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Abstract. Automated cell detection in histopathology images is a hard
problem due to the large variance of cell shape and appearance. We show
that cells can be detected reliably in images by predicting, for each pixel
location, a monotonous function of the distance to the center of the clos-
est cell. Cell centers can then be identified by extracting local extremums
of the predicted values. This approach results in a very simple method,
which is easy to implement. We show on two challenging microscopy im-
age datasets that our approach outperforms state-of-the-art methods in
terms of accuracy, reliability, and speed. We also introduce a new dataset
that we will make publicly available.

1 Introduction

Analysis of microscopy image data is very common in modern cell biology and
medicine. Unfortunately, given the typically huge number of cells contained in
microscopic images of histological specimen, visual analysis is a tedious task and
can lead to considerable inter-observer variability and even irreproducible results
because of intra-observer variability [1].

Automated cell detection and segmentation methods are therefore highly de-
sirable, and have seen much research effort during the previous decades [2]. In
histological image analysis, one of the main problems is to count how many
cells are present in the captured images, and many automatic methods have
already been proposed for this task [3–8]. Some methods are based on simple
contour-based cell models [5] or leverage shape and appearance priors [7] in a
global optimization strategy. While reasonable success in cell detection may be
achieved using conventional image processing, for example based on local sym-
metry features [4] or using normalized cuts and spectral graph theory to segment
cells [3], recently learning based approaches have proven to achieve state-of-the-
art results on detection benchmarks like [9]. On this benchmark, the work of [6]
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currently outperforms other approaches. It is based on extracting a large num-
ber of candidate maximally stable extremal cell regions using the MSER detec-
tor [10], which are pruned using several, increasingly complex classifiers based
on structured SVMs (SSVM). Other approaches apply a classifier densely over
the input images in a sliding window fashion [11] or learn regions revealed by the
SIFT [12] keypoint detector [8]. A related, but different problem is to count cells
without explicitly detecting them by estimating their density [13, 14]. However
this approach does not produce the locations of the cells, which are important
for example to perform cell type recognition.

We consider here an alternative approach to cell detection. Our method is
inspired by the recent [15], which considers the extraction of linear structures
in images: Instead of relying on an ad hoc model of linear structures such as
neurons [16] or a classifier [17], [15] proposes to predict, for each pixel of the
input image, a function of the distances to the closest linear structure in a
regression step. The local maximums of the predicted function can be extracted
easily and correspond to the desired linear structures.

(a) (b) (c) (d) (e) (f)

Fig. 1. Comparing classification and regression for cell detection. (a) Several patches
of input images from our bone marrow dataset, centered on one or two cells. First row:
one fully stained nucleus, second row: two closely located nuclei, third row: one nucleus
of anisotropic shape and non-uniform staining. Green dots indicate ground truth anno-
tation of the cell centers. (b) Probability maps provided by a classifier applied to these
patches, and (c) the local maximums of these probability maps. They exhibit many
local maximums – indicated by crosses – around the actual cell centers while only one
maximum is expected. (d) The expected score map that the regressor should predict
and (e) the actual predictions. (f) The local maximums of these predictions correspond
much better to the cell centers and do not suffer from multiple responses.

As depicted in Fig. 1, we show in this paper that this approach transfers to
cell detection, and actually outperforms state-of-the-art approaches over all the
standard metrics: Using a standard regression Random Forest [18], we predict for
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each image location a function of the distance to the closest cell center. We can
then identify the cell centers by looking for local maximums of the predictions.

We evaluate our approach on two challenging datasets, illustrated in Fig. 2.
For both datasets, the goal is to predict the center of the cells. The first dataset
we consider is from the ICPR 2010 Pattern Recognition in Histopathological
Images contest [9], consisting of 20 100 × 100 pixel images of breast cancer
tissue. We also introduce a new dataset BM, containing eleven 1, 200 × 1, 200
pixel images of healthy human bone marrow from eight different patients.

(a) ICPR (b) BM

Fig. 2. Dataset samples: (a) Breast cancer tissue from the ICPR 2010 contest [9]
dataset (20× magnification), (b) bone marrow tissue (cropped from full images at
40× magnification). The green dots denote ground truth locations of the cell nuclei.

2 Learning to Localize Cells

Our approach to cell detection is to predict a score map based on the Euclidean
distance transform of the cell centers in a given input image. This score map
is computed such that each pixel value encodes its distance to the nearest cell
center and, ideally, the local extremums correspond to the center of the cells to
be detected. The prediction of the score map is performed using a regression
method trained from cell images and ground truth cell locations.

2.1 Defining the Proximity Score Map

As shown in Fig. 1(a), our approach is based on statistical learning and relies
on a set of annotated images for training. An expert labeled the centers of the
cell nuclei in each of these images.

The standard classification approach applied to the cell detection problem
would consist of training a classifier to predict whether the center pixel of an
input image patch is the center of a cell or is located in the background. Unfor-
tunately, as shown in Fig. 1(c), this often results in multiple peaks for cell nuclei
and hence in multiple detections corresponding to a single cell. One option is to
apply post-processing to group multiple detections into a single one, for example
by smoothing the output of the classifier for each image location with a Gaussian
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kernel to merge multiple peaks into a single one. However, such a strategy may
merge together the responses actually created by multiple cells.

We propose here a better, more principled approach. Inspired by [15], we
exploit additional context during the learning phase and define a smooth, con-
tinuous prediction target function d(x) expressing the proximity of each pixel x
to the ground truth cell centers, such as the ones shown in Fig. 1(d). This there-
fore shifts the task from binary classification to regression of the continuous
proximity score map.

A straightforward way of defining our proximity score map d(x) is to take the
inverted Euclidean distance transform DC of the set C = {ci} of ground truth
cell centers: d(x) = −DC(x). However, this approach produces high proximity
scores even in background areas. Additionally, it forces the regression model to
predict varying scores for different regions of the background. Moreover, cell
centers are not well-defined, which exacerbates the learning problem.

Hence, it is better to predict a function of the distance transform that is flat
on the background and has better localized, distinctive peaks at cell centers [15]:

d(x) =

{
e
α
(

1−DC (x)

dM

)
− 1 if DC(x) < dM

0 otherwise
, (1)

where α and dM control the shape of the exponential function and DC(x) is the
Euclidean distance transform of the cell centers. In practice, we select dM such
that the maximum width of peaks in d(x) corresponds to the average object size
to be detected. We used α = 5, dM = 16 for ICPR, and α = 3, dM = 39 for BM.

Our goal is now to learn a function g that predicts d(x) given an image patch
I(x): By applying g over each I(x), we obtain an entire proximity score map.
This is detailed in the next subsection.

2.2 Training and Evaluating a Regression Model

Many options are available for learning function g, and we opted for standard
regression Random Forests [18], because they are fast to evaluate, were shown
to perform well on many image analysis problems, and are easy to implement.

Instead of directly relying on pixel intensities, we apply the forest on im-
age features extracted from input patches. We use 21 feature channels: RGB
channels (3), gradient magnitude (1), first and second order gradients in x- and
y-directions (4), Luv channels (3), oriented gradients (9), and histogram equal-
ized gray scale image (1). The split functions in the nodes of the forest include
single pixel values, pixel value differences, Haar-like features, and a constrained
pixel value difference, where the second patch location for difference computation
was chosen within a distance of 10 pixels clamped at the image patch borders.
For all the split functions but single pixel values, we randomly select whether to
use the values for the same feature channel or across feature channels.

In all experiments, each split was optimized on a random subset of 200 train-
ing samples with 1000 random tests and 20 thresholds each. Splitting stops once
either maximum tree depth or minimal number of 50 samples per node is reached.
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2.3 Detecting the Cells from the Proximity Score Map

Once the forest g is trained, it can predict a proximity score map for unseen
images. By construction, the local maximums in this map should correspond to
the cell centers. We therefore apply non-maximum suppression, where maximums
below a certain threshold κ are discarded. As will be shown, varying κ facilitates
optimization of either precision or recall, depending on the task.

3 Experimental Results

We first describe the datasets and protocol used for the evaluation. Then, we
provide comparisons of our approach to the current state-of-the-art method of
Arteta et al . [6], and a standard classification Random Forest based on the same
image features as the proposed regression forest.

3.1 Datasets

The ICPR dataset consists of 20 100 × 100 pixel microscopy images of breast
cancer tissue [9] (ICPR). We also introduce a new dataset BM containing eleven
1, 200× 1, 200 pixel images of healthy human bone marrow from eight different
patients4. Tissue in both datasets was stained with Hematoxylin and Eosin.

For our BM dataset, all cell nuclei were labeled as foreground by providing the
location of the center pixel as dot annotation. Debris and staining artifacts were
labeled as background. Ambiguous parts, for which cell nuclei were not clearly
determinable as such, were labeled as unknown. Nevertheless, all ambiguous ob-
jects are treated as foreground, since the detection method proposed in this work
is supposed to identify these objects as candidates for subsequent classification.
The resulting 4, 205 dot annotations cover foreground and unknown labels.

3.2 Model Evaluation

To decide if a detection actually corresponds to a cell center, we consider a
distance threshold ξ. If the distance between a detection and a ground truth
annotation is less or equal ξ, we count the detection as true positive (TP). If
more than one detection falls into this area, we assign the most confident one
to the ground truth location and consider the others as false positives (FP).
Detections farther away than ξ from any ground truth location are FP, and all
ground truth annotations without any close detections are false negatives (FN).

Accuracy is evaluated in terms of precision (= TP/(TP + FP )), recall (=
TP/(TP + FN)), F1-score, average Euclidean distance and standard deviation
µd ± σd between a TP and its correctly assigned ground truth location, as well
as the average absolute difference and standard deviation between number of
ground truth annotations and detections µn±σn. We report results in this section
computed with forests composed of 64 trees and a maximum tree depth of 16,
an optimal complexity determined in leave-one-out cross validation (LOOCV)
on the more complex BM dataset.

4 The dataset is available from https://github.com/pkainz/MICCAI2015/.
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Fig. 3. Precision-recall curves on the two datasets, obtained by varying the threshold κ
on the confidence and recording precision and recall of the resulting detections wrt. the
ground truth. (a,b) LOOCV on the BM dataset. In (a) the threshold ξ defining the
maximum accepted distance between a detection and the ground truth was set to
ξ = 16, whereas in (b) it was tightened to ξ = 8. With the looser bound in (a) the
performance of Arteta et al . is insignificantly lower than ours (AUC 89.9 vs. 90.7).
However, in (b) it drops considerably (AUC 86.9), while for our regression method the
curve stays the same (AUC 90.5), demonstrating its capability to localize the cells much
more precisely. (c) On the ICPR benchmark dataset both classification and regression
outperform the current state-of-the-art detector.

Figs. 3(a,b) show precision-recall evaluations on the BM dataset: each curve
was obtained in LOOCV by varying κ. Additionally, we assessed the method of
Arteta et al . [6] in a LOOCV and compared performance measures. Most promi-
nently, the maximum distance threshold between ground truth and detection ξ is
responsible for the localization accuracy. In Fig. 3(a), we moderately set ξ = 16
and observed that the area under the curve (AUC) is only slightly lower than
ours: 89.9 vs. 90.7. As soon as we tighten ξ = 8, their AUC measure drops con-
siderably to 86.9, whereas our regression method exhibits the same performance
(90.5). This, and the consistent shape of the regression curves strongly indicate
our method’s superiority over the current state-of-the-art in terms of localization
accuracy. Further, by allowing a smaller value of ξ, a more rigorous definition of
TP detections is enabled, thus resulting in increased detection confidence. The
achieved F1-score on the BM dataset is 84.30 ± 3.28 for Arteta et al . [6] vs.
87.17± 2.73 for our regression approach.

To assess the stability of our method, which relies on random processes during
feature selection, we performed ten independent runs on a predefined, fixed train-
test split of the BM dataset. We trained on the first eight and tested on the last
three images and achieved a stable F1-score of 88.05± 0.06.

Table 1 shows results on the ICPR benchmark dataset [9]. Both our regression
approach and the standard classification outperform [6] over all standard metrics,
cf. Fig. 3(c). Although [6] state performance values, no value for ξ is mentioned.
Given our previous definition, we use a rather strict ξ = 4 for both, regression
and classification forests. Nevertheless, [6] must have used a value ξ > 4 in order
to match the numbers reported for µd ± σd in Table 1.
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Table 1. Performance comparison on the ICPR benchmark dataset [9]. F1-scores for
regression and classification were averaged over ten independent iterations and metrics
were obtained with ξ = 4. Regression outperforms all previously reported competing
methods on the standard metrics.

Method Prec. Rec. F1-score µd ± σd µn ± σn

Regr. Forest 91.33 91.70 91.50 0.80± 0.68 3.26 ± 2.32

Class. Forest 90.66 89.72 90.18 0.86 ± 0.68 4.04 ± 2.26

Arteta et al . [6] 86.99 90.03 88.48 1.68 ± 2.55 2.90± 2.13

Bernardis & Yu [3] - - - 2.84 ± 2.89 8.20 ± 4.75

LIPSyM [4] 70.21 70.08 70.14 3.14 ± 0.93 4.30 ± 3.08

(a) (b) (c)

Fig. 4. Illustration of detection hypotheses on BM data (a): Our regression based
detector (c) proposes much more accurate and reliable cell center hypotheses than the
detector of Arteta et al . [6], shown in (b). Magenta crosses denote proposed cell centers,
green dots are ground truth locations. While Arteta et al . need a separate classifier
to post-process these hypotheses, a simple threshold on the detection confidence is
sufficient to achieve the reported improved results for our method.

A qualitative illustration of the detector hypotheses on a BM image is de-
picted in Fig. 4. The state-of-the-art method [6] proposes many cell center hy-
potheses in a clear background region, where our regression method did not
produce any proximity scores at all. Final localization is determined by post-
processing and hence reliable hypotheses are beneficial for high accuracy.

We also compared the computation times on a standard Intel Core i7-4470
3.4GHz workstation. [6], the best performing method after ours, needs 3.6 hours
for training on ten images of the BM dataset. Testing on a single BM image lasts
around 60 seconds. In contrast, our regression method takes only 1.5 hours of
training, and only 15 seconds for testing on 1, 200× 1, 200 pixel images.

4 Conclusion

We showed that using a simple regression forest to predict a well-chosen function
over the input images outperforms state-of-the-art methods for cell detection in
histopathological images: Our approach is easy to implement and 4× faster than
the method of [6], while being more reliable and accurate.
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