (e.g., between 5 and 13 iterations
for 8 192-bit numbers) than the binary GCD (≈ 8192 iterations). The original
Euclidean algorithm relies on a costly modular reduction in each iteration, which
was the initial motivation to use the binary GCD instead. The binary GCD
replaces modular reductions with shift operations and subtractions. However, on
our test machines, the original Euclidean algorithm is significantly faster because
OpenSSL leverages the x86 div instruction to perform the expensive modular
reductions directly in hardware.

In any case, the coprimality check only contributes a small share to the overall
runtime, as opposed to the prime generation itself. It handles a corner case in
RSA key generation, which is highly unlikely to happen in practice. Hence, the
corresponding check is, in general, only executed once per generated prime factor
and, thus, two times during the RSA key generation.

9Note that we do not need to compute the GCD but only check whether or not it is 1.
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Table 7.2: Performance comparison for 10 000 runs on an Intel Core i7-6700K (upper
half) and an i7-5600U (lower half).

Bit size of a BN gcd(a, e) BN mod inverse(a, e)

1 024 0.25 s 0.02 s
2 048 0.69 s 0.03 s
4 096 2.07 s 0.03 s
8 192 6.97 s 0.05 s
1 024 1.18 s 0.03 s
2 048 3.78 s 0.04 s
4 096 14.04 s 0.06 s
8 192 54.64 s 0.10 s

7.6 Further Vulnerabilities

RSA X9.31. Further investigation of the OpenSSL source code revealed
that the prime derivation function based on the ANSI X9.31 standard [Ins98]
(BN X931 derive prime ex(...)) is also vulnerable to the presented attack. Similar
as in the default RSA key generation procedure implemented in rsa_gen.c, the
generated primes p and q are verified, i.e., that p− 1 and q − 1 are coprime to
the public modulus e. Hence, the same attack technique also applies to the X9.31
implementation. Irrespective of whether or not this implementation is actually
used (ANSI X9.31 has already been withdrawn in [BR15]), we suggest patching
this implementation, similar to Section 7.5.

Furthermore, there are two additional usages of the vulnerable BN gcd(...)
function, namely in RSA X931 derive ex(...) and RSA check key ex(...). In these
cases, the GCD is not used as a mere security check but to factor out the GCD
of the product (p− 1)(q − 1). Since the calculated GCD is never 1, our patch
using the inversion algorithm cannot be applied here. Instead, we suggest adding
a constant-time implementation of the GCD algorithm, which is resistant against
software side-channel attacks. Ideally, this implementation is even faster than
the binary GCD implementation (cf. the performance analysis of our proposed
patch in Section 7.5).
RSA Blinding. While our attack highlights a critical vulnerability in RSA
key generation, other algorithms also need careful evaluation with respect to
single-trace attacks. For example, we found a vulnerability in the generation
of RSA blinding values used to thwart side-channel attacks on sensitive RSA
exponentiation. In OpenSSL, blinding is created via BN BLINDING create param,
which uses BN mod exp to prepare the inverse blinding value for later unblinding.
However, we found that BN mod exp does not check all necessary parameters for
the constant-time flag, falling back to unprotected exponentiation in this case.
Similar to the attack presented in this chapter, a controlled-channel attacker
could attempt to recover the blinding value from a single trace and subsequently
peel off the side-channel protection offered by blinding. The OpenSSL team
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fixed this issue in response to our findings by using the side-channel protected
exponentiation algorithm appropriately.

7.6.1 Responsible Disclosure

We responsibly notified Intel as well as OpenSSL about our findings and provided
a patch to fix the RSA key generation, as shown in Listing 7.2. In response,
OpenSSL patched the RSA key generation vulnerability in commit 8db7946e.
Also, the RSA blinding vulnerability was fixed in commit e913d11f.10

7.7 Summary

In this chapter, we investigated the RSA key generation routine executed inside
SGX enclaves under the aspect of software side-channel attacks. Our investiga-
tions revealed a critical vulnerability inside Intel SGX SSL that allows recovering
the generated RSA secret key with a single observation using a controlled-channel
attack. More specifically, the observable page fault patterns during the RSA key
generation help recover the prime factor p and, thus, to factor the modulus N .
To the best of our knowledge, this represents the first software-based side-channel
attack targeting the RSA key generation process.

Ironically, the discovered vulnerability is due to an optimized binary GCD al-
gorithm that should improve the performance compared to the original Euclidean
algorithm but, in fact, is significantly slower on Intel x86 platforms. Moreover,
the vulnerable GCD computation itself is only a security check to cover rare
cases in which p− 1 or q − 1 share a common factor with e.

Nevertheless, our work demonstrates that cryptographic operations, which
might fall outside the threat model of cache attacks, can be very well subject
to side-channel attacks in an SGX setting. Many implementations, such as
OpenSSL, were only protected against cache attacks. Before porting them to
an SGX enclave, they have to be re-evaluated under stronger controlled-channel
attacks. In general, more tool support is desired to assist software developers
in the painful process of analyzing their cryptographic implementations against
side-channel vulnerabilities.

10https://github.com/openssl/openssl.git

https://github.com/openssl/openssl.git
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DATA: Differential Address Trace

Analysis

Love earns the right to speak the truth, but truth proves that you really love.

Mark Hall

Side-channel attacks can infer sensitive information by monitoring inadvertent
information leaks of computing devices. Especially cryptographic implementa-
tions are a valuable attack target, as we discussed in Section 6.2. The class of
software-based side-channel attacks (e.g., cache attacks, DRAM attacks, branch-
prediction attacks, and controlled-channel attacks) are particularly dangerous
since they can be launched from software and, thus, without the need for physical
access to the target device. At its core, all these attacks exploit leakage of
memory access patterns. In other words, they exploit address leakage, which
occurs due to an address-based side channel. In this chapter, we introduce a new
methodology to detect address leakage to help counteract side-channel attacks.

Various countermeasures against address leakage have been proposed (cf.
Section 6.3). While some attempt to close the side channel, a more promising
line of defense is to remove address-based information leaks from the software
itself, thus fixing the side-channel vulnerability. To fix side-channel vulnerabil-
ities, one needs to eliminate secret-dependent memory accesses for both data
accesses and code fetches. For example, data leakage can be thwarted through
bitslicing [RSD06; Kön08; KS09] and control-flow leakage by unifying the control
flow [Cop+09]. Even though software countermeasures are already well studied,
in practice their adoption to cryptographic libraries is often partial, error-prone,
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or non-transparent, as demonstrated by recent attacks on OpenSSL [YGH16;
GBY16; GB17].

In order to address these issues, leakage detection tools have been developed
that allow developers and security analysts to identify side-channel vulnerabilities.
They can be classified into static and dynamic approaches. Many static analysis
methods use abstract interpretation [KMO12; Doy+13; DK17; MWK17] to give
upper leakage bounds. They ideally prove the absence of information leaks
in already secured implementations, e.g., the evaluation of Salsa20 [Doy+13].
However, these approaches struggle to describe and pinpoint information leaks
accurately due to over-approximation [Doy+13, page 443], rendering leakage
bounds meaningless in the worst case. Moreover, their approximations of the
program’s data plane fundamentally prohibit the analysis of interpreted code.

In contrast, dynamic approaches focus on concrete program executions to
reduce false positives. Contrary to static analysis, dynamic analysis cannot prove
the absence of leakage without exhaustive input search, which is infeasible for
large input spaces. However, in the case of cryptographic algorithms, testing a
subset of inputs is enough to encounter information leaks with a high probability,
because cryptographic primitives heavily diffuse the secret input during processing.
Thus, there is a fundamental trade-off between static analysis (minimizing false
negatives) and dynamic analysis (minimizing false positives).

We aim for a pragmatic approach towards minimizing false positives. This is
necessary for helping developers to identify information leaks in real-world appli-
cations. In this chapter, we focus on dynamic analysis and tackle the limitations
of existing tools. In particular, existing tools either focus on control-flow leaks
or data leaks, but not both at the same time [ZHS16; Wan+17a; Xia+17]; they
could suffer from false positives and require source code annotations [Lan10], or
they consider the strongest adversary to observe cache-line accesses only [Ira+17],
which is too coarse-grained in light of recent attacks (CacheBleed [YGH16]). A
more detailed discussion of those tools is given in Section 6.3.3. Based on these
shortcomings, we argue that tools designed to identify address-based information
leaks must tackle the following challenges:

1. Leakage origin: Detect the exact location of both data and control-flow
leaks on byte-address granularity instead of cache-line granularity.

2. Detection accuracy : Minimize false positives and provide reasonable strate-
gies to also reduce false negatives.

3. Practicality : Report information leaks (i) fully automated, i.e., without re-
quiring manual intervention, (ii) using only the program binary, i.e., without
requiring the source code, and (iii) efficiently in terms of performance.

In this work, we tackle these challenges with differential address trace analy-
sis (DATA), a methodology and tool to identify address-based information leaks
in application binaries.1 DATA targets programs processing secret input, e.g.,
keys or passwords, and reveals dependencies between the secret and the program
execution. Every leak that DATA identifies in a program is potentially exposed

1DATA is open-source and can be retrieved from https://github.com/Fraunhofer-
AISEC/DATA.

https://github.com/Fraunhofer-AISEC/DATA
https://github.com/Fraunhofer-AISEC/DATA
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to side-channel attacks. DATA works in three phases, of which only the first
phase is included in this thesis.
First Phase: Difference Detection. The first phase generates noiseless
address traces by executing the target program with binary instrumentation. It
identifies differences in these traces on a byte-address granularity. This accounts
for all address-based side-channel attacks, such as cache attacks [OST06; YF14;
Per05], DRAM attacks [Pes+16], branch-prediction attacks [AKS07b], controlled-
channel attacks [XCP15], and many blackbox timing attacks [Ber05]. Since we
execute the program under test with concrete input, we avoid false positives by
design, given that the program is deterministic. To reduce false negatives, we
repeatedly execute the same program under different inputs.
Second and Third Phase: Statistical Tests. DATA also employs two
statistical phases for further analysis. They are not part of this thesis but can
be looked up in the original publication [Wei+18a]. In short, the second phase
explicitly addresses non-deterministic program behavior, such as cryptographic
blinding, and helps distinguish it from actual key dependencies. Finally, the
third phase helps classify information leakage according to a particular leakage
model chosen by the analyst. A leakage model helps assess the severity and
exploitability of a leak, as we will also see in Chapter 9.
Evaluation. We implement DATA in a fully automated evaluation tool that
allows analyzing large software stacks, including initialization operations, such as
key loading and parsing, as well as cryptographic operations. We use DATA to
analyze OpenSSL and PyCrypto, confirming existing and identifying new vul-
nerabilities. Among several expected leaks in symmetric ciphers (AES, Blowfish,
Camellia, CAST, Triple DES, ARC4), DATA also reveals known and previously
unknown leaks in asymmetric primitives (RSA, DSA, ECDSA) and identifies
erroneous bug fixes of supposedly resolved vulnerabilities.
Contributions. Our contributions are summarized as follows:

� We propose a method for discovering address-based side-channel vulnera-
bilities called differential address trace analysis (DATA), which captures
both data leaks and control flow leaks.

� We implement DATA as a fully automated framework for analyzing unan-
notated production binaries.

� We evaluate DATA on common cryptographic libraries and, thereby, confirm
existing and identify new vulnerabilities. To the best of our knowledge,
we perform the first address-based analysis of interpreted code (PyCrypto)
and the interpreter (CPython).

This chapter is based on parts of the original publication [Wei+18a], namely
the difference detection phase, which is my core contribution, alongside its
implementation and the vulnerability analysis. As mentioned, the statistical
phases two and three are not a contribution of this thesis but can be looked up
in [Wei+18a]. The remainder of this chapter is organized as follows. In Section 8.1,
we discuss related work. In Section 8.2, we introduce the methodology behind
DATA. In Section 8.3, we give implementation details and optimizations. In
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Section 8.4, we evaluate DATA on OpenSSL and PyCrypto and discuss our
findings. Finally, we summarize in Section 8.5.

8.1 Related Work

We already covered related side-channel analysis tools in Section 6.3.3 and
Table 6.1, in particular. In the following, we show how DATA overcomes several
shortcomings of existing approaches, thus meeting the challenges identified before.
Leakage Origin. DATA follows a dynamic trace-based approach to identify
both control flow and data leakage on byte-address granularity. Having a fine
granularity avoids wrong assumptions about attackers, e.g., only observing
memory accesses at cache-line granularity [Wan+17a; Doy+13; Ira+17; Wan+19],
which were disproved by more advanced attacks [YGH16; AKS07b; Mog+20].
Nevertheless, identifying information leaks on a byte granularity still allows to
map them to more coarse-grained attacks.
Detection Accuracy. Static approaches like CacheAudit [KMO12; Doy+13]
suffer from false positives. In contrast, DATA’s phase one avoids false positives for
deterministic programs. However, as with all dynamic approaches, DATA could
theoretically miss leakage that is not triggered during execution. Nevertheless,
we found that few traces already suffice in practice, e.g., ≤ 10 for asymmetric
algorithms, and ≤ 3 for symmetric algorithms, due to the high diffusion pro-
vided by these algorithms. Although without a formal guarantee, this gives
evidence that DATA reduces false negatives successfully. Compared to others,
we take multiple measures to reduce false negatives in DATA. In contrast to
CacheD [Wan+17a] and ctgrind [Lan10], which analyze a single execution path
only, we analyze several execution paths. Compared to Stacco [Xia+17], which
has improper trace alignment, we report all leaks visible in the address traces.
Contrary to Irazoqui et al. [Ira+17], we do not only focus on a specific attack
technique (e.g., cache attacks). This advantage of DATA is indicated by G# in
Table 6.1.

DATA also measures up to more recent work in terms of detection accuracy.
MicroWalk [Wic+18] compresses execution contexts, thus trading detection
accuracy against analysis speed. DATA does not perform any compression. By
operating on the raw address traces, DATA can detect even nested leaks (leaks
within other leaks). CacheS [Wan+19] applies abstract interpretation to larger
programs, however, only at cache-line granularity. Also, they miss leakage due to
implicit information flows, which DATA is able to detect.
Practicality. DATA analyzes information leaks fully automatically. It does so
on the program binary without the need for source code, allowing analysis of
proprietary software. As will be outlined in our evaluation, we achieve competitive
performance and support analysis of large software stacks and even interpreted
code (PyCrypto and CPython). Finally, DATA is open source.



8.2. Differential Address Trace Analysis 139

8.2 Differential Address Trace Analysis

DATA is a methodology and a tool to identify address-based information leaks
in program binaries. In the following, we introduce our threat model and outline
our methodology for detecting address differences. We then go into details of
our methodology, as follows: First, we introduce address-based information leaks.
Second, we show how address traces are recorded. Third, we explain the process
of finding differences in the recorded traces.

8.2.1 Threat Model

To cover a wide variety of possible attacks, we consider a powerful adversary who
attempts to recover secret information from side-channel observations. In practice,
attackers will likely face noisy observations because side channels typically stem
from shared resources affected by noise from system load. Also, practical attacks
only monitor a limited number of addresses or memory blocks. For DATA, we
assume that the attacker can accurately observe full, noise-free address traces.
More precisely, the attacker does not only learn the sequence of instruction
pointers [Mol+05], i.e., the addresses of instructions, but also the addresses of the
operands that are accessed by each instruction. This is a strong attacker model
that covers many side-channel attacks targeting the processor microarchitecture
(e.g., branch prediction) and the memory hierarchy (e.g., various CPU caches,
prefetching, DRAM). A strong model is preferable here to detect as many
vulnerabilities as possible. In line with [Gru+16], we consider defenses, such as
address space layout randomization (ASLR) and code obfuscation, as ineffective
against powerful attackers.
Limitations. DATA covers software side channels of components that oper-
ate on address information only, e.g., cache prefetching and replacement, and
branch prediction based on the branch history. In contrast, the recent transient
execution attacks, such as Spectre [Koc+19] and Meltdown [Lip+18], exploit
not only address information but actual data that is speculatively processed
but insufficiently isolated across different execution contexts. In these attacks,
sensitive data spills over to the address bus. These hardware bugs cannot be
detected by analyzing software binaries with tools listed in Table 6.1. While
software-only defenses exist for specific CPU models [Tur18; Cor18b], a generic
solution should fix the hardware.
Relation to Similar Concepts. The idea of DATA is similar to differential
power analysis (DPA) [KJJ99], which works on power traces. However, power
traces are often noisy due to measurement uncertainty and the underlying
physics. Hence, DPA often requires several thousands of measurements, and
non-constant-time implementations demand heavy pre-processing to align power
traces correctly [MOP07]. In contrast, address traces are noise-free, which
minimizes the number of required measurements and allows perfect re-alignment
for traces that are non-constant time due to control-flow leaks.

DATA is also related to differential computation analysis (DCA) [Bos+16].
DCA relies on software execution traces to attack white-box crypto implemen-
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Figure 8.1: Differential address trace analysis searches for differences in recorded
address traces.

tations. While DCA is conceptually similar to DATA, the white-box model
considers a much stronger adversary who can read the actual content of accessed
memory locations rather than addresses only.

8.2.2 Methodology

DATA detects address differences in a multi-step process, as depicted in Figure 8.1.
First, we execute the target program with a binary instrumentation tool and
record all accessed code addresses as well as memory addresses.Thereby, we ensure
to capture both control flow and data leakages at their exact origin. By executing
the program multiple times with varying secret input values (e.g., cryptographic
keys or messages), we obtain multiple address traces. Second, DATA compares
the recorded address traces using a dedicated trace diffing algorithm. Differences
in these traces suggest potential information leakage and are summarized in a
report. For deterministic programs, all reported differences are secret-dependent
and, thus, true positives.

8.2.3 Address-based Information Leakage

We now introduce address-based information leakage and give descriptive exam-
ples of data leakage as well as control-flow leakage. DATA analyzes a program
binary P with respect to address leakage of secret input k. Let P (k) denote the
execution of a program with controllable secret input k. We write t = trace(P (k))
to record a trace of accessed addresses during program execution. We define
an address trace t = [a0, a1, a2, a3...] as a sequence of executed instructions,
augmented with memory addresses. For instructions operating on CPU registers,
ai = ip holds the current instruction pointer ip. In case of memory operations,
ai = (ip, d) also holds the accessed memory address d. Information leaks ap-
pear as differences in address traces. We develop an algorithm diff(t1, t2) that,
given a pair of traces (t1, t2), identifies all differences. If the traces are equal,
diff(t1, t2) = ∅. A deterministic program P is leakage free if and only if no
differences show up for any pair of secret inputs (ki, kj):

∀ki, kj : diff(trace(P (ki)), trace(P (kj))) = ∅ (8.1)
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0 program entry: // call process with user -input key

1 unsigned char LUT [16] = { 0x52 ,

2 0x19 ,

...

16 0x37 };

17 int transform(int kval) { return LUT[kval %16]; }

18 int process(int key [3]) {

19 int val = transform (0);

20 val += transform(key [0]);

21 val += transform(key [1]);

22 val += transform(key [2]);

23 return val;

}

Listing 8.1: Vulnerable table look-up causing data leakage of key.

Data leakage is characterized by the same instruction (ip) accessing different
memory locations (d). Consider the code snippet in Listing 8.1. Without loss of
generality, in our examples, line numbers correspond to code addresses. Execution
with two different keys keyA = [10, 11, 12] and keyB = [16, 17, 18] yields two
address traces tA = trace(P (keyA)) and tB = trace(P (keyB)).

Starting at the program entry 0, we obtain the following traces, with address
differences marked bold:

tA = [0, 18, 19, (17, 1), 20, (17,11), 21, (17,12), 22, (17,13), 23]

tB = [0, 18, 19, (17, 1), 20, (17,01), 21, (17,02), 22, (17,03), 23]

The function transform leaks the argument kval (line 17), which is used as
an index into the array table LUT (lines 1–16). Since the base address of LUT is
1, this operation leaks memory address kval + 1. The first call to transform

(line 19) with kval = 0 always results in a2 = (17, 1). Subsequent calls to
transform, however, leak sensitive key bytes (line 20–22). The differences in the
traces–marked bold–reveal key dependencies. Note that the key bytes of keyB
are reduced modulo 16 in line 17. Hence, an attacker can observe at most 16
different addresses every time this data leak is triggered. This corresponds to
four bits of leakage since log2(16) = 4.

To accurately report data leakage and to distinguish non-leaking cases (line 19)
from leaking cases (line 20–22), we take the call stack into account. We formalize
data leaks as tuples (ip, cs, ev) of the leaking instruction ip, its call stack cs,
and the evidence ev. The call stack is a list of caller addresses leading to the
leaking function. For example, the first leak has the call stack cs = [0, 20]. The
evidence is a set of leaking data addresses d. The larger the evidence set, the more
information is leaked. For example, ev = {11, 01} for the first leak, ev = {12, 02}
for the second one, etc. Our diff algorithm would report:

diff(tA, tB) = {(17, [0, 20], {11, 01}),
(17, [0, 21], {12, 02}),
(17, [0, 22], {13, 03})}
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0 program entry: // call exp with user -input key and public p

1 function exp(key , *p) {

...

2 foreach (bit b in key)

3 if (b)

4 mul(r, p);

else

5 mul(t, p);

6 return r;

}

function mul(*a,*b) {

7 tmpA = *a;

8 tmpB = *b;

// calculate res = tmpA * tmpB

9 *a = res;

}

Listing 8.2: Secret-dependent branch causing control-flow leakage of key.

Control-flow leakage is caused by key-dependent branches or indirect jumps.
As an example, we study a square&multiply exponentiation common for RSA
decryption, depicted in Listing 8.2. For simplicity, we left out the squaring step.
To avoid simple timing attacks, the algorithm always performs multiplication,
either on the real buffer r (line 4), or on a temporary dummy buffer t (line 5).
Nevertheless, the algorithm is prone to address leakage. Consider this algorithm
to be executed with two keys kA = 4 = 1002 and kB = 7 = 1112. In our example,
let R, P , and T denote the data addresses of the variables r, p, and t, respectively.
Trace recording will yield the following address traces:

trace(P (kA)) = tA = [0, 1,2, 3, 4, (7, R), (8, P ), (9, R),

2, 3,5,(7,T),(8,P),(9,T),

2, 3,5,(7,T),(8,P),(9,T), 2, 6]

trace(P (kB)) = tB = [0, 1,2, 3, 4, (7, R), (8, P ), (9, R),

2, 3,4,(7,R),(8,P),(9,R),

2, 3,4,(7,R),(8,P),(9,R), 2, 6]

There are two differences in the traces; both marked bold. The differences
occur due to the if statement in line 3, which branches to line 4 or 5, depending
on the key bit b. Moreover, it causes operations in line 7 and 9 to be done either
on the intermediate variable r or a temporary variable t.

We can observe that the control-flow leak is characterized by its branch point,
where the control flow diverges, and its merge point, where branches coalesce
again. In this example, the branch point is at line 3 and the merge point at
line 2, when the next loop iteration starts. The merge point is mainly of interest
for trace alignment. We model control-flow leaks as tuples (ip, cs, ev) of branch
point ip, call stack cs, and evidence ev. In our example, both differences occur
at the same call stack cs = [0]. Hence, they are reported as one and the same
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leak. The evidence is a set of sub-traces (i.e., traces between the branch point
and the merge point) corresponding to the two branches.

It is worth noting that the present code snippet also contains two data leaks in
lines 7 and 9. However, since the leaky multiplication is wrapped in a control-flow
leak, these data leaks do not reveal more information—they are part of the
control-flow leak. Our diff algorithm would report:

diff(tA, tB) = {(3, [0], {[4, (7, R), (8, P ), (9, R)],

[5, (7, T ), (8, P ), (9, T )]} )}

8.2.4 Recording Address Traces

To obtain address traces, we execute the program on a dynamic binary instru-
mentation (DBI) framework, namely Intel Pin [Luk+05]. We instrument the
program to store all accessed code and data addresses in an address trace. To
execute the program in a clean and noise-free environment, we disable ASLR
and keep public inputs (e.g., command-line arguments, environment variables)
to the program fixed. Disabling ASLR does not introduce false positives or
negatives but simplifies trace analysis. As shown in Figure 8.1, we repeat trace
recording multiple times with varying inputs, causing address leaks to show up
as differences in the address traces.

The concept of DATA is agnostic to concrete recording tools and, hence,
could also rely on other tools [Son+08] or hardware acceleration, such as Intel
Processor Trace (IPT) [Int16a]. Since the recording time is short compared to
trace analysis, we did not investigate other tools further.

8.2.5 Finding Trace Differences

To find address leaks, DATA compares recorded address traces. We developed
a dedicated address trace comparison algorithm denoted as diff. It sequentially
scans pairs of traces (tA, tB) for address differences, while continuously re-aligning
traces in the same pass, should control-flow leaks occur. Thus, DATA not only
discovers multiple subsequent control-flow leaks but also nested leaks (i.e., leaks
within control-flow leaks).

We run our diff algorithm pairwise on all recorded traces and accumulate the
results in one report. Testing multiple traces helps capture nested leakage, that is,
leakage, which appears conditionally, depending on which branches are taken in a
superordinate control-flow leak. Nested leakage would remain hidden when only
testing trace pairs that take different superordinate branches. By running diff
on all pairwise combinations of traces, we increase the probability of discovering
nested leaks. Thus, the number of diff invocations increases quadratically with
the number of recorded traces. For our evaluation, we use up to ten traces.
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Algorithm 8.1: Identifying address trace differences (diff).

input : tA, tB ... the two traces
output : rep ... the report of all differences

1 rep = ∅, i = 0, j = 0
2 while i < |tA| ∧ j < |tB | do
3 a = tA[i], b = tB [i]
4 if a.ip = b.ip then
5 if a.d 6= b.d then
6 rep = rep ∪ report data diff(tA, tB , i, j)
7 end
8 i++, j++

9 else
10 rep = rep ∪ report cf diff(tA, tB , i, j)
11 (i, j) = find merge point(tA, tB , i, j)

12 end

13 end
14 return rep

Our trace comparison is given in Algorithm 8.1. Whenever ip values match,
but data addresses (d) do not, a data difference is detected (lines 4–6). After
reporting it, both traces are advanced to the next instruction (line 8). Control-
flow differences occur when ips start to differ (line 9–11). Differences are reported
using report data diff and report cf diff using the format specified in Section 8.2.3.
After a control-flow difference is reported, both traces need to be re-aligned to
the merge point (line 11).
Trace Alignment. For control-flow differences, it is crucial to determine the
correct merge point. Knowledge of the merge point allows the algorithm to
continue sequential scanning and to detect further leaks until the end of one or
both traces is reached.

In principle, merge points correspond to post-dominators of the diverged
branches in the control-flow graph (CFG) [Geo+04]. We recover merge points
using a simple set intersection approach, as shown in Algorithm 8.2. Starting
from the branch point, the algorithm sequentially scans both traces and extends
two sets SA and SB (lines 7–8) with the scanned instructions. If their intersection
M becomes non-empty (lines 9–10), M holds the merge point’s ip. We then
determine the first occurrence of M in both branches using find (lines 11–12) and
report them back as merge point to our diff algorithm. Eventually, both traces
are aligned to the merge point in Algorithm 8.1 line 11, and the difference search
is continued.
Context-Sensitivity. Since control-flow leaks could incorporate additional
function calls (cf. function mul in Listing 8.2), we need to exclude those from
the merge point search. If we do not, we could erroneously identify the merge
point to be in the sub-function (e.g., line 7 of Listing 8.2).
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Algorithm 8.2: find merge point

input : tA, tB ... the two traces
input : i, j ... the trace indices of the branches
output : k, l ... the indices of the merge point

1 k = i, l = j, CA = 0, CB = 0, SA = ∅, SB = ∅
2 while k < |tA| ∧ l < |tB | do
3 if isCall(tA[k]) then CA++ ;
4 if isRet(tA[k]) then CA– – ;
5 if isCall(tB [l]) then CB++ ;
6 if isRet(tB [l]) then CB– – ;
7 if CA <= 0 then SA = SA ∪ tA[k].ip ;
8 if CB <= 0 then SB = SB ∪ tB [l].ip ;
9 M = SA ∩ SB

10 if M 6= ∅ then
11 k = find(tA[i...k],M)
12 l = find(tB [j...l],M)
13 return (k, l)

14 end
15 if CA >= 0 then k++ ;
16 if CB >= 0 then l++ ;

17 end
18 error No merge point found

Therefore, we maintain the current calling depth in counters CA and CB

(Algorithm 8.2 lines 3–6). The functions isCall(a) and isRet(a) return true iff
the assembler instruction at address a.ip is a function call or return, respectively.
A calling depth greater than zero occurs when inspecting instructions of sub-
functions. Such instructions are ignored in lines 7–8. If the calling depth drops
below zero, the trace returned to the function’s call-site. We stop scanning this
trace (lines 15–17) and wait for the other trace to hit a merge point. As an
example, consider the control-flow leak in Listing 8.3 line 2. Depending on the
value of key, the function either exits at line 2 or line 3. Thus, the correct merge
point is line 0 at the call-site.
Applicability. The presented trace alignment method is designed for ap-
plications following the call-return paradigm introduced with procedural pro-

0 program entry: // call process with user -input key

1 int process(int key) {

2 if (key == 0) return 256;

3 else return key;

}

Listing 8.3: Merge point is at call-site.
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gramming. Thus, our context-sensitive alignment also works for techniques
like retpoline [Tur18] that aim to prevent Spectre attacks, since they just add
additional call/ret layers. Code directly manipulating the stack pointer (return
stack refill [Tur18], setjmp/longjmp, exceptions, etc.) could be supported by
detecting such stack pointer manipulations alongside calls and returns.
Comparison to Related Work. Trace alignment has been studied before
as the problem of correspondence between different execution points. Several
approaches for identifying execution points exist [SZ13]. Instruction-counter-
based approaches [ML89] uniquely identify points in one execution but fail to
establish a correspondence between different executions. Using calling contexts
as a correspondence metric could introduce temporal ambiguity in distinguishing
loop iterations [Sum+10]. Xin et al. [XSZ08] formalize the problem of relating
execution points across different executions as execution indexing (EI). They
propose structural EI (SEI), which uses taken program paths for indexing but
could lose comprehensiveness by mismatching execution points that should cor-
respond [SZ13]. Other approaches combine call stacks with loop counting to
avoid problems of ambiguity and comprehensiveness [SZ13]. Many demand re-
compilation [XSZ08; Sum+10; SZ13], which prohibits their usage in our setting.
Specifically, EI requires knowledge of post-dominators, typically extracted from
control flow graphs (CFGs) [Geo+04], which are not necessarily available (e.g., ob-
fuscated binaries or dynamic code generation). Using EI, Johnson et al. [Joh+11]
align traces in order to propagate differences back to their originating input.

We use a similar intuition as Johnson et al. in processing and aligning
traces in a single pass, however, without the need to make program execution
indices explicit. By constantly re-aligning traces, we inherently maintain the
correspondence of execution points. Our set-based approach does not require
CFG or post-dominator information.

In contrast to EI, we do not explicitly recover loops. This could cause
imprecision when merging control-flow leaks embedded within loops. If the two
branches are significantly asymmetric in length, we might match multiple shorter
loop iterations against one longer iteration. This case introduces an artificial
control-flow leak (false positive) when one branch leaves the loop while the other
does not. Should such leaks occur, they would be dismissed as key independent
during the statistical phases of DATA. Note that correspondence (i.e., correct
alignment) would be automatically restored as soon as both branches leave the
loop. Also, this is not a fundamental limitation of DATA, as other trace alignment
methods could be implemented as well.

8.3 Implementation and Optimizations

DATA offers a convenient command-line interface to invoke all analysis steps
shown in Figure 8.1. This includes key generation, trace recording and trace
diffing. To speed up analysis, DATA supports parallel trace recording as well
as parallel trace diffing. To test a given program, the analyst only needs to
provide a bash script that generates keys in an appropriate format and invokes
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the program with the generated keys. If the program is compiled with debug
symbols, the final report will in addition show the symbol names, alongside the
memory addresses.
Trace Recording. The concept of DATA is platform independent. For our
prototype we chose to implement trace recording on top of the Intel Pin frame-
work [Int] for analyzing x86 binaries. We developed our own Pintool to record
address traces in separate trace files. To reduce their size, we only monitor in-
structions with branching behavior and their target branch as well as instructions
performing memory operations. In particular, pure register instructions are not
recorded. This suffices to detect control-flow and data leakage. Furthermore,
we store traces in a custom binary format that can be directly accessed as C++
vector. This reduces not only the trace size but also avoids conversion costs. Our
Pintool also offers an option to specify at which function call recording shall
start.
Trace Diffing. We implement the difference detection in Python. To speed up
analysis, we use a fast-forwarding method that compares large chunks of trace
data at once. As soon as differences occur, we fall back to the instruction-granular
diff algorithm explained before. In the end, our Python script condenses all
findings into a human-readable leakage report in XML format. This report
structures information leaks by libraries, functions, and call stacks.
Tracking Heap Allocations. Data leakage of heap objects demands special
treatment. Depending on the utilization of the heap, identical memory objects
could get assigned different addresses by the memory allocator, especially if
previous heap allocations vary in size. While these previous variable-sized heap
allocations might constitute actual data leakage, all subsequent heap allocations
would also be shifted in memory and cause address differences. During trace
analysis, one could misinterpret these subsequent heap objects as different ones,
while, in fact, they just expose the same previous data leakage. We encountered
such behavior for OpenSSL, which dynamically allocates big numbers on the
heap and resizes them on demand. This causes frequent re-allocations and
big numbers hopping between different heap addresses for different program
executions. Our Pintool can, therefore, be configured to detect heap objects
and replace their virtual address with its relative address offset. Our current
heap tracking refrains from labeling different heap objects. While this gives us
more readable results, we might miss data leakage in which different memory
objects are accessed, depending on the secret. More elaborate approaches such
as memory indexing [SZ10] are left as future work.

8.4 Evaluation and Results

For our evaluation we used Pin version 3.2-81205 for instrumentation and compiled
glibc 2.24 as well as OpenSSL 1.1.0f2 in a default configuration with additional
debug information, using GCC version 6.3.0. Although DATA does not require

2Specifically, we tested commit 7477c83e15.
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Table 8.1: Leakage summary of algorithms.

Algorithm Differences

AES-NI 0 (2)
AES-VP 0
AES bitsliced 4
AES T-table 20
Blowfish 194
Camellia 82
CAST 202
DES 138
Triple DES 410
ECDSA (secp256k1) 515
DSA 781
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Triple DES 108

debug symbols, it incorporates them in the final report, if available. Debug
symbols help mapping detected leaks back to functions and data symbols.

8.4.1 Analysis Results

Table 8.1 shows the address differences reported by DATA. For symmetric
algorithms in OpenSSL, we recorded up to 10 traces in the difference detection
phase. We found that three traces are sufficient as more traces did not uncover
additional differences. The low number of traces results from the high diffusion
and the regular design of symmetric ciphers, which yields a high probability
for quickly hitting all variations in the program execution. This suggests that
the difference detection phase achieves good accuracy for symmetric ciphers.
Symmetric ciphers are typically deterministic. Thus, all differences are key-
dependent.

Non-deterministic algorithms, often included in asymmetric ciphers, also
show address differences that are independent of the secret key. This explains
the high number of differences, especially for RSA in Table 8.1. In [Wei+18a],
we present statistical phases to automate the process of distinguishing noise
from actual secret-dependent leaks. For this chapter, we manually separated
non-deterministic differences from key-dependent leaks by analyzing the call
stack in the reports. If a function does not take a secret input, we consider any
address differences it shows as noise. In [Wei+18a], we further argue that in the
case of OpenSSL, ten traces should suffice to analyze asymmetric primitives.
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We analyzed the reported differences and discovered numerous known as
well as unknown side-channel vulnerabilities. In the following, we present our
analysis results for OpenSSL symmetric and asymmetric primitives as well as for
PyCrypto.
OpenSSL (Symmetric Primitives). To analyze AES, we implemented a
wrapper that calls the algorithm directly. For other algorithms, we used the
openssl enc command-line tool with keys in hex format.

Our analysis shows that AES-NI (AES new instructions [Gue10]) as well as
AES-VP (vector permutations based on SSSE3 extensions) do not leak. However,
when using AES-NI (and other ciphers) via the OpenSSL command-line tool, the
key parsing yields two data leaks, as indicated in brackets. In particular, the leaks
occur in function set hex, which uses stdlib’s isxdigit function that performs
leaky table lookups. Besides, OPENSSL hexchar2int uses a leaky switch-case
statement to convert key characters to integers. One should be aware of such
leaks and favor storing symmetric keys in binary format only.

Besides, we identified four data leaks in the bitsliced AES. While OpenSSL
uses the protected implementation by Käspar and Schwabe [KS09] for the actual
encryption, they use the same unprotected key expansion as used in T-table
implementations. In particular, the bitsliced AES implementation uses the
vulnerable x86 64 AES set encrypt key function for the key schedule.

All other tested symmetric implementations yield a significant number of
data leaks since they rely on lookup tables with key-dependent memory accesses,
which makes them vulnerable to cache attacks [TOS10; Ber05]. The unpro-
tected AES leaks in function x86 64 AES encrypt compact. Blowfish leaks
at BF encrypt, Camellia leaks vie the LCamellia SBOX at Camellia Ekeygen

and x86 64 Camellia encrypt, CAST leaks via the CAST S table0 to 7 at
CAST set key as well as CAST encrypt, DES leaks via the des skb lookup table
at DES set key unchecked as well as via DES SPtrans at DES encrypt2.
OpenSSL (Asymmetric Primitives). For the analysis of asymmetric ciphers,
we use OpenSSL to generate keys in PEM format and then invoke the openssl

pkeyutl command-line tool to create signatures with those keys.
Similar to symmetric ciphers, asymmetric implementations leak during key

loading and parsing. We found leaks in EVP DecodeUpdate, in EVP DecodeBlock

via lookup table data ascii2bin, in c2i ASN1 INTEGER that uses c2i ibuf and
in BN bin2bn. Although the key is typically loaded only once at program startup,
this has direct implications on applications using Intel SGX SSL. Controlled-
channel attacks (cf. Chapter 7) or interrupt-driven attacks [BPS17] could be
used to exploit the key initialization steps.

The asymmetric primitives show significant non-deterministic behavior, which
would be dismissed in the statistical phases (see [Wei+18a]). For example,
OpenSSL uses RSA base blinding with a random blinding value. By analyz-
ing the leaks, we found two constant-time vulnerabilities in RSA and DSA,
respectively, which bypass constant-time implementations in favor of vulnerable
implementations. This could allow key recovery attacks similar to [WSB18a;
Ald+19]. The first vulnerability leaks during the initialization of Montgomery
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1 int BN_MONT_CTX_set(BN_MONT_CTX *mont , BIGNUM *mod , BN_CTX *ctx)

2 {

3 ...

4 BN_copy (&(mont ->N), mod);

5 ...

6 BN_mod_inverse(Ri , R, &mont ->N, ctx);

7 ...

8 }

Listing 8.4: OpenSSL RSA vulnerability.

constants for secret RSA primes p and q. This is a programming bug: the
so-called constant-time flag is set for p and q in function rsa ossl mod exp

but not propagated to temporary working copies inside BN MONT CTX set, as
shown in Listing 8.4, since the function BN copy in line 4 does not propagate the
consttime-flag from mod to mont->N. This causes the inversion in line 6 to fall
back to non-constant-time implementations (int bn mod inverse and BN div).
The second vulnerability is a missing constant-time flag for the DSA private key
inside dsa priv decode. This causes the DSA key loading to use the unprotected
exponentiation function BN mod exp mont.

Moreover, DATA reconfirms address differences in the ECDSA wNAF imple-
mentation. ECDSA still uses the vulnerable point multiplication in ec wNAF mul,
which was exploited in [Ben+14; PSY15; FWC16]. Finally, we found that
the majority of information leaks reported for OpenSSL are leaking the length
of the key or intermediate variables. For example, we reconfirm the leak in
BN num bits word [Wan+17a], which leaks the number of bits of the upper word
of big numbers. There are several examples where the key length in bytes is
leaked, e.g., via ASN1 STRING set, BN bin2bn, strlen of glibc as well as via heap
allocation.
Python. We tested PyCrypto 2.6.1 running on CPython 2.7.13. We wrote a
wrapper to invoke PyCrypto with randomly generated keys and excluded the
wrapper from trace recording to remove leakage stemming from key parsing.

PyCrypto incorporates native shared libraries for most cryptographic opera-
tions. From a side-channel perspective, this is desirable since those native libraries
could be tightened against side-channel attacks, independently of the used inter-
preter. However, we found that all ciphers leak key bytes via unprotected lookup
table implementations within those shared libraries, as indicated by the byte
leakage model. In particular, AES leaks the tables Te0 to Te4 and Td0 to Td3 in
functions ALGnew, rijndaelKeySetupEnc and rijndaelEncrypt. Blowfish leaks
in functions ALGnew and Blowfish encrypt. CAST leaks the tables S1 to S4 in
function block encrypt and the tables S5 to S8 in schedulekeys half. Triple
DES leaks the table des ip in function desfunc as well as deskey. ARC4 leaks
in function ALGnew.
Leakage-free Crypto. As a sanity check, we applied DATA to ciphers that
were designed to be constant time. We analyzed Curve25519 in NaCl [BLS] as
well as the corresponding Diffie-Hellman variant of OpenSSL (X25519). DATA
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Table 8.2: Performance of DATA during the analysis of OpenSSL (top) and PyCrypto
(bottom). Sizes are per trace. Time is in CPU minutes.

Algorithm Traces
Size Time

(MB) (min.)

AES-NI 3 0.5 0.1
AES-VP 3 0.5 0.1
AES bitsliced 3 0.5 0.4
AES T-table 3 0.5 0.4
Blowfish 3 28.2 0.8
Camellia 3 27.3 0.6
CAST 3 27.3 0.6
DES 3 27.3 0.6
Triple DES 3 27.3 0.7
ECDSA (secp256k1) 10 54.1 79.8
DSA 10 35.6 29.8

O
p

en
S

S
L

RSA 10 44.2 55.0
AES 3 1081.6 4.0
ARC4 3 1081.5 3.9
Blowfish 3 1082.3 5.0
CAST 3 1081.6 4.0

P
y
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ry
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to

Triple DES 3 1082.4 4.2

found no address-based information leakage (apart from OpenSSL’s key parsing),
approving their side-channel security.

8.4.2 Performance

We ran our experiments on a Xeon E5-2630v3 with 386 GB RAM. DATA achieves
good performance, adapting its runtime to the number of discovered leaks, as
summarized in Table 8.2. Unless stated otherwise, all timings reflect the runtime
in CPU minutes (single-core) and thus represent a fair and conservative metric.
If tasks are parallelized, the actual runtime can be significantly reduced.

For OpenSSL symmetric ciphers, DATA completes analysis in less than a
minute. Analysis of the leakage-free AES-NI and AES-VP only took around 6
seconds. OpenSSL’s asymmetric ciphers need between 29.8 CPU minutes for
DSA and 79.8 CPU minutes for ECDSA, for two reasons. First, they require more
traces to be recorded and analyzed. As we compare traces pairwise, the runtime
of trace diffing grows quadratically in the number of traces. Second, asymmetric
ciphers yield significantly more differences that need to be analyzed. Especially
control-flow differences demand costly re-alignment of traces. Nevertheless, these
results are quite encouraging, especially since the automated analysis of large
real-world software stacks is out of reach for many existing tools. By exploiting
parallelism, the actual execution time can be significantly reduced, e.g., from 55
CPU minutes to approximately 250 s for RSA on our test machine.
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For OpenSSL, the trace size is < 30 MB for symmetric and < 55 MB for
asymmetric ciphers. For PyCrypto, each trace has approximately 1 GB, because
the execution of the interpreter is included. Despite the large trace sizes, DATA
finishes analysis of PyCrypto ciphers in 5 minutes or less.

8.4.3 Discussion

The adoption of side-channel countermeasures is often partial, error-prone, and
non-transparent in practice. Even though countermeasures have been known for
over a decade [RSD06], most OpenSSL symmetric ciphers, as well as PyCrypto,
do not rely on protected implementations such as bitslicing. Also, the bitsliced
AES adopted by OpenSSL leaks during the key schedule. It was integrated only
partially [KS09] since practical attacks have not been shown yet. Moreover, we
discovered two new vulnerabilities, bypassing OpenSSL’s constant-time imple-
mentations for RSA and DSA initialization. Considering incomplete bug fixes of
similar vulnerabilities identified by Garcia et al. [GBY16; GB17], this sums up
to four implementation bugs related to the same countermeasure. This clearly
shows that the tedious and error-prone task of implementing countermeasures
should be backed by appropriate tools such as DATA to detect and appropriately
fix vulnerabilities as early as possible.

We found issues in loading and parsing cryptographic keys as well as initializa-
tion routines. Finding these issues demands analysis of the full program execution,
from the program start to exit, which is out of reach for many existing tools.
Also, analysis often neglects these information leaks because an attacker typically
has no way to trigger key loading and other single events in practice. However,
when using OpenSSL inside SGX enclaves (cf. Intel’s SGX SSL library [Int19]
and Chapter 7), the attacker can trigger arbitrarily many program executions,
making single-event leakage practically relevant.
Responsible Disclosure. We informed the library developers as well as Intel
of our findings. We furthermore provided patches for the critical constant-time
vulnerabilities, which were merged by the OpenSSL team.3

Outlook. The generic design of DATA also allows detecting other types
of leakage, such as variable-time floating point instructions, by including the
instruction operands in the recorded address traces. DATA also paves the way for
analyzing other interpreted languages and quantifying the effects of interpretation
and just-in-time compilation on side-channel security. Moreover, DATA could
be extended to analyze multi-threaded programs by recording and analyzing
individual traces per execution thread.

3See commits 3de81a59, 9f944291 and 6364475a in https://github.com/openssl/
openssl.git.

https://github.com/openssl/openssl.git
https://github.com/openssl/openssl.git
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8.5 Summary

In this work, we proposed differential address trace analysis (DATA), a method-
ology to identify address-based information leaks underlying most software-based
side-channel attacks. Our practical implementation of DATA is efficient enough
to analyze real-world software – from program start to exit. Thereby, we in-
clude key loading and parsing in the analysis and found leakage, which has been
missed before. Based on DATA, we confirmed existing and identified several
unknown information leaks as well as already (supposedly) fixed vulnerabilities in
OpenSSL. In addition, we showed that DATA is capable of analyzing interpreted
code (PyCrypto), including the underlying interpreter, which is conceptually
impossible with current static methods. This shows the practical relevance of
DATA in assisting security analysts in identifying information leaks as well as
developers in the tedious task of correctly implementing countermeasures. We
open-source DATA in order to encourage analysis of real-world cryptographic
libraries.
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9
Big Numbers – Big Troubles. On Nonce

Leakage in (EC)DSA

For whatever is hidden is meant to be disclosed, and whatever is concealed is
meant to be brought out into the open.

Jesus Christ – Gospel of Mark

Digital signatures are an essential building block for encrypted communication
channels, e.g., via Transport Layer Security (TLS) and the underlying public-
key infrastructures, SSH, as well as for cryptocurrencies. The extensive and
ubiquitous usage of digital signature schemes demands good security arguments,
not only from a cryptanalytic perspective but also regarding their implementation,
as a single implementation vulnerability can completely break the scheme [BH19].

Most digital signature schemes used today are susceptible to attacks on their
so-called nonces [NS00]. Even partial knowledge of nonces leads to full recovery of
private keys, thus allowing an attacker to issue fake signatures, impersonate users,
intercept communication channels, steal money, etc. In light of these threats,
digital signature implementations need extensive hardening against nonce leakage.
While biased random number generation [BH19] is a common implementation
pitfall, also side channels [BH09] have been proven a powerful way of leaking
nonce bits. Especially side-channel attacks constantly improve along several axes.
This includes advanced side-channel observation methods, a reduction of required
knowledge, faster key recovery attacks, and, most importantly, the continued
discovery and disclosure of new side-channel leakage that might have been hidden
for years.
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Modern cryptographic libraries already explicitly address nonce leakage by
relying on constant-time code execution. Unfortunately, efforts to make imple-
mentations side-channel resistant are not being evaluated thoroughly enough,
leading to a continuous cycle of vulnerability disclosure and patching. To break
this cycle, a more systematic approach for nonce leakage analysis is required.
However, this seems to be a challenging endeavor for the following reasons:

1. Although side-channel evaluation techniques are actively researched, com-
plex code bases such as OpenSSL are hard to evaluate.

2. Popular libraries use randomization, e.g., blinding, to avoid leakage in vul-
nerable non-constant-time code. However, analyzing blinded computations
for side channels is non-trivial; and insufficient blinding is exploitable.

3. Cryptographic libraries use non-constant-time code when computing on
public data. Although legitimate, this puts an additional burden on code
analysis to avoid false positives.

4. While tool support for side-channel analysis is growing, existing tools do
not address nonce leakage.

In this chapter, we address these challenges by extending the DATA framework
introduced in Chapter 8 and [Wei+18b]. In particular, we adapt DATA to
recognize nonces as additional secrets in a backward manner and develop leakage
models tailored for detecting nonce leakage. These leakage models operate on
DATA’s statistical leakage detection phase described in [Wei+18b]. We also
develop a graphical user interface for visualizing leakage results. Our GUI helped
us to systematically analyze three popular cryptographic libraries for (EC)DSA
nonce leakage, namely OpenSSL, LibreSSL, and BoringSSL.

We systematically study the whole lifetime of a nonce, i.e., from its gener-
ation to its final use. Rather than proving code secure–which would typically
require formal models and static analysis approaches–we focus on finding actual
side-channel vulnerabilities. In fact, we uncovered numerous unknown vulner-
abilities leaking nonce bits, and thereby highlight a fundamental problem in
the Bignumber representation in OpenSSL and LibreSSL. In particular, if the
nonce is close to a machine word boundary, the Bignumber implementations
possibly leak whether the nonce crosses this boundary in either direction. We
found that lazy resize operations involving the nonce leak several nonce bits via
Flush+Reload [YF14], which has been acknowledged and documented under
CVE-2018-0734 and CVE-2018-0735. Surprisingly, this leakage occurs due to a
side-channel defense mechanism. We also found that small nonces can leak nine
nonce bits at once for the secp521r1 curve. The Bignumber implementation of
BoringSSL1 prevents size-related Bignumber issues by design. Yet, we found a
tiny but expressive leak in the constant-time scalar multiplication of BoringSSL
and OpenSSL. During responsible disclosure, we identified a flaw in the OpenSSL
patches that would have downgraded exponentiation to a vulnerable implementa-
tion (cf. [GBY16]). We report residual leakage in the patched OpenSSL version,
which we exploit via controlled-channel attacks [XCP15] for full key recovery.

1See https://github.com/openssl/openssl/issues/6640.

https://github.com/openssl/openssl/issues/6640
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Due to our findings, the OpenSSL team decided to rework Bignumber arithmetic,
similar to BoringSSL [Dal19].

This chapter provides a snapshot of the current situation of nonce leakage in
popular cryptographic libraries. With the help of our GUI we analyzed known
and unknown vulnerabilities and document their potential damage, exploitability,
and patching state. We open-source both our tool and the GUI to facilitate
reproducibility and future side-channel analysis.2

Contributions. Our contributions are as follows:
� We expand The DATA side-channel analysis framework for automated

nonce leakage detection, and present results in an intuitive GUI.
� We systematically analyze nonce leakage in three popular crypto libraries:

OpenSSL, LibreSSL, and BoringSSL.
� We uncover and document several unknown side-channel vulnerabilities

resulting from fundamental flaws in the Bignumbers representation of
OpenSSL and LibreSSL, among others.

� We responsibly disclosed vulnerabilities, proposed fixes, and document
residual leakage that remains unfixed.

This chapter is based on the publication [Wei+20], of which I am the main
author, while Lukas Bodner contributed most of the GUI design. The remainder
of this chapter is structured as follows: Section 9.1 gives background information.
Section 9.2 presents our automated side-channel analysis tool. Section 9.3
outlines analysis results and Section 9.4 discusses the vulnerabilities in detail.
Section 9.5 presents an actual key recovery attack on one of the vulnerabilities.
Section 9.6 evaluates our leakage models. We discuss the implications of our
work in Section 9.7 and summarize in Section 9.8.

9.1 Background

9.1.1 Digital Signatures

Digital signature schemes consist of three algorithms, namely KeyGen, Sign,
and Verify. KeyGen generates a long-term public/private key pair from a given
set of public parameters param; see Equation (9.1). Using the private key prv,
one can sign arbitrary messages M , which gives a digital signature S, as seen
in Equation (9.2). Finally, the signature S can be verified against the original
message M and the public key pub, as seen in Equation (9.3).

(pub, prv)← KeyGen(param) (9.1)

S ← Sign(M,prv, param) (9.2)

>or⊥ ← V erify(M,S, pub, param) (9.3)

Digital signatures can be built from a trapdoor, a mathematical problem
that can only be solved efficiently in one direction unless one knows additional

2Our tool and the GUI is available under https://github.com/Fraunhofer-AISEC/DATA
and https://github.com/IAIK/data-gui

https://github.com/Fraunhofer-AISEC/DATA
https://github.com/IAIK/data-gui
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information. An example of such a trapdoor is the RSA problem, with two
instantiations, namely RSA-PKCS#1.5 [Kal98] and RSA-PSS [BR98]. However,
computing these trapdoors is costly.

Alternatively, one can build signature schemes on top of the discrete loga-
rithm problem. One example is the ElGamal [Gam84] signature scheme, dat-
ing back to 1984. In 1986, Fiat and Shamir proposed a generic heuristic to
transform an interactive proof-of-knowledge to a (non-interactive) signature
scheme [FS86]. Applying this transformation to Schnorr’s identification scheme
yields efficient Schnorr signatures [Sch89]. Unfortunately, the Schnorr signatures
did not find wide adoption due to patent issues [Cod98]. Instead, the Digi-
tal Signature Algorithm (DSA) [Kra91] was standardized as Digital Signature
Standard (DSS) [KG13].
DSA. The Digital Signature Algorithm (DSA) [KG13] is based on prime fields.
It relies on two primes p and q, where q divides p − 1. Parameter g serves as
generator over p such that gq ≡ 1 mod p. Keys are generated as follows:

x
R← [1, q − 1] (9.4)

y ← gx mod p (9.5)

The private key x is sampled uniformly from [1, q − 1]. The public key y
is obtained by Equation (9.5). Due to the hardness of the discrete logarithm
problem, the private key x cannot be efficiently recovered from public knowledge of
(y, g, p). To sign a message M , DSA first compresses M using a hash function H,
which yields the message digest m. Next, DSA generates a random secret nonce
k (Equation (9.6)) and computes r by modular exponentiation (Equation (9.7)).
It then inverts the nonce in Equation (9.8) and multiplies it to derive s, as shown
in Equation (9.9). The final signature is formed by the tuple (r, s).

k
R← [1, q − 1] (9.6)

r ← gk mod q (9.7)

kinv ← k−1 mod q (9.8)

s← kinv · (m+ xr) mod q (9.9)

Verification of a signature is done by recomputing r′ from public information
and matching it against r.

u1 ← m · s−1 mod q (9.10)

u2 ← r · s−1 mod q (9.11)

r′ ← gu1yu2 mod q (9.12)

Observe that inverting Equation (9.9) yields Equation (9.13). Now, one can
expand Equation (9.7) into Equation (9.14).

k ≡ (m+ xr) · s−1 mod q (9.13)

r ≡ gk ≡ gm·s
−1

gx·r·s
−1

≡ gu1yu2 ≡ r′ mod q (9.14)
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Other DSA Constructions. Several variants of DSA exist. Schnorr signa-
tures [Sch89] omit the inversion step in Equation (9.8). Deterministic schemes
such as [Por13] and EdDSA [JL17] derive unique nonces from the message input
instead of using random numbers in Equation (9.6). ECDSA [KG13] is one of the
most widely used signature algorithms nowadays. It computes r in Equation (9.7)
via scalar multiplication over an elliptic curve generator G, as follows:

r = k ·G (9.15)

Nonce Attacks. DSA-like cryptosystems strongly rely on the secrecy and the
uniformity of the nonce k. For instance, if the same nonce is reused for two
signatures (r, s) and (r, s′), full key recovery is trivially possible by subtracting
s′ from s and recovering the shared nonce k. It has been shown that even
partial knowledge of the nonce suffices to break the scheme [NS00]. By collecting
enough “leaky” signatures, one can formulate a so-called Hidden Number Prob-
lem (HNP) [BV96] and recover the private key with lattice or Bleichenbacher
attacks. This knowledge about nonces can be obtained by weak nonce generation
algorithms [BGM97] or side channels [BH09]. Thus, an implementation needs to
adequately address both unpredictability of nonces and side-channel resistance
and protect nonces throughout their whole lifetime (cf. Equations (9.6) to (9.9)).

9.1.2 The Hidden Number Problem

Nonce leakage can be encoded as a Hidden Number Problem (HNP). Solving
the HNP via lattice attacks or more generic Bleichenbacher attacks reveals the
private key.
HNP. Following [Ben+14; Rya19], we denote b·cq as the value modulo q and | · |q
as reducing the argument modulo q into the range [−q/2, q/2] and then taking
the absolute value. MSBL,q(k) denotes knowledge about the L most significant
bits of k, i.e., an integer u satisfying |k − u|q < q/2L+1.

The HNP [BV96; BV97] denotes the problem of finding a hidden number,
given partial information about multiples of the hidden number. In particular,
the HNP attempts to recover a hidden number x ∈ [1, q − 1], given knowledge
of its multiples t1, ..., td ∈ Fq for a known prime q as well as knowledge about
ui = MSBL,q(btixcq). This yields a system of d inequalities:

|btixcq − ui|q < q/2Li+1 for all i ∈ {1, ..., d} (9.16)

(EC)DSA can be encoded as an instance of the HNP to recover the private
key x from signatures (r, s) and known nonce bits u = MSBL,q(k). Using
Equation (9.13) gives:

|k − u|q < q/2L+1 (9.17)

|b(m+ xr) · s−1cq − u|q < q/2L+1 (9.18)

|bbs−1rcq · xcq − bu− s−1mcq|q < q/2L+1 (9.19)
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Applying Equation (9.19) to d signatures (ri, si) and nonce bits ui yields a
hidden number problem

|btixcq − vi|q < q/2Li+1 for all i ∈ {1, ..., d} (9.20)

with ti = bs−1
i ricq and vi = bui − s−1

i micq. The HNP can also be applied when
leaking inverse nonces, least significant nonce bits, or a block of contiguous [HS01]
or non-contiguous bits [HR06].
Lattice. Boneh et al. [BV96] mapped the HNP to a Closest Vector Problem
(CVP), for which efficient algorithms are available. Let t = (t1, ..., td, 1) and
tx = (t1x, ..., tdx, x). According to the HNP, btxcq will be a close vector to
u = (u1, ..., ud, 0) with a distance smaller than q/2Li+1 for the first d components,
i.e., btxcq −u will be small multiples of q. By constructing a lattice basis from t
and solving the CVP, the closest vector reveals the private key x. Boneh et al.
solved the CVP by using LLL [LLL82] lattice reduction and Babai’s nearest plane
algorithm [Bab86] to recover Diffie-Hellman keys. Instead of using Babai, it is
also possible to embed the CVP into a Shortest Vector Problem (SVP) and solve
it directly via lattice reduction [NS00; FGR12; Won15]. The idea is to include a
scaled version of u in the lattice basis. In particular, the first d components of t
and u are scaled by 2Li+1. Following [Ben+14], this gives a d+ 2-dimensional
row-wise lattice basis B in Equation (9.21). With x =

(
λ1, . . . , λd, x, 1

)
one can

write x ·B = y. Reducing this basis yields the shortest vector y, which holds
the private key x in its second last entry, see Equation (9.22).

B =


2L1+1q 0 0

. . .
...

...
2Ld+1q 0 0

2L1+1t1 . . . 2Ld+1td 1 0
−2L1+1u1 . . . −2Ld+1ud 0 q

 (9.21)

y =
(
2L1+1(t1x− u1 + λ1q), . . . , 2

Ld+1(tdx− ud + λdq), x, q
)

(9.22)

Boneh et al. [BV96] showed that lattice reduction requires at least L =
log2 log2 q bit leakage. Howegrave-Graham and Smart [HS01] recovered the
private key for 160-bit DSA given 30 signatures and knowledge of 8 bits for each
nonce. Naccache et al. [Nac+05] only required 27 signatures for the same leakage
using the block Korkin-Zolotarev (BKZ) algorithm. Given 200 signatures and
two shared LSBs of the nonce, Faugère et al. [FGR12] recovered the private key
using a lattice attack. Besides, they recovered the private key with a probability
of 90% with just a single shared LSB and 400 signatures.
Bleichenbacher proposed an FFT-based attack using exponential sums to
detect influences of small biases [Ble00]. This requires more samples than lattice
attacks, but is noise-tolerant and works even with fractional bit leaks [Mul+13;
Mul+14]. Aranha et al. [Ara+14] exploited a single-bit bias for 160-bit ECDSA
using 233 signatures. De Mulder et al. [Mul+13] used a BKZ-based method to
exploit 5-bit leakage of 384-bit ECDSA using 4000 signatures.
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9.2 Automated Nonce Leakage Detection

Tool support is essential for effective and accurate side-channel analysis. In
particular, a high degree of automation and a proper representation of results
is imperative for productive analysis. However, none of the tools discussed in
Section 6.3.3 were designed or used to detect address-based leakage of (EC)DSA
nonces. In this section, we present our methodology for detecting nonce leakage
in a fully automated way. In particular, we extended the automated side-channel
analysis tool DATA to also identify nonce leakage. We furthermore developed an
intuitive GUI for visualizing leakage results.

9.2.1 Methodology

Our analysis is based on Differential Address Trace Analysis (DATA), as presented
in Chapter 8. As such, it inherits the threat model and limitations of DATA.
In short, DATA detects address leakage on byte granularity to cover not only
attacks on memory pages [XCP15], cache lines [YF14] and cache banks [YGH16]
but even single-byte addresses [BPS17; Mog+20].

The first phase of DATA – the difference detection – identifies address dif-
ferences, which indicate potential leaks. However, analyzing randomized (e.g.,
blinded) algorithms yields various address differences that do not leak secret
information but represent a form of non-determinism. Also, many differences
stem from public input and are also uncritical. To filter these false positives,
DATA employs statistical tests in phase two and three, as presented in [Wei+18a].
The second phase – the leakage detection – tests if the found address differences
depend on the private key. It does so by comparing traces generated from a
fixed key with traces generated from varying keys. This fixed-vs-random testing
requires control over the secret variable. Since nonces are not controllable from
the outside but generated randomly (internally), this phase cannot be used for
detecting nonce leakage. The third phase – the leakage classification – classifies
information leakage based on a pre-defined leakage model. Leakage models
correlate the observed leakage (i.e., the address traces) with the secret. In this
chapter, we define leakage model suitable to detect nonce leakage. However, a
high correlation does not necessarily imply actual leakage but could also stem
from public values (e.g., the modulus). This is a fundamental issue of statistical
testing and implies that an analyst should always carefully review potential
leakage reported by DATA in a semi-automated fashion.

To help analysts rule out potential false positives and assess actual exploitabil-
ity of leaks, we spend quite some effort in visualizing leakage reports in a
comprehensible and intuitive GUI. We found the GUI to be essential during our
analysis, especially if the number of address differences reported by DATA is
large. Also, constant-time code and side-channel patches can be easily tested for
their efficacy, preventing the reintroduction of previously known leaks.
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9.2.2 Detecting Nonce Leakage

We tweak the implementation of DATA to fit our use for nonce leakage detection,
as follows: We bypass the second phase and make the third phase run indepen-
dently, i.e., without relying on phase two results. As mentioned, the leakage
classification phase correlates leakage to a secret value via leakage models. How-
ever, secret nonces are generated internally and are not exposed to the outside.
To overcome this limitation, we adapt DATA to recognize nonces as an additional
secret in a backward manner. That is, we recover the nonce from the private key,
the message, and the signature using Equation (9.13) and provide the recovered
nonce to the third phase. Furthermore, the original DATA tool only provided
multiprocessing for phase one but not for phase three. We significantly improve
the performance of phase three by analyzing different leaks in a parallelized
fashion.
Leakage Models. Definition of proper leakage models is essential for finding
nonce leaks. This, however, demands knowledge of potential leaks to search
for. Based on initial manual inspection of OpenSSL’s source code, we developed
leakage models tailored for detecting nonce leakage. This was no straightforward
process but involved extending the leakage models the more issues we found. In
particular, we searched for Bignumber issues by testing the bit length of the
nonce k and its variants. We chose to test for the nonce k and its inverse k−1, as
they are part of the DSA specification (Equations (9.6) to (9.9)). Furthermore,
we tested for k + q and k + 2q, which are computed as part of a special nonce
padding scheme during the exponentiation step, which we denote as k-padding.

Our first leakage model for finding nonce leaks retrieves the bit length of the
nonce or its derivatives (i.e., the position of the highest non-zero bit). This leakage
model is denoted as num bits(·) and finds leakage, e.g., due to lazy resizing of
Bignumbers. Furthermore, we used the Hamming weight model denoted as
HW (·) to search for leaks in DSA modular exponentiation (square-and-multiply)
and ECDSA scalar multiplication (double-and-add), respectively. In total, we
defined and tested eight different leakage models, as follows:

num bits(k) (9.23)

num bits(k + q) (9.24)

num bits(k + 2q) (9.25)

num bits(k−1) (9.26)

HW (k) (9.27)

HW (k + q) (9.28)

HW (k + 2q) (9.29)

HW (k−1) (9.30)

With these models, we were able to reduce the number of unrelated differences
greatly. E.g., the leakage models typically filter well above 90% of the differences,
focusing the analyst’s attention to critical leaks.
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Figure 9.1: DATA GUI showing the point addition vulnerability (V7) in BoringSSL
where the ECDSA scalar multiplication is leaking num bits(k) with 100%.

9.2.3 DATA GUI

Since analyzing leakage reports of DATA is cumbersome, we developed a graphical
user interface called DATA GUI. The DATA GUI allows to quickly navigate
leakage reports, together with the source code and disassembly, and rate or
comment potential leaks. As we need to test different cryptographic libraries under
different configurations repeatedly, the DATA GUI was essential in mastering the
amount of data we collected. To facilitate analysis and reporting, we extended
DATA to generate an accompanying file archive that contains all necessary object
files, disassemblies, and source code files alongside the regular leakage report.
This approach decouples the test phases of DATA from GUI-aided analysis, which
now may be done on a completely different computer.

Figure 9.1 depicts the DATA GUI, showing a discovered control-flow leak
in BoringSSL. The GUI consists of several views: The left side sorts all leaks
according to their call stack (top) and library (middle). Moreover, it shows for
each function the number of data (D) and control-flow (CF) leaks as well as the
maximum correlation with the leakage models in percent. One can see several
other potential (false-positive) leaks which do not correlate with any of the
predefined leakage-models. The center box gives a list of data and control-flow
leaks for the selected function. The right side highlights leaks in the disassembly
and the source code, if available, which is crucial for the analysis. The summary
tab on the bottom left gives details about a particular leak, including correlations
for various leakage models. Also, it allows the analyst to comment and rate leaks
for documentation and reporting purposes. Clickable elements automatically
synchronize the different views (i.e., source code, assembler, and hierarchical
views) in order to help quickly navigate through complex reports.
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Table 9.1: Handling of secret nonces is either secure # or vulnerable  to address-based
side-channel attacks, according to our analysis.
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9.3 Vulnerability Analysis Overview

In this section, we present an overview of our analysis results for (EC)DSA
nonce leakage in OpenSSL, LibreSSL, and BoringSSL. We include the whole life
cycle of nonces in the analysis, i.e., nonce generation in Equation (9.6), modular
exponentiation for DSA in Equation (9.7) or scalar multiplication for ECDSA
in Equation (9.15), modular inversion in Equation (9.8), and the final modular
multiplication in Equation (9.9). Our findings are summarized in Table 9.1 and
outlined in the following. As mentioned in Section 9.2, DATA cannot prove an
implementation secure in a mathematical sense, and our analysis might have
missed more side-channel vulnerabilities.
Nonce representation is based on Bignumbers. OpenSSL and LibreSSL
minimize memory usage; i.e., small numbers use fewer memory words than larger
ones. This minimal representation of Bignumbers leaks the length of small nonces
in several subsequent computation steps. BoringSSL, on the other hand, does
not shrink sensitive Bignumbers, avoiding all Bignumber-related vulnerabilities
we found by design.
Generation of nonces is done via rejection sampling in LibreSSL and Bor-
ingSSL, which gives uniformly distributed nonces. In contrast, OpenSSL truncates
a large random number to the target nonce, introducing a negligible bias. Only
OpenSSL includes the private key in the nonce generation to address potential
weaknesses in random number generators.
DSA modular exponentiation itself did not reveal any leaks, as the fixed-
window implementations are constant time. However, for OpenSSL and LibreSSL,
we found several critical leaks due to padding the nonce prior to exponentiation.
This enables easy-to-mount cache attacks, leading to full key recovery. Although
the patched OpenSSL version closes the cache-attack vulnerability, it is still
vulnerable to more sophisticated attacks, which we demonstrate in Section 9.5.
ECDSA scalar multiplication leaks in OpenSSL and LibreSSL in the same
way as DSA exponentiation, namely when padding the nonce. On the other hand,
the default multiplication uses blinding to make side-channel leakage independent
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of the nonce. Additionally, OpenSSL and BoringSSL provide optimized constant-
time windowed multiplication routines for several NIST curves. We discovered a
tiny but severe side-channel leakage in their constant-time point addition, which
leaks whenever a nonce multiplication window is all zero. For OpenSSL, we
identified additional nonce leakage due to Bignumber handling, which was partly
known before.
Modular inversion in OpenSSL and LibreSSL is done via a variant of Euclid’s
algorithm, claiming some side-channel security. Nevertheless, we found an easy-
to-exploit vulnerability leaking the topmost nonce bit during a division step.
Moreover, Euclid’s algorithm inherently leaks the number of iterations, which
correlates to the nonce itself. While we could not find a way to exploit this
non-constant-time behavior, our tool reported another leak in a final negation
step that helps an attacker again to learn the topmost nonce bit. BoringSSL
employs Fermat’s little theorem to invert nonces securely. Due to our findings,
OpenSSL also switched to Fermat inversion.
Modular Multiplication. While OpenSSL uses blinding to alleviate non-
constant-time code, LibreSSL removes blinding too early, leaking the length of
the inverse nonce in some cases.

9.4 Detailed Analysis

In the following, we present our analysis strategy and discuss results and discov-
ered vulnerabilities in detail.
Analysis Strategy. The process of tool-aided side-channel analysis comprises a
proper selection of algorithms to test, the actual analysis phase, and interpretation
of the results. Since OpenSSL supports over 80 different elliptic curves and
countless compiler options, exhaustive testing of each combination is impractical.
We selected the default configuration as a basis for our analysis, and selectively
enabled different implementations of popular NIST curves. We focused on ECDSA
curves operating close to a machine word boundary. For DSA, we tested all three
parameter sets available. For the actual analysis, we used our tool alongside
manual code review to specifically test relevant portions in the code. While the
tool helps uncover leakage, interpreting the results remains a manual task. In
particular, leakage models might not trigger if they do not match the actual
leakage. In this case, the leakage might still show up in the phase one differences
reported by DATA, and an extension of the leakage models is required. Also,
leakage models might show a correlation without causation, e.g., via public values.
Such cases can be eliminated by tracing the leakage back to its sources in our
DATA GUI.
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Table 9.2: Disclosed vulnerabilities in OpenSSL, LibreSSL, and BoringSSL and
whether they are fixed 3as of October 2019, currently being patched A, or
unpatched 7. Side channel attacks can be easy  , medium G# , or hard # .
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(V9) Euclid negation DSA3 DSA7 –
Topmost
0-bit of k−1  

Leaks via conditional
negation

Multiply :
(V10) Small k−1 (top)

– EC3 –
Topmost
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Following this strategy helped us uncover numerous vulnerabilities, as sum-
marized in Table 9.2. To give an intuition about their exploitability, we rank
them as easy to exploit  if a Flush+Reload attack suffices for extracting nonce
bits, medium G# for more elaborate attacks requiring performance degradation
or Prime+Probe, or hard # for tiny leakage (e.g., few assembler instructions on
a single cache line) which might be only exploitable in an SGX setting [BPS17;
Mog+20]. The amount of leaked bits indicates complexity for a full key recovery.

9.4.1 Nonce Representation

OpenSSL and LibreSSL represent cryptographic values, such as nonces, via
Bignumbers. Rather than being constrained to a fixed size, Bignumbers can store
arbitrarily large values. For asymmetric cryptography, it is not uncommon to
compute on variables comprising several hundred or thousands of bits.

Each Bignumber is stored in a BIGNUM struct that contains a lazily allocated
array of limbs (e.g., 64-bit words). The number of allocated limbs is tracked
via the field dmax. Bignumbers are represented in their minimal form, i.e.,
each BIGNUM tracks the actually used limbs in a separate top field. As seen
in Figure 9.2, top can be smaller than dmax. Whenever space is exhausted, a
BIGNUM is dynamically resized via a call to bn wexpand.
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q

261EA02B0...0F

dmax,top

k1

152A916C0...03

dmax,top

k2

D07655A4

dmax top

Figure 9.2: OpenSSL/LibreSSL (V1): some nonces (k2) are smaller than the average
(k1) and the modulus q.

To maintain the minimal representation, OpenSSL and LibreSSL constantly
realign top via a call to bn fix top by excluding leading zero limbs. This has two
advantages: First, it avoids unnecessary computations and increases performance.
Second, the programmer does not need to know the maximum size of Bignumbers
in advance. However, it is also a source for unintended information leakage,
leading to various side-channel vulnerabilities.

BoringSSL, in contrast, has hardened their implementation against such
leaks by abandoning the minimal representation invariant of Bignumbers. They
introduced a width field, which fixes top to the maximum width in advance.3

Hence, it is immune to the Bignumber-related leaks we found.
Small Nonce Vulnerability (V1). Nonces are generated in the range [1, q−1],
as shown in Equation (9.6). If the length of the modulus q is slightly above a
word boundary, it may happen that the generated nonce uses fewer limbs than q.
In Figure 9.2, the first nonce k1 uses two limbs, whereas the second nonce k2 is
represented in one limb, as indicated by top. A side-channel attacker learning
the value of top can distinguish small nonces from large ones and mount a key
recovery attack. In this example, q uses only four bits (0xF) of the topmost limb.
Thus, an attacker learns whether the four topmost bits of k are zero. Consider w
as the word size, i.e., the size of one limb. For i386, w=32 and for x86 64, w=64.
Thus, a small nonce leaks L = log2(q) mod w bits, which occurs every 2Lth
signature on average. By collecting enough leaky signatures, an attacker can
recover the private key via lattice or Bleichenbacher attacks (see Section 9.1.2).

In general, both DSA and ECDSA are affected by small nonces. However,
if L is too large, leaky signatures occur too rarely to be practically exploitable.
Since DSA moduli are always (half)word-aligned, L = 32 or L = 64 and attacks
are impractical. On the other hand, for ECDSA, several curves have a modulus
(group order) that is slightly above a word boundary. Table 9.3 lists all affected
curves with L < 20, and curves affected on 64-bit systems are marked bold. For
example, the sect131 curves leak 2 bits approximately every 4th signature, while
secp521r1 leaks 9 bits every 512th signature.

In order to exploit the small nonce vulnerability, an attacker needs to learn
the nonce length (i.e., the value of top). Since the nonce is involved in many
different computation steps, there are plenty of opportunities for an attacker
to observe its length. We found small nonce leakage in the nonce generation,
scalar multiplication, and nonce inversion (Equations (9.6), (9.8) and (9.15)).
In the following, we focus on the most critical leakage present in the OpenSSL

3https://github.com/openssl/openssl/issues/6640

https://github.com/openssl/openssl/issues/6640
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Table 9.3: OpenSSL/LibreSSL curves leaking L bits of small (inverse) nonces
(V1),(V10) on 32/64-bit systems.

Curve L32 L64 Curve L32 Curve L32

secp112r1 15.8 – sect163r1 2.0 c2tnb359v1 0.8
secp112r2 13.8 – sect163r2 2.0 c2tnb431r1 1.7
secp521r1 9.0 9.0 sect233k1 7.0 wap-wtls1 16.0
prime239v1 15.0 – sect233r1 8.0 wap-wtls3 2.0
prime239v2 15.0 – sect239k1 13.0 wap-wtls4 16.0
prime239v3 15.0 – c2pnb163v1 2.0 wap-wtls5 2.0
sect113r1 16.0 – c2pnb163v2 2.0 wap-wtls6 15.8
sect113r2 16.0 – c2pnb163v3 2.0 wap-wtls8 16.0
sect131r1 2.0 2.0 c2tnb239v1 13.0 wap-wtls10 7.0
sect131r2 2.0 2.0 c2tnb239v2 12.4 wap-wtls11 8.0
sect163k1 2.0 – c2tnb239v3 11.7

version patched against (V8). The leaky code in Listing 9.1 converts the nonce
stored in BIGNUM a into its Montgomery representation. BIGNUM b holds a
Montgomery conversion factor. If both a and b have the full word length of q,
denoted as num, the if branch will execute an assembler-optimized multiplication
(bn mul mont in line 4) and terminate in line 5. If, however, the nonce a is
one limb smaller, OpenSSL falls back to the functions bn mul fixed top and
bn from montgomery word. By probing any of those functions, e.g., with a
Flush+Reload attack, an attacker can distinguish small nonces from larger ones.

1 if (a->top == num && b->top == num) {

2 if (bn_wexpand(r, num) == NULL)

3 return 0;

4 if (bn_mul_mont (...))

5 return 1;

6 }

7 ...

8 if (! bn_mul_fixed_top(tmp , a, b, ctx))

9 goto err;

10 if (! bn_from_montgomery_word(r, tmp , mont))

11 goto err;

Listing 9.1: Simplified OpenSSL Little Fermat inversion leaking small nonces
(V1) via conditional branching.

Unfortunately, this vulnerability is not only easy to exploit, but patching is
hard as small nonces leak in several places. On June 25, 2019, we reported this
issue to OpenSSL. The OpenSSL team decided to target a fix in OpenSSL version
3.0, as it requires a major redesign of OpenSSL’s Bignumber implementation.
Small Nonce Leakage Details. OpenSSL shows leakage as follows: Nonce gen-
eration in BN generate dsa nonce relies on BN div for nonce reduction, which is
non-constant time and leaks the length of small nonces, e.g., via BN rshift. Also,
the nonce is stripped by skipping leading zero limbs via bn correct top, which
causes leakage in subsequent steps. OpenSSL uses a blinded double&add for
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default scalar multiplication in ec GF2m simple points mul. Before blinding is
applied, the nonce length leaks when being copied from scalar to k via BN copy,
when checking its bit length via BN num bits, and during the first addition of
the nonce with the cardinality via BN add. Also, the NIST-optimized curves
call BN num bits with the nonce as input, e.g., in ec GFp nistp521 points mul,
which is already known to leak the length of the input.4 During nonce inversion
done via BN mod exp mont, which is invoked by ec group do inverse ord and
ec field inverse mod ord, there is an early abort when comparing the Bignum-
bers k and q via BN ucmp. While exploitation might be tricky, we also found an
easy-to-exploit leak, which we described in Section 9.4.1.

For LibreSSL, nonce generation leaks the nonce length via an early abort
condition during rejection sampling via BN ucmp. LibreSSL also leaks the nonce
length during the first addition of the nonce and the group order in BN add.
Moreover, they used an old non-constant-time version of BN num bits word,
which was patched in OpenSSL already in January 2018 via commit 972c87df.
Due to our reporting, LibreSSL patched this issue in commit 9046ac5.

9.4.2 Nonce Generation

In the following, we analyze nonce generation for different libraries. DSA and
ECDSA nonces are generated both in the same way.
Rejection Sampling. To generate a nonce k uniformly at random in the
interval [1, q − 1], LibreSSL and BoringSSL implement rejection sampling. They
sample k in the interval [1, 2qbits − 1], where qbits = blog2 qc+ 1. If k exceeds
q − 1, it is rejected, and the procedure is repeated. The final k is uniformly
distributed, assuming an unbiased random number generator. Although rejec-
tion sampling is inherently non-constant time, it only leaks information about
rejected nonces. While we did not find issues for BoringSSL, small nonces leak
for LibreSSL. Interestingly, during our analysis, one condition in the rejection
sampling procedure of LibreSSL was reported to slightly correlate with the nonce
length. However, the code in question did not depend on the final nonce. Instead,
this leak occurred due to a correlation with the length of the public q, which
also upper-bounds the length of the nonce. This false positive indicates that
tool-aided analysis still requires careful analysis of the leakage.
Truncation. Rejection sampling has no guaranteed upper execution time.
There is always a non-zero probability of rejecting the current k, which demands
repeating the sampling phase. OpenSSL takes a different approach. It first
generates a large number k′ in the interval [0, 2qbits+64−1], as seen in Algorithm 9.1
lines 2–6. To compute the final nonce, k′ is truncated to the target interval
[0, q − 1] via modular reduction (line 8). As with LibreSSL, small nonces leak
during truncation, as detailed in Section 9.4.1. Moreover, truncation introduces
a tiny bias in k since q does not exactly divide 2qbits+64. However, since k′ is 64
bits larger than q, this bias is impractical to exploit.

4See https://github.com/openssl/openssl/pull/5001#discussion_r159935593.

https://github.com/openssl/openssl/commit/972c87df
https://github.com/libressl-portable/openbsd/commit/9046ac5
https://github.com/openssl/openssl/pull/5001#discussion_r159935593
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Algorithm 9.1: OpenSSL nonce generation by truncation

input : x, q ; // Private key and modulus

input :m ; // Message digest

output : k ; // Nonce

1 k′ ← []
2 while num bits(k′) < num bits(q) + 64 do

3 rnd
R← [0, 2512 − 1]

4 digest← SHA512(x|m|rnd)
5 k′.append(digest) ; // Up to num bits(q) + 64 bits

6 end
7 k′′ ← BN bin2bn(k′) ; // Convert to BIGNUM

8 k ← k′′ mod q ; // Reduce via BN div

Before reducing k′, OpenSSL converts it to a Bignumber representation via
BN bin2bn in line 7, which introduces a tiny side-channel leakage on k′. In
particular, BN bin2bn removes leading zeros, leaking the byte length of k′ to
a side-channel attacker. Our tool revealed another leakage in BN div called in
line 8, which leaks the length of k′. Luckily, both issues are impractical to exploit
due to the 64-bit margin of k′.
Private Key Inclusion. Biases in the nonce generation are fatal. For that
reason, some variants of (EC)DSA [Por13; JL17] compute the nonce determin-
istically from the message via hash functions rather than using randomness.
Similarly, OpenSSL uses a cryptographic hash function to merge the private
key as additional input into the nonce generation procedure.5 By applying
the hash function to the random number itself, the message m and the private
key x (Algorithm 9.1 line 4), the resulting nonce is unpredictable to an attacker,
even for biased random numbers. Moreover, this approach also protects against
side-channel leaks. We found that OpenSSL uses a leaky AES6 during random
number generation when compiled with the no-asm flag. The hash function in
line 4 decorrelates these leaks from the nonce.

BoringSSL and LibreSSL do not include the private key in the nonce com-
putation, which makes them susceptible to biased random number generators.
However, we did not analyze the uniformity or unpredictability of the random
number generators themselves.

9.4.3 DSA Exponentiation

K-padding Vulnerabilities (V2)-(V5). Bignumber computation has been a
source for nonce leakage in the past. For example, the fixed window exponentiation
of OpenSSL leaks the bit length of the secret exponent k (Algorithm 9.2 line 5).
This leakage was fixed by padding nonce k with q until it has a fixed length, namely

5This change was introduced in OpenSSL commit 8a99cb2 in 2013.
6It leaks several intermediate values via lookup tables Te0 - Te3.

https://github.com/openssl/openssl/commit/8a99cb2
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Algorithm 9.2: Exponentiation with k-padding

input : k ; // Nonce

output : r ; // Signature part

1 k ← k + q ; // Expand k to fixed num bits(q) + 1
2 if num bits(k) <= num bits(q) then
3 k ← k + q
4 end

5 r ← gk mod q

num bits(q)+1, as shown in lines 1–3. The initial k-padding7 executed the second
addition in line 3 conditionally. To prevent attacking this conditional execution,
it was made constant time.8 OpenSSL k-padding is shown in Listing 9.2. In
lines 13–14, OpenSSL unconditionally computes both additions inside BIGNUMs l
and m, while line 15 copies the correct result to k.

1 q_bits = BN_num_bits(dsa ->q);

2 -if (! BN_set_bit(k, q_bits)

3 - || !BN_set_bit(l, q_bits)

4 - || !BN_set_bit(m, q_bits))

5 + q_words = bn_get_top(dsa ->q);

6 +if (! bn_wexpand(k, q_words + 2)

7 + || !bn_wexpand(l, q_words + 2))

8 goto err;

9 ...

10 BN_set_flags(k, BN_FLG_CONSTTIME);

11 +BN_set_flags(l, BN_FLG_CONSTTIME);

12 ...

13 if (! BN_add(l, k, dsa ->q)

14 - || !BN_add(m, l, dsa ->q)

15 - || !BN_copy(k, BN_num_bits(l) > q_bits ? l : m))

16 + || !BN_add(k, l, dsa ->q)

17 goto err;

18 +BN_consttime_swap(BN_is_bit_set(l, q_bits), k, l,...);

Listing 9.2: Vulnerable k-padding in OpenSSL, with code added (+) and removed
(-) during the patching process.

By analyzing OpenSSL, we found that k-padding leaks in several ways. First,
we discovered an easy-to-exploit vulnerability leaking the size of the nonce via
dmax inside the second BN add (Listing 9.2 line 14). This leakage denoted as (V2)
allows full key recovery. Second, our tool also reported data leakage in line 15,
which was already known before and is denoted as (V3). By distinguishing
whether buffer l or m is copied, one learns the same information as before. Third,
we found the same information leaking via the nonce’s top variable, denoted
as (V5). This leakage exists in all patched versions and occurs when k is processed
in lines 16 and 18. Although harder to exploit, we show an end-to-end attack in
an SGX setting in Section 9.5.

7Nonce padding was introduced in OpenSSL commit 0ebfcc8 in 2005.
8Constant-time padding was introduced in OpenSSL commit c0caa94.

https://github.com/openssl/openssl/commit/0ebfcc8
https://github.com/openssl/openssl/commit/c0caa94
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q FFDB41C5

k 001C26F4

k + q FFF768B9

k + 2q FFD2AA7E00000001
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dmax top
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Figure 9.3: OpenSSL/LibreSSL k-padding causes Bignumber resize, depending on
the topmost nonce bits (V2).

K-padding Resize Vulnerability (V2). As mentioned before, OpenSSL
lazily resizes Bignumbers whenever their space is exhausted. E.g., when adding
two BIGNUMs with BN add, the resulting BIGNUM is expanded to the largest top

value of the summands plus one limb for holding a potential carry. Unfortunately,
lazy resizing happens during nonce padding in lines 13 and 14 of Listing 9.2.
Consider the example in Figure 9.3, where the BIGNUMs k and q contain one limb
each. On the left side, the first addition k + q resizes the result buffer to two
limbs in order to hold the additional carry exceeding the first limb. The second
addition k + 2q resizes to three limbs, although only two limbs are actually used
since the carry is zero. In contrast, on the right-hand side, the first addition does
not overflow, and the second addition only requests two limbs. Since the result
BIGNUM already has two limbs, no actual resize happens.

By distinguishing whether one or two resize operations happened, a side-
channel attacker can learn information about k. The second resize only happens
if the first addition overflowed into the carry limb. In practice, such an overflow
can only happen if q is close to a word boundary, that is, the topmost bits are
set. Again, consider w as word size. Then, Q = blog2w(q)c + 1 is the number
of words needed to represent q, and qbound = (2w)Q > q is the upper bound
(exclusive) of q representable with Q words. No resize happens if k+ q < qbound,
which occurs with probability (qbound− q)/q. Thus, for each such situation, an
attacker can learn L nonce bits at once:

L = log2(q)− log2(qbound− q) (9.31)

Since k is chosen uniformly at random, this happens for approximately every
2Lth signature. In the previous example, qbound = 0x1 0000 0000 and q =
0xFFDB 41C5, hence an attacker can learn L = 10.8 nonce bits for one out of
1783 signatures on average. By collecting enough leaky signatures, an attacker
can recover the private key, as shown in Section 9.1.2.

Only DSA moduli close to the word boundary are susceptible. OpenSSL
supports DSA moduli in the ranges 160, 224, or 256 bits, respectively. Since
these parameters are all at a 32-bit boundary, they are all susceptible on a 32-bit
system. For 64-bit systems, only DSA with 256-bit is on a word boundary and,
thus, susceptible. The modulus q is a prime generated randomly for each key
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with its topmost bit set. Hence, every 2Lth key is susceptible to L+ 1-bit nonce
leakage.

Exploitation of the vulnerability is straight forward. An attacker needs to
monitor Bignumber resize operations during k-padding. Each Bignumber resize
triggers several nested allocation routines of OpenSSL, which in turn invoke
malloc/realloc from the standard library. Hence, a Flush+Reload attacker has
plenty of opportunities to observe a resize with little noise. This attack is practical
in terms of easy-to-obtain side-channel observations and low complexity for key
recovery, which caused OpenSSL to issue CVE-2018-0734.
Consttime-swap Vulnerability (V3). Our tool showed another k-padding
issue, which was already documented in the source code comments. After the
two additions, copying the correct result to the target Bignumber k accesses
different Bignumbers l or m, as shown in Listing 9.2 line 15. This leaks the same
information as (V2) and could be exploited via a Prime+Probe attack on the
Bignumber l or m, respectively.
Patching (V2) and (V3). Our reports triggered immediate discussion and
patching9 by the OpenSSL team. To avoid lazy reallocation, the patch enlarges
the preallocation of the nonce buffers (lines 6–7). To hold the padded nonce, one
additional limb would suffice. Since BN add allocates an additional carry limb,
this totals two additional limbs to preallocate. To fix the consttime issue, the
patch replaces Bignumber m with k in line 16 and introduces BN consttime swap

in line 18.
LibreSSL adopted similar patches for ECDSA, but insufficiently, as explained

in Section 9.4.4. We contacted LibreSSL on May 17, 2019, but they did not apply
these patches to DSA.
Downgrade Vulnerability (V4). By analyzing the OpenSSL patches for (V2)
and (V3) with our tool, we immediately recognized a flaw bypassing constant-
time exponentiation. While Bignumber k has the flag BN FLG CONSTTIME set,
Bignumber l has not. The consttime-swap introduced in Listing 9.2 line 18 also
swaps these flags between l and k, making k lose its BN FLG CONSTTIME flag. This
causes every other subsequent exponentiation (Equation (9.7)) to downgrade to
the unprotected variant. As shown in [GBY16], this can be exploited to recover
DSA keys, e.g., from OpenSSH handshakes.

As we discuss in the following, erroneous flag propagation has a long his-
tory, since manual detection within the complex code base of OpenSSL is
non-trivial. Luckily, our systematic tool-aided approach uncovered this issue
straight away, avoiding another exploit-patch cycle. The final patch10 applies
the BN FLG CONSTTIME flag also to the Bignumber l in line 11.
Related Vulnerabilities to (V4). Issues with the BN FLG CONSTTIME are
not uncommon.11 Garcia et al. [GBY16] exploited a vulnerability similar
to (V4) where BN copy lost the BN FLG CONSTTIME flag on the secret nonce.
Garcia et al. [GB17] also exploit a missing BN FLG CONSTTIME flag in OpenSSL

9See OpenSSL commit a9cfb8c.
10See OpenSSL commit 00496b6.
11https://github.com/openssl/openssl/issues/6078

https://github.com/openssl/openssl/commit/a9cfb8c
https://github.com/openssl/openssl/commit/00496b6
https://github.com/openssl/openssl/issues/6078
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Table 9.4: OpenSSL/LibreSSL curves leaking L nonce bits via k-padding (V2)–(V5)
on 32-bit and 64-bit systems.

Curve L32 L64 Curve L32 L64

brainpoolP160 3.4 – brainpoolP320 2.2 2.2
brainpoolP192 1.7 1.7 brainpoolP384 0.3 0.3
brainpoolP224 2.4 – brainpoolP512 1.0 1.0
brainpoolP256 1.0 1.0

to recover ECDSA keys via unprotected modular inversion (Equation (9.8)).
In Chapter 8, we reported similar defects in RSA key initialization where
BN MONT CTX set lost the BN FLG CONSTTIME flag after a BN copy, causing sub-
sequent modular inversion to be unprotected. Also, we reported a missing
BN FLG CONSTTIME flag in DSA key loading dsa priv decode, leading to unpro-
tected modular exponentiation.
K-padding Top Vulnerability (V5). Fixing the resize vulnerability (V2)
does not mitigate the Bignumber minimal representation issue. That is, even if
the buffer size (dmax) is independent of k, the number of used limbs (top) still
depends on the nonce (cf. Figure 9.3). In particular, the second addition BN add

in Listing 9.2 line 16 leaks the value of l->top via the number of limb-wise
additions carried out. Also, BN is bit set (line 18) leaks via an early abort, as
detailed in Section 9.5. This has the same implications as vulnerability (V2).

Naturally, exploitation is harder than (V2), as the leaky code is only a few
instructions. Nevertheless, we reported this residual leakage already back in
October 2018. Since we could not observe any progress, we developed an end-
to-end SGX attack, as outlined in Section 9.5. Reporting our attack on May 8,
2019 triggered a pull request with our proposed patch [Dal19]. However, the pull
request was closed, since the OpenSSL team decided for a long-term mitigation
abandoning the minimal representation invariant similar to BoringSSL. While the
decision for a complete fix is encouraging, this vulnerability remains unpatched
until then.

9.4.4 ECDSA Scalar Multiplication

K-padding Resize Vulnerability (V2). Similar to DSA, our investigations
revealed the same Bignumber resize vulnerability also in ECDSA, leading to CVE-
2018-0735. Only curves with a word-aligned modulus (i.e., a word-aligned curve
cardinality) are vulnerable. We found that all Brainpool curves are exploitable
and leak up to 3.4 bits, as listed in Table 9.4. Luckily, other curves that have a
word-aligned modulus are not practically exploitable. For example, the curve
secp128r1 has cardinality 0xFFFFFFFD FFFFFFFE F80091C8 184ED68C. By
using Equation (9.31), an attacker could learn L = 31 nonce bits at once.
However, only every 231th signature will be vulnerable, which renders actual
attacks impractical.
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Fixing this issue for ECDSA is analogous to DSA.12 Although LibreSSL
adopted the patch13, our tool still reported leakage. Further analysis revealed
that the patched LibreSSL version uses k-padding twice, once correctly during mul-
tiplication ec GFp simple mul ct and a second time inside ecdsa sign setup.
The second k-padding was not only unpatched, leading to another instance
of (V2); it even created additional leakage. In particular, the multiplication
routine performs an additional leaky modular reduction if the nonce (the scalar)
is larger than the group order. This issue again highlights the importance of
tool-aided side-analysis during the patching process. Although we reported this
issue to LibreSSL on May 20, 2019, it is still unpatched.
Related issues (V3) and (V5). As with DSA, the issues with consttime
swap (V3) and k-paddding top (V5) as well as their patches equally apply to
ECDSA for the curves listed in Table 9.4. Since the patched LibreSSL uses
k-padding twice for ECDSA, it is still vulnerable not only to (V2) but also
to (V3).
Buffer Conversion (V6). We uncovered distinct vulnerabilities in some
ECDSA scalar multiplication routines of OpenSSL14 leaking the byte length
of the nonce. Before the actual scalar multiplication, the nonce is converted
from a Bignumber to a byte array with BN bn2bin and flip endian. In contrast
to Bignumber-related issues subject to word-granular leakage, those functions
operate on bytes. By stripping leading zero bytes, they leak the byte length of
a nonce. For secp224r1 and secp256k1, L = 8 bits leak every 256th signature,
and L = 16 bits every 65536th signature. secp521r1 is not byte aligned and leaks
L = 1 bit every 2nd signature, or L = 9 bits every 512th signature, etc. Since the
side channel only comprises a few instructions and data bytes, we rate it as hard
to exploit. Yet, an SGX attack similar to Section 9.5 could target the stripped
nonce buffer. This issue was patched on August 3, 2019.15

Point Addition Vulnerability (V7). For ECDSA signatures, the nonce k
is multiplied with the generator G in Equation (9.15). Analyzing OpenSSL
and BoringSSL showed that the constant-time scalar multiplication uses a non-
constant-time point addition. This leaks nonce windows which are zero. We
uncovered this leakage with our tool showing 100% correlation on the bit length
of k, as shown in Section 9.2.3 Figure 9.1.

The scalar multiplication in question uses a fixed window approach. This
means that the scalar is split into multiple fixed-size windows. Each window is
used as an index into a precomputed table to select the point to be added. If
the window is all-zero, the first point is selected from the table. This first point
represents infinity and has all-zero coordinates.

12See OpenSSL commit 99540ec.
13See LibreSSL commit 34b4fb9.
14This applies to the optimized NIST curve implementations, which are obtained via the

enable-ec nistp 64 gcc 128 compilation flag.
15See https://github.com/openssl/openssl/pull/9511 as well as commits 8b44198b

and 805315d3

https://github.com/openssl/openssl/commit/99540ec
https://github.com/libressl-portable/openbsd/commit/34b4fb9
https://github.com/openssl/openssl/pull/9511
https://github.com/openssl/openssl/commit/8b44198b
https://github.com/openssl/openssl/commit/805315d3
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Table 9.5: Curves vulnerable ( ) to ECDSA point addition leak (V7) in constant-time
scalar multiplication for base point (BP) or arbitrary point (AP).

Curve BP AP Compile configuration

secp224r1 #  enable-ec nistp 64 gcc 128

secp256k1 #  
secp256k1   enable-ec nistp 64 gcc 128 no-asm

O
p

en
S

S
L

secp521r1   enable-ec nistp 64 gcc 128

secp224r1   OPENSSL SMALL

secp256k1 #  
secp384r1   

B
or

in
g
S

S
L

secp521r1   

Point addition has a special treatment for cases in which both points to
be added are equal. In these cases, the point is doubled in Listing 9.3 line 2.
Although doubling itself is never performed for ECDSA, the check in line 1 reveals
whether the added point is infinity or not. Hence, an attacker can learn whether
the current nonce window is zero.

1 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)

2 point_double (...)

Listing 9.3: Simplified excerpt from vulnerable point add (V7) in OpenSSL and
BoringSSL scalar multiplication.

The leak occurs due to the order in which the branching condition is evaluated.
The if statement in line 1 consists of four separate conditions, which are compiled
into multiple compare and jump instructions (cf. Figure 9.1 in Section 9.2.3).
This creates a tiny leakage because a different number of instructions are executed,
depending on the secret scalar. When the added point is not infinity, already
the first comparison (x equal) fails, since the added points are unequal. If the
added point is infinity, the flags x equal and y equal are set to true because
infinity is represented with all-zero projective (x,y,z) coordinates. Only the last
flag !z2 is zero fails, which results in a few more executed instructions.

With a window size of w bits, roughly 2−wth of the nonce is leaked per sign
operation. E.g., for the common window size of 5, around 3.2% of the nonce
is leaked. Exploiting this leakage with a cache attack seems infeasible due to
the tiny difference in the executed code. However, in an SGX setting, [BPS17;
Mog+20] could be used to single-step instructions.

We systematically analyzed various point multiplication implementations and
list affected ones in Table 9.5. Base-point multiplication is used in ECDSA,
whereas arbitrary point multiplication is used in Elliptic Curve Diffie-Hellman.
In OpenSSL, only optimized NIST implementations are affected. Other config-
urations and curve settings are unaffected because they use a blinded double-
and-add implementation. In BoringSSL, all curves are vulnerable at least under
one configuration. Since LibreSSL only uses blinded double-and-add for scalar
multiplication, it is also unaffected.
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Algorithm 9.3: OpenSSL/LibreSSL leaky inversion

input : a, n
output : inv ; // Inverse of a mod n

1 (A,B,X, Y, sign)← (a, n, 1, 0,−1)
2 while B > 0 do
3 (D,M)← (A/B,A%B) ; // Leaky division (V8)

4 (A,B)← (B,M)
5 (X,Y )← (D ·X + Y,X)
6 sign← −sign
7 end
8 ensure A = 1
9 if sign < 0 then

10 Y ← n− Y ; // Leaky negation (V9)

11 end
12 inv ← Y mod n

Our report led to an immediate fix16 by BoringSSL, which replaces the
evaluation of the branching condition with bit-wise operations, such that a short-
circuit evaluation is no longer possible. OpenSSL is currently in the process of
patching17, since our responsible disclosure on May 31, 2019.

9.4.5 Modular Inversion

Euclid BN div (V8). OpenSSL and LibreSSL implement modular inversion
via the Extended Euclidean algorithm. In contrast to the binary extended
Euclidean algorithm (BEEA), which is known to be vulnerable [GB17; WSB18b;
Ald+19], the inversion used for DSA is denoted as constant time in the source
code. With our tool, we uncovered a leak hidden deeply in this constant-time
modular inversion of OpenSSL. In particular, the first Euclidean iteration leaks
the topmost nonce bit of every signature to a side-channel attacker.

Since DATA accumulates leakage not only over the first but all Euclidean
iterations, our leakage models did not show a high correlation. Instead, we found
this leak by carefully analyzing the differences reported by DATA’s phase one.

Algorithm 9.3 shows the leaky Extended Euclidean inversion. The division
BN div in line 3 is not constant time, although the BN FLG CONSTTIME flag is
used. Note that BN div computes both the integer division D and the remainder
M . In the first iteration, A holds the public modulus q, and B holds the secret
nonce k. Inside BN div the BIGNUMs are aligned before the actual division, as
follows: The divisor (nonce k) is shifted to the left such that its highest word is
filled, having no leading zero bits. The numerator (modulus) is shifted left by
the same amount of bits (modulo the word size). Normally, the nonce has the
same bit length as the modulus, and the numerator also gets word-aligned. If the

16See BoringSSL commit 12d9ed6.
17https://github.com/openssl/openssl/pull/9239

https://github.com/google/boringssl/commit/12d9ed6
https://github.com/openssl/openssl/pull/9239
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Figure 9.4: OpenSSL DSA leaks the topmost bit of the nonce during Euclidean
inversion (V8).

nonce, however, has fewer bits than the modulus, this shift operation causes the
numerator BIGNUM to spill over to the next limb, and top is incremented. This
will cause a BIGNUM resize operation. Observing such resize operations allows an
attacker to distinguish nonces whose most significant bit is cleared.

To evaluate the leakage further, we generated 100 DSA keys and computed
100 DSA signatures per key. Figure 9.4 plots the resulting bit length of k for each
of the standard DSA settings qbits ∈ {160, 224, 256}. There is a clear separation
between nonces with a zero MSB causing a resize, and “normal” nonces whose
topmost bit is set. Since the modulus is chosen randomly per key, the probability
of having the MSB of the nonce set is only around 30%, whereas the probability of
a zero MSB is around 70%. Thus, an attacker can effectively learn approximately
0.88 bits18 for each signature.

To exploit the vulnerability, an attacker probes for leaky resize operations in
BN div during the first Euclidean inversion. A simple Flush+Reload attack on
the corresponding Bignumber allocation routines suffices, as with (V2). Since
L = 1, a Bleichenbacher attack is needed to recover the private key.

We proposed to abandon Euclid inversion in favor of a safer method. One
could either use blinding to decorrelate leakage from the nonce or use Fermat’s
little theorem, as done by BoringSSL. OpenSSL decided to implement Fermat’s
little theorem19 by computing the inverse as kq−2 mod q. Although we reported
this vulnerability also to LibreSSL on May 17, 2019, they did not apply the
patch.
Euclid Negation (V9). The Euclidean algorithm is inherently non-constant
time and leaks the number of iterations. We initially tried to correlate the number
of iterations to the nonce length. By doing simulations, we found that the number
of iterations fluctuate significantly, and cannot be used as a reliable side channel
for learning the nonce length. However, after applying our automated statistical
methods, DATA reported a significant correlation on the bit length of the inverse
nonce k−1. In particular, the Euclidean algorithm keeps track of the inverse’s
sign bit and conditionally negates Y in the end, as shown in Algorithm 9.3 line 10.

18Computed via the information entropy
19The patch was introduced in OpenSSL commit 415c335.

https://github.com/openssl/openssl/commit/415c335
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Figure 9.5: OpenSSL DSA leaks the topmost bit of the inverse nonce after Euclidean
inversion (V9).

We found that negation causes larger inverses on average, presenting a useful
side channel.

To visualize the leakage, we repeat the experiment from (V8). We plot the
bit length of inverse nonces k−1 in Figure 9.5. In our experiments, negation gives
a large k−1; however, the topmost bit is not necessarily one (num bits(k−1) ≥
qbits− 1). In contrast, “normal” inversion without negation causes the MSB of
k−1 to be zero, which happens in around 70% of the cases, giving 0.88 bits of
leakage per signature.

This vulnerability can be exploited via a Flush+Reload attack on the leaky
BN sub function and only collecting signatures where no negation happens. A
Bleichenbacher attack can be used to recover the actual private key. The patch
introduced in (V8) also fixes this vulnerability. LibreSSL remains vulnerable, as
they did not apply this patch.

9.4.6 Modular Multiplication (V10)

As Bignumber primitives are not constant time in several places [Rya19], OpenSSL
blinds20 the actual computation of the signature s in Equation (9.9) to avoid
leaking the private key x. This works by applying a random blinding value b, as
follows:

b
R← [1, q − 1] (9.32)

s← (bm+ bxr) mod q (9.33)

s← s · k−1 mod q (9.34)

s← s · b−1 mod q (9.35)

This makes leakage during addition, modular reduction, and multiplication
in Equation (9.33) independent of the private key as well as the inverse nonce
in Equation (9.34). Unfortunately, when LibreSSL applied the patch,21 they

20Blinding was introduced via OpenSSL commit 7f9822a.
21See LibreSSL commits 2cd28f9 and 2a937ef.

https://github.com/openssl/openssl/commit/7f9822a
https://github.com/libressl-portable/openbsd/commit/2cd28f9
https://github.com/libressl-portable/openbsd/commit/2a937ef


9.5. SGX Controlled-Channel Attack on (V5) 180

swapped Equation (9.34) and Equation (9.35), causing the multiplication with
k−1 to be unprotected. In particular, the routine BN mul leaks the value of top
at various locations.

This vulnerability is conceptually the same as the small nonce vulnerabil-
ity (V1), affecting the same curves listed in Table 9.3. It leaks whether the
inverse nonce is one limb smaller than the modulus. Since leakage of the inverse
nonce is equally dangerous as leakage of the nonce itself, an attacker can mount
the same key recovery attack as for (V1). In response to our disclosure, LibreSSL
fixed this issue.22

9.5 SGX Controlled-Channel Attack on (V5)

Fixing some of our reported vulnerabilities demand significant changes to the code
base. For example, k-padding (V2) was fixed in OpenSSL, while the underlying
problem of minimal Bignumbers still persists until OpenSSL has reworked the
Bignumber implementation. In this section, we show how to exploit residual
leakage via the k-padding top vulnerability (V5).

During k-padding, OpenSSL calls the function BN is bit set with the inter-
mediate nonce buffer l, as shown in Listing 9.2 line 18. If l->top is smaller than
q bits, this causes an early abort in Listing 9.4 line 4. In order to exploit this
leakage, an attacker needs to detect whether or not line 5 is executed.

1 int BN_is_bit_set(const BIGNUM *a, int n) {

2 ...

3 if (a->top <= i)

4 return 0;

5 return (int)(((a->d[i]) >> j) & (( BN_ULONG)1));

Listing 9.4: OpenSSL k-padding leaks k->top (V5).

While Flush+Reload might not work due to the small amount of leaky code,
we demonstrate a controlled-channel attack [XCP15] on an SGX enclave running
the vulnerable DSA sign operation from the SGX SSL library [Int19]. Controlled-
channel attacks detect individual memory accesses on a page granularity, be it
code or data. Since the vulnerable function is likely on a single code page, probing
this page does not suffice. Although more elaborate techniques to single-step
enclave execution exist [BPS17], we distinguish whether line 5 accesses the data
page covering buffer a->d.

For the attack, we need to trace execution to the vulnerable k-padding. We do
this with the SGX-Step framework [BPS17] without using its single-stepping func-
tionality. We unmap all relevant enclave code pages on which the following func-
tions reside: dsa do sign, BN generate dsa nonce, BN MONT CTX set locked,
BN add, and BN is bit set. As soon as one of those pages is fetched by the
enclave, a page fault is triggered, which we capture in user space via a custom
signal handler. Then, we selectively enable only the faulted page until we hit the
vulnerable BN is bit set function. Now we also unmap the data page holding

22See LibreSSL commits 1f6b35b and 159fbd1.

https://github.com/libressl-portable/openbsd/commit/1f6b35b
https://github.com/libressl-portable/openbsd/commit/159fbd1
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the nonce buffer a->d. If the next step throws a page fault on a->d, we know
that line 5 has been executed. If not, we know that the early abort in line 4 has
been triggered. In that case the nonce was not resized in the first addition of
k-padding (line 13 of Listing 9.2) and, thus, is smaller than the average. We only
collect such signatures and mount a lattice attack.

We build the lattice according to Equation (9.21) and gradually fill it with
leaky signatures until the lattice reduction reveals the private key. For the actual
reduction, we use the BKZ algorithm with a block size of 30. For a DSA-256
modulus leaking L = 8 bits, recovery succeeded with 36 signatures within 3.3s.
For L = 6 bit leakage, recovery took 47 signatures and 7.8s. L = 4 required 79
signatures and took 111 hours with an increased BKZ block size of 50, since it is
closer to the estimated bound in Section 9.1.2, demanding at least L = 3.

For the attack to work, a->top in line 4 needs to be on a different page than
a->d. This can be easily achieved if the enclave copies variably-sized attacker-
controlled arguments, such as messages to sign, to the enclave heap. By changing
the argument’s size, Bignumber a can be shifted appropriately. If this is not
possible, one can resort to stronger interrupt-driven attacks [BPS17; Mog+20] in
order to single-step execution of the BN is bit set function.

9.6 Evaluation

Having detailed all vulnerabilities, we now evaluate our analysis strategy as well
as the effectivity of our leakage models.
Analysis Strategy. Investigating the leakage reports of DATA represents a
chicken-and-egg problem. The results of DATA phase one cover all discovered
differences (i.e., potential leaks), but are tedious to analyze. Developing precise
leakage models to filter those results requires an intuition about the nature of
leakage, which in turn demands some manual analysis of phase one results. As
described in Section 9.4, we concurrently followed both approaches. By manually
analyzing phase one results, we gained an understanding of the libraries. Although
we found vulnerabilities related to k-padding as well as (V8) that way, this task
is tedious. Thus, we derived the leakage model num bits(·), which captures the
bit length of k, k + q, and k + 2q to detect k-padding leaks automatically. We
used the gained knowledge to search for other Bignumber-related leaks, and
also included inverse nonces k−1 in our models. Our leakage models confirmed
initial results and helped us discover more Bignumber-related vulnerabilities such
as (V1), (V9), and (V10). Moreover, since num bits(·) correlates with the bit
length rather than the word length of the nonce, we also found leakage on a byte
granularity (V6) and window granularity (V7).

The choice of library configurations and algorithm parameters is essential.
E.g., we realized that (V2) does not show up for DSA-160 on a 64-bit system,
while 32-bit systems leak for all parameter sets. Also, the choice of the tested
modulus q is essential in causing leakage to show up. In order to confirm (V2)
also for ECDSA, we analyzed all ECDSA moduli offline and found that only
Brainpool curves are vulnerable. Similarly, discovering and analyzing leakage of
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Table 9.6: Evaluation of leakage models. Depending on the triggered vulnerabilities,
the differences (Diffs) found by DATA are filtered via our leakage models.
The overall reduction is computed when filtering almost non-matching
leaks (<1%), somewhat matching leaks (<50%), or all leaks except for
perfect correlation (<100%).

D
iff

s
Leakage model (max. correlation in %) Reduction

Tested Vulnera- num bits(·) HW (·) Diffs–leaks (%)

config bilities k k + q k + 2q k−1 k k + q k + 2q k−1 <1 <50 <100

LibreSSL
sect131r1

(V1),(V9)
(V10)

1450 100 0.0 0.0 100 7.4 18.0 9.4 10.0 90.2 97.9 99.0

OpenSSL
DSA-256

(V2),(V5)
(V8),(V9)

663 100 100 100 79.8 0.0 2.7 17.8 0.0 23.7 26.4 27.5

OpenSSL
secp521r1a

(V6) 88 100 0.0 0.0 1.5 11.4 20.3 0.0 1.8 84.1 94.3 94.3

BoringSSL
secp521r1

(V7) 26 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.2 96.2 96.2

OpenSSL
secp521r1

artificial
leak

535 32.4 0.0 0.0 8.3 14.0 100 13.5 0.0 98.1 99.8 99.8

acompiled with enable-ec nistp 64 gcc 128

small nonces (V1) demanded careful investigations of (V10). Both issues depend
on ECDSA curve parameters that are slightly above a word boundary, which led
us to specifically testing the sect131r1 curve showing small nonces every fourth
signature. Thus, we were able to find numerous instances of (V1) with the help
of our tool. Also, we could generalize these results to other curves. E.g., for
secp521r1, the (V1) vulnerability only shows up every 512th signature on average,
which cannot be easily discovered by DATA within a reasonable time.
Leakage Models. We evaluate the leakage models on OpenSSL 1.1.1, Bor-
ingSSL chromium-stable commit 2e0d354, and LibreSSL 3.0.0. We use GCC
6.3.0 and test DATA phase one with 16 and phase three with 200 traces.

Table 9.6 summarizes our results. We benchmark different configurations to
trigger all major vulnerabilities and count all potential leaks (differences, or Diffs)
found by the original DATA phase one. For each implemented leakage model,
we print the maximum correlation, which reveals the strongest leak found by a
leakage model. In order to capture how often leakage models match, the last three
columns represent the overall reduction of phase one differences when filtered
by the models. In particular, we discard leaks with less correlation than the
thresholds 1%, 50%, and 100%. For example, the 100% threshold only preserves
leaks that fully match the model.

LibreSSL sect131r1 leaks small nonces via the num bits(k) model in several
places with 100%. Moreover, LibreSSL uses leaky Euclidean inversion also for
ECDSA, resulting in 100% leakage for num bits(k−1). Since LibreSSL does not
work with the so-called heap tracking of DATA phase one, it has over 1000
differences, most of which are filtered by our leakage models. Thus, the overall
reduction is over 90%. Analyzing those leaks by hand would be quite tedious.

git://git.openssl.org/openssl.git
https://github.com/google/boringssl/commit/2e0d354
https://github.com/libressl-portable/portable.git
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For OpenSSL DSA-256, the leaky k-padding addition (Listing 9.2 line 14) is
captured by the num bits(·) models on k+q and k+2q, showing 100% correlation.
The corresponding leaky resize operation influences the heap layout and causes
several subsequent Bignumber operations to leak via data accesses. Due to the
high number of these actual data leaks, which are all instantiations of (V2), the
reduction is “only” around 25%.

To trigger (V6), we compiled OpenSSL to use the optimized secp521r1 imple-
mentation. Indeed, num bits(k) shows 100% correlation during the conversion
of the nonce buffer and during scalar multiplication, as this implementation is
also vulnerable to (V7). We also triggered (V7) for BoringSSL, showing 100%
correlation. Other leakage models remain insignificant, and the overall reduction
for OpenSSL is above 84% and for BoringSSL above 96%.

The Hamming weight model HW (·) did not show a high correlation in any
of our tested configurations. It is designed for square&multiply and double&add,
respectively. However, the tested DSA implementations use fixed window multi-
plication. ECDSA uses a blinded double&add by default, for which HW (·) would
apply. However, the actual computation does not leak. To test the correctness of
the HW (·) model, we artificially introduced a conditional code execution during
double&add, leaking the current nonce bit. Indeed, we obtain 100% correlation
on the padded nonce k + q.

9.7 Discussion

Proper tool support significantly improves side-channel analysis and facilitates
the discovery of unknown weaknesses. However, tools do not fully discharge
an analyst from thorough investigations. Knowledge of the nature of expected
leakage is required to leverage tool support and interpret the results. Together
with a visual representation of the results, we see this as a valuable path to
follow.

The process of vulnerability patching has been tedious in the past, as evi-
denced by numerous issues involving the BN FLG CONSTTIME flag [GBY16; GB17;
Wei+18b]. Also, patching of (V2) introduced new leakage in OpenSSL (V4) and
LibreSSL (another instance of (V2) for ECDSA). We believe this is due to a lack
of practical tools for developers to test their patches thoroughly. Luckily, our
tool uncovered both issues with little effort. Also, regression testing of already
discovered leakage is promising in this regard [Gri+19].

While most OpenSSL vulnerabilities were patched or are in the patching
process, the issues (V1) and (V5) related to minimal Bignumbers (top) remain
unpatched. The OpenSSL team decided to target a fix in version 3.0, as it requires
a major redesign of their Bignumber primitives. According to [Dal19], reworking
Bignumber arithmetic in BoringSSL prior to our disclosure took between one and
two months. While BoringSSL immediately fixed (V7), LibreSSL only fixed (V10)
and (V2) partially. We also were in contact with the developers of libgcrypt for
fixing (V2), and the ring library for fixing (V7) in their code, however, without
further in-depth analysis.
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Due to a change in their security policy in May 2019, OpenSSL does not
consider Flush+Reload attacks in their threat model anymore, since they are
mounted on the same physical system [Ope19]. We see this downgrading question-
able, as it tempers not only efforts to analyze OpenSSL’s side-channel security
but also undermines software relying on the previous threat model. For example,
Intel SGX SSL [Int19] faces adversarial code on the same physical system by
design. Also, vendors notified of (V2) by the CVE system were not notified of
the equally dangerous (V1) due to this policy update.23

In the long term, more compiler support for side channels is needed [SCA18].
As of today, compilers might optimize constant-time code in a way that re-
introduces side-channel leakage. Thus, a notion of side-channel invariants like
constant-time guarantees is needed on a language level. For an overview of
existing literature, we refer the interested reader to Section 6.3.2.

9.8 Summary

In this chapter, we showed that nonce leakage is far from being abandoned and
requires attention both from academia and practitioners. For our systematic
study, we extended the DATA framework to detect nonce leakage and developed
an easy-to-use GUI. We found that having an intuitive GUI representation of
the discovered leakage is imperative for a productive analysis of complex reports.
E.g., it helped us to quickly determine whether a leaky function deeply nested
in the call stack is given public or secret input. The visualization of leakage
model results furthermore helped to identify hotspots, especially if the number
of potential leaks is large.

For OpenSSL and LibreSSL, we found numerous side-channel vulnerabilities
leaking secret (EC)DSA nonce bits that allow full key recovery in many cases.
They mostly result from weaknesses in the underlying Bignumber implementation.
We disclosed all our findings to the library developers and assisted them in the
patching process. We furthermore document vulnerabilities that were not yet
patched. We open-source our tools to help developers and analysts foster their
efforts in strengthening the cryptographic libraries we use on an everyday basis
against software side-channel attacks.

23https://www.cvedetails.com/cve/CVE-2018-0734/

https://www.cvedetails.com/cve/CVE-2018-0734/


Conclusion and Outlook

Good does not triumph unless good people rise to the challenges around them.

Alister E. McGrath

In this thesis, we studied enclaves as a promising technology for guaranteeing
secure code execution in the midst of an insecure and complex software ecosystem.
We tackled various challenges; however, many more are yet to be addressed. In the
following, we summarize our insights and open challenges along three properties
which we believe lie at the core of research on enclaves, namely user-centeredness,
security, and openness.
User-centeredness. Enclaves are an ideal fit for computation tasks that
shall be outsourced to the cloud, as well as Digital Rights Management (DRM).
Unfortunately, DRM schemes tend to infantilize end customers by restricting their
control over their own computers. It cannot be denied that this blanket distrust
towards users is counterproductive for healthy customer relationships. Instead of
abandoning enclaves for their potential use in DRM schemes, we promote their
utilization in user-centric applications to improve the overall security of user data.
For example, secure chat applications or video conferencing could be advanced
from end-to-end security towards user-to-user security. Online payment systems
could enforce stronger transaction authentication, and password stores could
shield user passwords even in case of a system compromise. Other everyday use
cases involve not only the protection of company data on a bring-your-own-device
but also the secure usage of private data on a company device.

To realize this vision, we need more research on secure interaction between
enclaves and users. We have shown that trusted hypervisors can provide secure
enclave I/O in a generic way. However, the current trend for secure I/O with SGX
goes towards specific I/O interception devices. In contrast, the solution provided
by Arm TrustZone allows one to link a Trusted Execution Environment (TEE)
directly with hardware peripherals. Future work on enclaves should attempt to
combine these concepts by augmenting user enclaves with some form of kernel
enclaves that can take temporary but exclusive control over particular devices.
More importantly, the success of enclaves for the consumer market crucially
depends on the usability of enclave systems. In particular, helping users without
a security background to discern legitimate enclaves presented to them from a
phishing app is a challenge on its own.
Security. Enclaves are inherently subject to stronger attackers controlling
the operating system. However, the security assumptions and implications of

185



9.8. Summary 186

enclaves are not as well understood as those of other isolation technologies. In this
work, we have addressed common misconceptions and wrong assumptions about
misbehaving enclaves. We have shown that shielding against enclave malware is
not only necessary but also doable with little effort. Still, more work needs to be
done to explore the remaining attack vectors of enclave malware, e.g., via the
API between enclaves and their host applications.

The threat of side channels for enclaves has been underestimated as well.
Many creative attacks have exploited the various novel side channels SGX exposes.
We have demonstrated that moving existing software into enclaves can have fatal
consequences. In particular, single-trace attacks on key generation algorithms
become pressing, as we demonstrated with our RSA attack. To ease the search
for side-channel vulnerabilities, we have introduced the notion of differential
address trace analysis (DATA), which captures most of the prominent side-
channel attacks. We have advanced state-of-the-art side-channel analysis by
developing our automated DATA tool. We have used DATA to identify and fix
various unknown side-channel vulnerabilities in OpenSSL, amongst others. As
the landscape of cryptographic libraries is vast, much more side-channel analysis
is needed. Also, protecting enclaves against transient execution attacks is still
an open issue, and it is unclear to what extent transient execution leakage is
tolerable.
Openness. To promote wide deployment of enclaves, an open ecosystem is
indispensable. On the one hand, an enclave system needs to encourage transparent
assessment, e.g., by providing an open and verifiable design. We developed an
open-source enclave system for the popular RISC-V architecture that fits the
needs of resource-constrained environments in the IoT. On the other hand, more
support is needed to propagate enclave technology towards more architectures. In
the future, it will become decisive to establish common terminology and security
standards for enclaves in order to make trust interchangeable among different
architectures. In particular, attestation mechanisms for verifying a device’s
security state are usually highly dependent on the device manufacturer. The
practical utility of enclaves for the open-source community, however, critically
depends on the openness of the provided attestation infrastructure. Intel already
took a step towards opening SGX via a flexible launch control mechanism that
also enables third parties to deploy independent attestation services. We are
currently lacking a proper understanding of the security implications of flexible
launch control. On the other hand, decentralized attestation schemes could
address many objections, but it is unclear how to design an enclave system
to support decentralized attestation. To conclude, we want to encourage the
research community to design and prototype the enhanced enclaves we envision
on the open RISC-V architecture.



Epilogue

Do not let your hearts be troubled. Trust in God; trust also in me.

Jesus Christ – Gospel of John

Everything in IT security is based on trust, of which enclaves are a prime
example. In this thesis, we studied enclaves, an exciting new building block for
modern security architectures, from various low-level aspects. Let us take a step
back and reason about their use from the perspective of individuals. Enclaves can
effectively help minimize our trust in the systems. As such, they can restore what
has been lost in previous years – digital control over one’s own data. However,
enclaves can equally remove trust from people. When managing digital rights
become a monopoly of the few, enclave technology could serve an instrument
to restrict people’s control over their own devices. It is up to us, the security
community, to discuss how technological advances can relax our trust assumptions
on the technology itself, while at the same time strengthening trust between
individuals.

In the end, trust is not at all a technological term; it is inherently relational.
As such, trust can never be made obsolete. It will remain not only the currency
of the future; trust is the substance of human nature itself. We shall not ask the
question of whether or not to trust. It is a matter of whom we trust.

While writing this thesis during the corona outbreak, I witnessed an earth-
quake that shook our society with (un)controlled fear and tragic losses, while
simultaneously bringing an overdue slowdown. It is healthy to acknowledge that
technology alone cannot solve social issues. Let us not fall prey to the illusion a
corona app would rescue us but take the courage to put aside any technology, if
necessary, and exercise both common sense and altruism to restore trust in each
other.
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merer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz. “GLV/GLS
Decomposition, Power Analysis, and Attacks on ECDSA Signatures with
Single-Bit Nonce Bias.” In: Advances in Cryptology – ASIACRYPT’14.
Vol. 8873. LNCS. Springer, 2014, pp. 262–281. isbn: 978-3-662-45610-1.

[Arb05] William Arbaugh. Treacherous or Trusted Computing: Black Helicopters,
an Increase in Assurance, or Both? Invited Talk at USENIX Security’05.
2005.

[Arn+16] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel
SGX.” In: Operating Systems Design and Implementation – OSDI’16.
USENIX Association, 2016, pp. 689–703.
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of Cache Side Channels Across AES Implementations.” In: Engineering
Secure Software and Systems – ESSoS’17. Vol. 10379. LNCS. Springer,
2017, pp. 213–230. isbn: 978-3-319-62104-3.

[MY07] Michael Myers and Stephen Youndt. “An introduction to hardware-
assisted virtual machine (hvm) rootkits.” In: Mega Security (2007).

[Nac+05] David Naccache, Phong Q. Nguyen, Michael Tunstall, and Claire Whelan.
“Experimenting with Faults, Lattices and the DSA.” In: Public Key
Cryptography – PKC’05. Vol. 3386. LNCS. Springer, 2005, pp. 16–28.
isbn: 3-540-24454-9.

[Nay+17] Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth Chandran,
Satya V. Lokam, Elaine Shi, and Vipul Goyal. “HOP: Hardware makes
Obfuscation Practical.” In: Network and Distributed System Security
Symposium – NDSS’17. The Internet Society, 2017.

[Nel+17] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. “Hyperkernel: Push-Button
Verification of an OS Kernel.” In: Symposium on Operating Systems
Principles – SOSP’17. ACM, 2017, pp. 252–269. isbn: 978-1-4503-5085-3.

[NIS] NIST. National Vulnerability Database. https://nvd.nist.gov. (Ac-
cessed 2020/03/11).

[Noo+13] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony
Van Herrewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede,
and Frank Piessens. “Sancus: Low-cost Trustworthy Extensible Net-
worked Devices with a Zero-software Trusted Computing Base.” In:
USENIX Security Symposium’13. USENIX Association, 2013, pp. 479–
494. isbn: 978-1-931971-03-4.

[Noo+17] Job Noorman et al. “Sancus 2.0: A Low-Cost Security Architecture for
IoT Devices.” In: ACM Trans. Priv. Secur. 20 (2017), 7:1–7:33.

http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://nvd.nist.gov


Bibliography 216

[NS00] Phong Q. Nguyen and Jacques Stern. “Lattice Reduction in Cryptology:
An Update.” In: International Algorithmic Number Theory Symposium
– ANTS’00. Vol. 1838. LNCS. Springer, 2000, pp. 85–112. isbn: 3-540-
67695-3.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and
Countermeasures: The Case of AES.” In: Topics in Cryptology – CT-
RSA’06. Vol. 3860. LNCS. Springer, 2006, pp. 1–20. isbn: 3-540-31033-9.

[Owu+13] Emmanuel Owusu, Jorge Guajardo, Jonathan M. McCune, James New-
some, Adrian Perrig, and Amit Vasudevan. “OASIS: on achieving a
sanctuary for integrity and secrecy on untrusted platforms.” In: Confer-
ence on Computer and Communications Security – CCS’13. ACM, 2013,
pp. 13–24. isbn: 978-1-4503-2477-9.

[Pag05] Dan Page. “Partitioned Cache Architecture as a Side-Channel Defence
Mechanism.” In: IACR Cryptology ePrint Archive 2005 (2005), p. 280.

[Par08] Bryan Parno. “Bootstrapping Trust in a ”Trusted” Platform.” In:
USENIX Workshop on Hot Topics in Security – HotSec. USENIX
Association, 2008.

[Per05] Colin Percival. Cache Missing for Fun and Profit. Technical report. h
ttp://www.daemonology.net/hyperthreading-considered-harmful/.
(Accessed 2020/03/11). 2005.

[Pes+16] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Ste-
fan Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU
Attacks.” In: USENIX Security Symposium’16. USENIX Association,
2016, pp. 565–581.

[Pet+18] Travis Peters, Reshma Lal, Srikanth Varadarajan, Pradeep Pappachan,
and David Kotz. “BASTION-SGX: bluetooth and architectural support
for trusted I/O on SGX.” In: Hardware and Architectural Support for
Security and Privacy – HASP. ACM, 2018, 3:1–3:9.

[PG08] Dan R. K. Ports and Tal Garfinkel. “Towards Application Security on
Untrusted Operating Systems.” In: USENIX Workshop on Hot Topics
in Security – HotSec. USENIX Association, 2008.

[Pom+19] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis
Polychronakis, and Vasileios P. Kemerlis. “Kernel Protection Against
Just-In-Time Code Reuse.” In: ACM Trans. Priv. Secur. 22 (2019), 5:1–
5:28.

[Por13] Thomas Pornin. Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). https:
//tools.ietf.org/html/rfc6979. (Accessed 2020/03/11). Request for
Comments: 6979. 2013.

[PPK12] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis.
“Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-place Code Randomization.” In: IEEE Symposium on Security and
Privacy – S&P’12. IEEE Computer Society, 2012, pp. 601–615. isbn:
978-0-7695-4681-0.

http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979


Bibliography 217

[PPM16] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. “Multi-
run Side-Channel Analysis Using Symbolic Execution and Max-SMT.”
In: Computer Security Foundations – CSF’16. IEEE Computer Society,
2016, pp. 387–400. isbn: 978-1-5090-2607-4.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. “Single-Trace Side-
Channel Attacks on Masked Lattice-Based Encryption.” In: Crypto-
graphic Hardware and Embedded Systems – CHES’17. Vol. 10529. LNCS.
Springer, 2017, pp. 513–533. isbn: 978-3-319-66786-7.

[PSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “Just a Little Bit
More.” In: Topics in Cryptology – CT-RSA’15. Vol. 9048. LNCS. Springer,
2015, pp. 3–21. isbn: 978-3-319-16714-5.

[PVC18] Christian Priebe, Kapil Vaswani, and Manuel Costa. “EnclaveDB: A
Secure Database Using SGX.” In: IEEE Symposium on Security and
Privacy – S&P’18. IEEE Computer Society, 2018, pp. 264–278. isbn:
978-1-5386-4353-2.

[Qur18] Moinuddin K. Qureshi. “CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping.” In: Symposium on
Microarchitecture – MICRO’18. IEEE Computer Society, 2018, pp. 775–
787. isbn: 978-1-5386-6240-3.

[Raj+09] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England. “Re-
source management for isolation enhanced cloud services.” In: Cloud
Computing Security Workshop – CCSW. ACM, 2009, pp. 77–84. isbn:
978-1-60558-784-4.

[Ram+19] Kartik Ramkrishnan, Antonia Zhai, Stephen McCamant, and Pen-Chung
Yew. “New Attacks and Defenses for Randomized Caches.” In: CoRR
abs/1909.12302 (2019).

[RBV17] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. “Dude, is
my code constant time?” In: Design, Automation & Test in Europe

– DATE’17. IEEE, 2017, pp. 1697–1702. isbn: 978-3-9815370-8-6.

[Rei18] Charlie Reis. Mitigating Spectre with Site Isolation in Chrome. https:
//security.googleblog.com/2018/07/mitigating-spectre-with-

site-isolation.html. (Accessed 2020/03/11). 2018.

[Ren+19] Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, and
Srinivas Devadas. “Design and Implementation of the Ascend Secure
Processor.” In: IEEE Trans. Dependable Sec. Comput. 16 (2019), pp. 204–
216.

[Ris] RISC-V: The Free and Open RISC Instruction Set Architecture. https:
//riscv.org/. (Accessed 2020/03/11).

[RLT15] Ashay Rane, Calvin Lin, and Mohit Tiwari. “Raccoon: Closing Digital
Side-Channels through Obfuscated Execution.” In: USENIX Security
Symposium’15. USENIX Association, 2015, pp. 431–446.

[Ron+17] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. “IoT
Goes Nuclear: Creating a ZigBee Chain Reaction.” In: IEEE Sympo-
sium on Security and Privacy – S&P’17. IEEE Computer Society, 2017,
pp. 195–212. isbn: 978-1-5090-5533-3.

https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://riscv.org/
https://riscv.org/


Bibliography 218

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems.” In:
Commun. ACM 21 (1978), pp. 120–126.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. “Bitslice Im-
plementation of AES.” In: Cryptology and Network Security – CANS’06.
Vol. 4301. LNCS. Springer, 2006, pp. 203–212. isbn: 3-540-49462-6.

[Rua14a] Xiaoyu Ruan. “Boot with Integrity, or Don’t Boot.” In: Platform Embed-
ded Security Technology Revealed. Berkeley, CA: Apress, 2014, pp. 143–
163. isbn: 978-1-4302-6572-6. doi: 10.1007/978-1-4302-6572-6_6.

[Rua14b] Xiaoyu Ruan. Platform Embedded Security Technology Revealed. Safe-
guarding the Future of Computing with Intel Embedded Security and
Management Engine. ApressOpen, 2014. isbn: 978-1-4302-6572-6.

[Rus] Rust Programming Language. https://www.rust-lang.org/. (Accessed
2020/03/11).

[Rut13] Joanna Rutkowska. Thoughts on Intel’s upcoming Software Guard Ex-
tensions (Part 2). http://theinvisiblethings.blogspot.co.at/

2013/09/thoughts-on-intels-upcoming-software.html. (Accessed
2020/03/11). Sept. 2013.

[Rya19] Keegan Ryan. “Return of the Hidden Number Problem. A Widespread
and Novel Key Extraction Attack on ECDSA and DSA.” In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019 (2019), pp. 146–168.

[SAB10] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. “All
You Ever Wanted to Know about Dynamic Taint Analysis and Forward
Symbolic Execution (but Might Have Been Afraid to Ask).” In: IEEE
Symposium on Security and Privacy – S&P’10. IEEE Computer Society,
2010, pp. 317–331. isbn: 978-0-7695-4035-1.

[San17] Ardalan Amiri Sani. “SchrodinText: Strong Protection of Sensitive Tex-
tual Content of Mobile Applications.” In: Mobile Systems – MobiSys’17.
ACM, 2017, pp. 197–210. isbn: 978-1-4503-4928-4.

[Sat18] Michael Satran. Measured Boot. https://docs.microsoft.com/en-us/
windows/win32/w8cookbook/measured-boot. (Accessed 2020/03/11).
2018.

[Sca+18] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski.
Supporting Third Party Attestation for Intel SGX with Intel Data Center
Attestation Primitives. https://software.intel.com/sites/defau

lt/files/managed/f1/b8/intel-sgx-support-for-third-party-

attestation.pdf. (Accessed 10/03/2020). 2018.

[SCA18] Laurent Simon, David Chisnall, and Ross J. Anderson. “What You Get
is What You C: Controlling Side Effects in Mainstream C Compilers.” In:
IEEE European Symposium on Security and Privacy – EURO S&P’18.
IEEE, 2018, pp. 1–15. isbn: 978-1-5386-4228-3.

[Sch+15] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Mar-
cus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. “VC3: Trust-
worthy Data Analytics in the Cloud Using SGX.” In: IEEE Symposium
on Security and Privacy – S&P’15. IEEE Computer Society, 2015, pp. 38–
54. isbn: 978-1-4673-6949-7.

http://dx.doi.org/10.1007/978-1-4302-6572-6_6
https://www.rust-lang.org/
http://theinvisiblethings.blogspot.co.at/2013/09/thoughts-on-intels-upcoming-software.html
http://theinvisiblethings.blogspot.co.at/2013/09/thoughts-on-intels-upcoming-software.html
https://docs.microsoft.com/en-us/windows/win32/w8cookbook/measured-boot
https://docs.microsoft.com/en-us/windows/win32/w8cookbook/measured-boot
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf


Bibliography 219

[Sch+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. “Malware Guard Extension: Using SGX to Conceal
Cache Attacks.” In: Detection of Intrusions and Malware & Vulnerability
Assessment – DIMVA’17. 2017, pp. 3–24.

[Sch+18a] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. “Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs us-
ing Modern CPU Features.” In: Asia Conference on Computer and
Communications Security – AsiaCCS. ACM, 2018, pp. 587–600.

[Sch+18b] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine
Maurice, Raphael Spreitzer, and Stefan Mangard. “KeyDrown: Elim-
inating Software-Based Keystroke Timing Side-Channel Attacks.” In:
Network and Distributed System Security Symposium – NDSS’18. 2018.

[Sch+19a] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
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“AsyncShock: Exploiting Synchronisation Bugs in Intel SGX Enclaves.” In:
European Symposium on Research in Computer Security – ESORICS’16.
Vol. 9878. LNCS. Springer, 2016, pp. 440–457. isbn: 978-3-319-45743-7.

[Wei+18b] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan
Mangard, and Georg Sigl. “DATA - Differential Address Trace Analysis:
Finding Address-based Side-Channels in Binaries.” In: USENIX Security
Symposium’18. USENIX Association, 2018, pp. 603–620.



Bibliography 225

[Wei16] Samuel Weiser. Secure I/O with Intel SGX. Graz University of Technology.
Master thesis. https://graz.pure.elsevier.com/files/7516934/

2016_Weiser_Thesis_SecureIO_SGX.pdf. (Accessed 2020/03/11). 2016.

[Wer+16] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z.
Snow, Fabian Monrose, and Michalis Polychronakis. “No-Execute-After-
Read: Preventing Code Disclosure in Commodity Software.” In: Asia
Conference on Computer and Communications Security – AsiaCCS. ACM,
2016, pp. 35–46. isbn: 978-1-4503-4233-9.

[Wer+19] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. “ScatterCache: Thwarting Cache
Attacks via Cache Set Randomization.” In: USENIX Security Sympo-
sium’19. USENIX Association, 2019, pp. 675–692.

[Wic+18] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar.
“MicroWalk: A Framework for Finding Side Channels in Binaries.” In:
Annual Computer Security Applications Conference – ACSAC’18. ACM,
2018, pp. 161–173. isbn: 978-1-4503-6569-7.

[WL07] Zhenghong Wang and Ruby B. Lee. “New cache designs for thwarting
software cache-based side channel attacks.” In: International Symposium
on Computer Architecture – ISCA’07. ACM, 2007, pp. 494–505. isbn:
978-1-59593-706-3.

[WL08] Zhenghong Wang and Ruby B. Lee. “A novel cache architecture with
enhanced performance and security.” In: Symposium on Microarchitecture

– MICRO’08. IEEE Computer Society, 2008, pp. 83–93. isbn: 978-1-4244-
2836-6.

[WLY18] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. “Check It Again:
Detecting Lacking-Recheck Bugs in OS Kernels.” In: Conference on
Computer and Communications Security – CCS’18. ACM, 2018, pp. 1899–
1913. isbn: 978-1-4503-5693-0.

[Won15] David Wong. “Timing and Lattice Attacks on a Remote ECDSA OpenSSL
Server: How Practical Are They Really?” In: IACR Cryptology ePrint
Archive 2015 (2015), p. 839.

[WSB18b] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. “Single Trace
Attack Against RSA Key Generation in Intel SGX SSL.” In: Asia Con-
ference on Computer and Communications Security – AsiaCCS. ACM,
2018, pp. 575–586.

[WW17b] Samuel Weiser and Mario Werner. “SGXIO: Generic Trusted I/O Path
for Intel SGX.” In: CoRR abs/1701.01061 (2017).

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems.”
In: IEEE Symposium on Security and Privacy – S&P’15. IEEE Computer
Society, 2015, pp. 640–656. isbn: 978-1-4673-6949-7.

[Xia+17] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. “STACCO:
Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS
Vulnerabilities in Secure Enclaves.” In: Conference on Computer and
Communications Security – CCS’17. ACM, 2017, pp. 859–874. isbn:
978-1-4503-4946-8.

https://graz.pure.elsevier.com/files/7516934/2016_Weiser_Thesis_SecureIO_SGX.pdf
https://graz.pure.elsevier.com/files/7516934/2016_Weiser_Thesis_SecureIO_SGX.pdf


Bibliography 226

[XSL16] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. “Intel®
Software Guard Extensions (Intel® SGX) Software Support for Dynamic
Memory Allocation inside an Enclave.” In: Hardware and Architectural
Support for Security and Privacy – HASP. ACM, 2016, 11:1–11:9. isbn:
978-1-4503-4769-3.

[XSZ08] Bin Xin, William N. Sumner, and Xiangyu Zhang. “Efficient program exe-
cution indexing.” In: Programming Language Design and Implementation

– PLDI’08. ACM, 2008, pp. 238–248. isbn: 978-1-59593-860-2.

[Xu+16] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and
Zhaohui Li. “A Practical Verification Framework for Preemptive OS Ker-
nels.” In: Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
II. Vol. 9780. LNCS. Springer, 2016, pp. 59–79. isbn: 978-3-319-41539-0.

[Yav19] Tuba Yavuz. “Detecting Callback Related Deep Vulnerabilities in Linux
Device Drivers.” In: Cybersecurity Development, SecDev’19. IEEE, 2019,
pp. 62–75. isbn: 978-1-5386-7289-1.

[YB14] Yuval Yarom and Naomi Benger. “Recovering OpenSSL ECDSA Nonces
Using the FLUSH+RELOAD Cache Side-channel Attack.” In: IACR
Cryptology ePrint Archive 2014 (2014), p. 140.

[YF14] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX Security
Symposium’14. USENIX Association, 2014, pp. 719–732.

[YGH16] Yuval Yarom, Daniel Genkin, and Nadia Heninger. “CacheBleed: A
Timing Attack on OpenSSL Constant Time RSA.” In: Cryptographic
Hardware and Embedded Systems – CHES’16. Vol. 9813. LNCS. Springer,
2016, pp. 346–367. isbn: 978-3-662-53139-6.

[YGZ15] Miao Yu, Virgil D. Gligor, and Zongwei Zhou. “Trusted Display on
Untrusted Commodity Platforms.” In: Conference on Computer and
Communications Security – CCS’15. ACM, 2015, pp. 989–1003. isbn:
978-1-4503-3832-5.

[YH10] Jean Yang and Chris Hawblitzel. “Safe to the last instruction: automated
verification of a type-safe operating system.” In: Programming Language
Design and Implementation – PLDI’10. ACM, 2010, pp. 99–110. isbn:
978-1-4503-0019-3.

[YS08] Jisoo Yang and Kang G. Shin. “Using hypervisor to provide data secrecy
for user applications on a per-page basis.” In: International Conference
on Virtual Execution Environments – VEE’08. ACM, 2008, pp. 71–80.
isbn: 978-1-59593-796-4.

[Yu+19] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W. Fletcher.
“Data Oblivious ISA Extensions for Side Channel-Resistant and High
Performance Computing.” In: Network and Distributed System Security
Symposium – NDSS’19. The Internet Society, 2019. isbn: 1-891562-55-X.

[Zel+08] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis.
“Hardware Enforcement of Application Security Policies Using Tagged
Memory.” In: Operating Systems Design and Implementation – OSDI’08.
USENIX Association, 2008, pp. 225–240. isbn: 978-1-931971-65-2.



Bibliography 227

[Zha+12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
“Cross-VM side channels and their use to extract private keys.” In:
Conference on Computer and Communications Security – CCS’12. ACM,
2012, pp. 305–316. isbn: 978-1-4503-1651-4.

[Zha+19] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M.
Azab, and Ruowen Wang. “PeX: A Permission Check Analysis Frame-
work for Linux Kernel.” In: USENIX Security Symposium’19. USENIX
Association, 2019, pp. 1205–1220.

[Zha+20] Pan Zhang, Chengyu Song, Heng Yin, Deqing Zou, Elaine Shi, and
Hai Jin. “Klotski: Efficient Obfuscated Execution against Controlled-
Channel Attacks.” In: Architectural Support for Programming Languages
and Operating Systems – ASPLOS’20. ACM, 2020, pp. 1263–1276. isbn:
978-1-4503-7102-5.

[Zha19] Mingwei Zhang. XOM-Switch. https://github.com/intel/xom-switch.
(Accessed 2020/03/11). 2019.

[Zho+12] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M. Mc-
Cune. “Building Verifiable Trusted Path on Commodity x86 Computers.”
In: IEEE Symposium on Security and Privacy – S&P’12. IEEE Computer
Society, 2012, pp. 616–630. isbn: 978-0-7695-4681-0.

[Zho14] Zongwei Zhou. “On-Demand Isolated I/O for Security-Sensitive Applica-
tions on Commodity Platforms.” PhD thesis. Carnegie Mellon University,
2014.

[ZHS16] Andreas Zankl, Johann Heyszl, and Georg Sigl. “Automated Detection of
Instruction Cache Leaks in Modular Exponentiation Software.” In: Smart
Card Research and Advanced Applications – CARDIS’16. Vol. 10146.
LNCS. Springer, 2016, pp. 228–244. isbn: 978-3-319-54668-1.

[ZRZ16] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. “A Software Ap-
proach to Defeating Side Channels in Last-Level Caches.” In: Conference
on Computer and Communications Security – CCS’16. ACM, 2016,
pp. 871–882. isbn: 978-1-4503-4139-4.

[ZYG14] Zongwei Zhou, Miao Yu, and Virgil D. Gligor. “Dancing with Giants:
Wimpy Kernels for On-Demand Isolated I/O.” In: IEEE Symposium on
Security and Privacy – S&P’14. IEEE Computer Society, 2014, pp. 308–
323. isbn: 978-1-4799-4686-0.

[ZZP04] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. “HIDE: an infrastruc-
ture for efficiently protecting information leakage on the address bus.” In:
Architectural Support for Programming Languages and Operating Systems
– ASPLOS’04. ACM, 2004, pp. 72–84. isbn: 1-58113-804-0.

[AMD20a] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity Pro-
tection and More. White paper. 2020.

[AMD20b] AMD. AMD64 Architecture Programmer’s Manual Volume 2: System
Programming. Ref. no. 24593, revision 3.33. 2020.

[Arma] Arm Limited. Arm Cortex-A Series Processors. https://developer.
arm.com/ip-products/processors/cortex-a. (Accessed 2020/03/11).

[Armb] Arm Limited. Arm Cortex-M Series Processors. https://developer.
arm.com/ip-products/processors/cortex-m. (Accessed 2020/03/11).

https://github.com/intel/xom-switch
https://developer.arm.com/ip-products/processors/cortex-a
https://developer.arm.com/ip-products/processors/cortex-a
https://developer.arm.com/ip-products/processors/cortex-m
https://developer.arm.com/ip-products/processors/cortex-m


Bibliography 228

[Arm09] Arm Limited. ARM Security Technology: Building a Secure System
Using TrustZone Technology. Ref. no. PRD29-GENC-009492C. http:
/ / infocenter . arm . com / help / topic / com . arm . doc . prd29 - genc -

009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.
(Accessed 2020/03/11). 2009.

[Arm17] Arm Limited. TrustZone Technology for ARMv8-M Architecture. Ref. no.
100690 0200 00 en. https://static.docs.arm.com/100690/0200/arm
v8m_trustzone_technology_100690_0200.pdf. (Accessed 2020/03/11).
2017.

[Arm19] Arm Limited. Armv8.5-A Memory Tagging Extension. White paper.
2019.

[Dep85] Department of Defense. Department of Defense Trusted Computer System
Evaluatino Criteria. DOD 5200.28-STD. http://www.iwar.org.uk/
comsec/resources/standards/rainbow/5200.28-STD.html. (Accessed
2020/03/11). 1985.

[Hex] Hex Five. MultiZone. https://hex-five.com. (Accessed 2020/03/11).

[Int] Intel Corporation. Pin - A Dynamic Binary Instrumentation Tool. h
ttps://software.intel.com/en-us/articles/pintool/. (Accessed
2020/03/11).

[Int15] Intel Corporation. Intel Trusted Execution Technology (Intel TXT), Soft-
ware Development Guide. Reference no. 315168-012. July 2015.

[Int16a] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual. Reference no. 325462-061US. Dec. 2016.

[Int16b] Intel Corporation. Intel Software Guard Extensions SDK for Linux OS.
Developer Reference. Rev. 1.5. 2016.

[Int17a] Intel Corporation. Control-flow Enforcement Technology Preview. Revi-
sion 2.0. June 2017.

[Int17b] Intel Corporation. Intel Software Guard Extensions Developer Guide. htt
ps://software.intel.com/en-us/sgx-sdk/documentation. (Accessed
2020/03/11). 2017.

[Int19] Intel Corporation. Intel SgxSSL Library User Guide. Rev. 1.2.5. https:
//software.intel.com/sites/default/files/managed/3b/05/Intel-

SgxSSL-Library-User-Guide.pdf. (Accessed 2020/03/11). 2019.

[Lia+20] Hongliang Liang, Mingyu Li, Yixiu Chen, Lin Jiang, Zhuosi Xie, and
Tianqi Yang. “Establishing Trusted I/O Paths for SGX Client Systems
With Aurora.” In: IEEE Transactions on Information Forensics and
Security 15 (2020), pp. 1589–1600. issn: 1556-6021.

[Lin17] Linux kernel. SECure COMPuting with filters. https://www.kerne

l.org/doc/Documentation/prctl/seccomp_filter.txt. (Accessed
2020/03/11). 2017.

[NJC16] NJCCIC. Mirai Botnet. https://www.cyber.nj.gov/threat-profiles/
botnet-variants/mirai-botnet. (Accessed 2020/03/11). 2016.

[OWA19] OWASP. OWASP Application Security Verification Standard 4.0. 2019.

[Ope] OpenSSL Software Foundation. OpenSSL – Cryptography and SSL/TLS
Toolkit. https://www.openssl.org/. (Accessed 2020/03/11).

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
http://www.iwar.org.uk/comsec/resources/standards/rainbow/5200.28-STD.html
http://www.iwar.org.uk/comsec/resources/standards/rainbow/5200.28-STD.html
https://hex-five.com
https://software.intel.com/en-us/articles/pintool/
https://software.intel.com/en-us/articles/pintool/
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/sites/default/files/managed/3b/05/Intel-SgxSSL-Library-User-Guide.pdf
https://software.intel.com/sites/default/files/managed/3b/05/Intel-SgxSSL-Library-User-Guide.pdf
https://software.intel.com/sites/default/files/managed/3b/05/Intel-SgxSSL-Library-User-Guide.pdf
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.cyber.nj.gov/threat-profiles/botnet-variants/mirai-botnet
https://www.cyber.nj.gov/threat-profiles/botnet-variants/mirai-botnet
https://www.openssl.org/


Bibliography 229

[Ope19] OpenSSL. Security policy. https://www.openssl.org/policies/secpo
licy.html. (Accessed 2020/03/11). 2019.

[PaX03] PaX Team. Address space layout randomization (ASLR). http://pax.
grsecurity.net/docs/aslr.txt. (Accessed 2020/03/11). 2003.

[PaX15] PaX Team. “Rap: Rip rop.” In: Hackers to Hackers Conference (2015).

[Ste67] J. Stein. “Computational Problems Associated with Racah Algebra.” In:
Journal of Computational Physics 1 (1967), pp. 397–405.

[TCG14] TCG. Trusted Platform Module Library. Part 1: Architecture. Family
2.0. Revision 01.16. Oct. 2014.

[Tru12] Trusted Computing Group. Glossary. www.trustedcomputinggroup.org
/developers/glossary. (Accessed 2020/03/11). 2012.

[UEF19] UEFI Forum. Unified Extensible Firmware Interface (UEFI) Specification.
Version 2.8. 2019.

[seL20] seL4 Foundation. seL4 Docs. https://docs.sel4.systems. (Accessed
2020/03/11). 2020.

https://www.openssl.org/policies/secpolicy.html
https://www.openssl.org/policies/secpolicy.html
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
www.trustedcomputinggroup.org/developers/glossary
www.trustedcomputinggroup.org/developers/glossary
https://docs.sel4.systems

	Title Page
	Prologue
	Acknowledgements
	Abstract
	Table of Contents
	Introduction
	Challenges
	Contributions and Outline

	I Enclave Security
	From Bugs to Enclaves. A Primer
	Attack Scenarios
	Bug Alert! On Software Vulnerabilities
	Intrusion Alert! On Security Architectures

	A History of Isolation Technology
	Process Isolation
	Bootstrapping Trust
	Untrusted Operating Systems
	Towards Enclaves

	Intel Software Guard Extensions (SGX)
	Basic SGX Features
	Advanced SGX Features
	Attacks on Enclaves


	SGXIO: Enclaves using I/O
	Trusted Paths
	Threat Model and Challenges
	Distinction from SGX
	Threat Model
	Challenges

	SGXIO Architecture
	Architecture
	Isolation Guarantees
	User App Design
	Driver Design
	Hypervisor Design

	Domain Binding
	Challenges
	Trusted Boot & Hypervisor Attestation
	Attacks
	Remote Trusted Path Attestation
	User Verification

	Key Transport
	Tweaking Debug Enclaves
	Further Considerations
	Summary

	TIMBER-V: Enclaves via Tagged Memory
	Background
	Adversary Model and Design Goals
	TIMBER-V Design
	Enclave Isolation
	Dynamic Memory Management
	Trusted Services

	TagRoot Trust Manager
	Trusted OS Services
	Trusted Enclave Services

	Dynamic Memory Management
	Heap Interleaving
	Stack Interleaving
	Unforgeable Headers

	TIMBER-V Implementation Details
	Security Analysis
	Evaluation
	Methodology
	Macrobenchmarks
	Microbenchmarks
	Memory Overhead

	Related Work
	Enclave Architectures
	Tagged Memory Architectures

	Possible Extensions
	Summary

	SGXJail: Defeating Enclave Malware
	Threat Model
	Analyzing the Enclave Malware Threat
	Enclave Primitives
	Attack Vectors
	API attacks

	SGXJail
	SGXJail via Software Confinement
	Implementation Details
	Evaluation
	HSGXJail via Hardware Confinement

	Related Work
	Discussion
	Summary


	II Address-based Side Channels
	Software Side Channels
	Side-channel Attacks
	Microarchitectural Attacks
	Attacks in SGX Settings

	Side-channel Vulnerabilities
	Modular Exponentiation
	ECDSA Scalar Multiplication
	GCD
	Modular Inversion
	Modular Reduction

	Side-channel Defenses
	Closing Side Channels
	Closing Side-channel Vulnerabilities
	Detecting Side-channel Vulnerabilities


	RSA Enclave Side-channel Leakage
	Threat Model
	RSA Key Generation
	Binary Euclidean Algorithm

	Attacking RSA Key Generation
	Idealized Attacker
	Controlled-channel Attacker
	Exploiting the Information Leak
	Generalization

	Attack Evaluation
	Implementation Details
	Mounting the Attack
	Key Recovery Complexity

	Patching OpenSSL
	Further Vulnerabilities
	Responsible Disclosure

	Summary

	DATA: Differential Address Trace Analysis
	Related Work
	Differential Address Trace Analysis
	Threat Model
	Methodology
	Address-based Information Leakage
	Recording Address Traces
	Finding Trace Differences

	Implementation and Optimizations
	Evaluation and Results
	Analysis Results
	Performance
	Discussion

	Summary

	Big Numbers – Big Troubles. On Nonce Leakage in (EC)DSA
	Background
	Digital Signatures
	The Hidden Number Problem

	Automated Nonce Leakage Detection
	Methodology
	Detecting Nonce Leakage
	DATA GUI

	Vulnerability Analysis Overview
	Detailed Analysis
	Nonce Representation
	Nonce Generation
	DSA Exponentiation
	ECDSA Scalar Multiplication
	Modular Inversion
	Modular Multiplication (V10)

	SGX Controlled-Channel Attack on (V5)
	Evaluation
	Discussion
	Summary


	Conclusion and Outlook
	Epilogue
	List of Contributions
	Bibliography

