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ABSTRACT: Although noticed very early in laboratory soil testing, anisotropic soil behavior at the small strain level 
is rarely taken into account in the analysis of geotechnical boundary value problems. While some recent studies 
(Schädlich and Schweiger 2010, Schweiger and Schädlich 2011) show that the impact of anisotropy in small strain 
stiffness is rather limited in typical geotechnical boundary value problems involving intermediate to large strains, the 
influence of anisotropy increases at smaller strains. This study focuses on modeling anisotropic small strain stiffness 
in multilaminate soil models and its dependency on strain history at load reversals. Evolution of strain history and 
load reversal is memorized in strain contours on multilaminate plane level, which enables the enforcement of all four 
Masing rules (Pyke 1979). Model predictions are compared with experimental data on cross-anisotropic Ham River 
sand at small load cycles. 
 
 
1. INTRODUCTION 
 
The phenomenon of high initial elastic stiffness of soils 
at very small strains (< 10-6) and its degradation with 
accumulation of strain has been investigated since the 
early 1970ies. Taking that effect into account has 
become engineering practice within the last decade, in 
particular when realistic ground settlement predictions 
are required. 

Still, in most practical cases soil is assumed to 
behave isotropically at very small strains, although 
laboratory tests on natural soils indicate strongly cross-
anisotropic behavior (Fioravente 2000, Kuwano and 
Jardine 2002, Gasparre 2005). 

In the following study an approach to model 
inherently cross-anisotropic elastic material, degradation 
of small strain stiffness and monitoring of strain history 
within the multilaminate framework is presented. Model 
results are compared with experimental data on 
anisotropic Ham River sand. 
 
 
2. BASIC MULTILAMINATE MODEL 
 
Multilaminate constitutive models are based on the 
concept that the material behavior can be formulated on 
a distinct number of local planes with varying 

orientation. Each plane represents a sector of a virtual 
sphere of unit radius around the stress point and is 
assigned a weight factor according to the proportion of 
its sector with regard to the volume of the unit sphere. 
The stress – strain state can vary from plane to plane, 
resulting in loading induced anisotropy within an 
intrinsically isotropic material. The global response of 
the material to a prescribed load is obtained by 
summation of the contributions of all planes. 

Within the multilaminate concept the local stresses 
are assumed to be a projection of the global stress state 
(static constraint). Conceptually similar models based 
on the kinematic constraint (local strain increments are a 
projection of the global strain increment) are the so-
called microplane models (Bažant and Prat 1988). 

The multilaminate constitutive model presented in 
this study is an extension of existing elastoplastic 
models of this type (Schweiger et al. 2007). In the 
following a compacted description of the stress point 
algorithm for isotropic material is given. 

The macroscopic trial stress σgl,trial is calculated from 
the global compliance matrix Cgl and the global strain 
increment dεgl, which is assumed to be elastic in the first 
iteration. Cgl is derived as the weighted and projected 
sum of the local compliances Cloc. 
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In the case of isotropic linear elastic material, Cloc is 
equal for all planes. For non-linear elasticity (small 
strain stiffness), Cloc depends on the strain history of 
each plane and therefore differs from plane to plane, 
resulting in anisotropic global behavior. 

The factor of 3 in front of the summation can be 
derived from the principle of virtual work (Bažant and 
Prat 1988) by comparing the sum of local work 
contributions and the macroscopic work. The weight 
factors wi depend on the chosen integration rule. In this 
study an integration rule based on 2 × 33 planes (Bažant 
and Oh 1985) is used, which proved to balance well 
between accuracy and computational cost. 

The transformation matrix Ti contains the derivatives 
of the local stress components with respect to the global 
stress state. Using a fixed set of local coordinates 
represented by the unit vector ni

T = (ni,1, ni,2, ni,3) normal 
to the plane i and two unit tangential vectors within the 
plane, si

T = (si,1, si,2, si,3) and ti
T = (ti,1, ti,2, ti,3), these 

derivates take on constant scalar values.  
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By projecting the global trial stress vector σgl,trial with 
the transformation matrix Ti on plane i, the local trial 
stress vectors σi,loc are obtained for all planes: 
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Plastic strains are calculated locally based on strain 
hardening elastoplasticity. For details on the yield 
functions f, the related plastic potential functions g and 
the strain hardening rules see Schweiger et al. (2007). 
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Figure 1. Volumetric, deviatoric and tension yield surface 
 
Back-transformation and summation of all local plastic 
strains delivers the global plastic strain increment: 
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The new global trial stress is then calculated with the 
difference of the total strain increment and the plastic 
strain increment. 
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This iterative procedure is repeated until the plastic 
strain increment of the current iteration is less than 1% 
of the total plastic strains calculated in that step. 
 
 
3. ANISOTROPIC SMALL STRAIN STIFFNESS 
 
3.1 Concept 
The elastoplastic stress point algorithm discussed above 
is based on the assumption, that the local stress state can 
be represented by 3 local stress components parallel to 
the axes n, t and s. As for the plastic strain calculation 
only the plane normal stress σn and the resultant shear 
stress τ are used, this is also known as the normal-
tangential split (N-T-split). The local compliance matrix 
has a diagonal structure, which means normal elastic 
strains are only caused by normal stresses and shear 
strains are only caused by tangential stresses. 

However, for anisotropic elastic material, that 
approach is not sufficient. Isotropic compression of an 
cross anisotropic material results in shear strains on all 
planes which are not parallel to the global axes, even 
though there is no shear stress on these planes. Hence, 
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the local compliance matrix of such a material obviously 
needs to contain off-diagonal terms. 

Local compliance matrices can be obtained directly 
by the spectral decomposition of the global anisotropic 
compliance matrix. The adaptation of the method to the 
multilaminate framework is described in Schädlich and 
Schweiger (2010), therefore only the relevant results are 
presented here. 

The local compliance matrices Ci,loc are obtained 
from the sum of the product of eigenvalues λm and 
idempotent decomposing matrices Em of the global 
compliance matrix, which is then projected into the 
plane coordinate system (eq. 11). The global compliance 
matrix of a cross-anisotropic material possesses four 
eigenvalues and four corresponding idempotent matrices, 
which are given in the Appendix.  
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As the idempotent matrices are 6x6 square matrices, 
also the transformation matrices need to be of that order. 
As a consequence, six local stress and strain 
components are required. These can be defined as 
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with σi,n,vol … volumetric normal stress, σi,n,dev … 
deviatoric normal stress, τi,s1 and τi,t1 … tangential 
stresses in direction of s and t resulting from global axial 
stresses, τi,s2 and τi,t2 … tangential stresses in direction 
of s and t resulting from global shear stresses. As a 
consequence also the transformation matrices Ti need to 
be modified (Schädlich and Schweiger 2010). For the 
calculation of plastic strains local elastic strain 
components are summed up again to obtain εn, γs and γt. 
 
3.2 Stiffness degradation 
The degradation of local small strain stiffness depends 
on the magnitude of the local shear strain γ on that plane 
and is described by a logarithmic function (eq. 14). 
Initially all planes start with the same global anisotropic 
stiffness, which is projected into the plane coordinate 
system. The parameters γ1 and γ2 define the onset of 
degradation and the transition to large strain (isotropic) 
behavior. As the planes are reaching the transition to 
large strains at different stages of the global stress-strain 
curve, the material globally still behaves anisotropic, 
even though some planes may already have reached the 
isotropic stage. 
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Figure 2. Degradation of anisotropic small strain stiffness 
(Schaedlich et al. 2010) 
 
3.3 Stress level dependency of stiffness 
In the present study two approaches for modeling the 
dependency of local stiffness moduli on effective stress 
level are investigated. In approach 1 stiffness moduli 
depend on the mean effective stress p’, while in 
approach 2 dependency on the effective normal stress of 
the current integration plane is assumed. In both cases 
Poisson’s ratios νhh and νhv do not change with stress 
level. The reference stress pref is taken as 100kPa. 
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3.4 Plastic strains and transition to large strain 

behavior 
When a small strain stiffness approach as the one 
presented above is coupled with an elastoplastic model, 
calculation of plastic strains within the small strain 



range needs to be modified in order to obtain the desired 
high initial stiffness. In the present model the volumetric 
and deviatoric yield surfaces are shifted such that the 
distance between the elastic trial stress and the current 
yield surface is reduced. As long as the local shear strain 
γ is smaller than γ1, no plastic strains are calculated at all 
(full shift of yield surfaces). If γ > γ1, partial shift of the 
yield surface is performed according to the value of 
(1-deg). For γ > γ2 the yield surfaces are not modified 
any more. As a result degradation of small strain 
stiffness takes place faster in primary loading than in 
unloading/reloading (Figure 3). In both cases the same 
initial stiffness is obtained. 
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Figure 3. Degradation of isotropic small strain stiffness in 
primary loading and unloading / reloading  
 
Transition of elastic parameters from small strains to 
large strains is accounted for automatically, as the 
anisotropic small strain stiffness moduli and Poisson’s 
ratios approach large strain isotropic values Eur and νur 
with increasing local shear strain γ (Figure 2). 
 
 
4. STRAIN HISTORY AND LOAD REVERSALS 
 
The tangential shear stiffness in non-monotonic loading 
does not only depend on the magnitude of the 
accumulated shear strain but also on the load history. It 
is commonly acknowledged that reversing the direction 
of loading results in at least partial recovery of small 
strain stiffness. However, in numerical modeling 
different approaches have been followed regarding the 
driving forces of load history. While kinematic 
hardening models monitor load history in stress space, 
defining load history in strain space has been applied in 
other models (Simpson 1992, Benz et al. 2009). While 
each approach has its merits, monitoring load history in 
terms of strains appears to be more consistent with 
stiffness degradation, which is also driven by strains. 

In this study strain history is memorized on each 
plane separately in circular contours which represent 
levels of equal shear strain. Each contour is defined by 
its centre coordinates and radius in the γs-γt- strain 

diagram. The degradation shear strain γdeg is defined as 
the distance of the current shear strain state (γs, γt) to the 
centre of the currently active strain contour: 
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By default the innermost strain contour is active. If the 
current load steps reduces γdeg, calculated from the 
innermost shear strain contour, load reversal is indicated 
and a new strain contour is created. If on the other hand 
the current load step increases γdeg, calculated from one 
of the outer contours, an intersection with a previously 
followed strain path is detected, and the previous strain 
path is continued further on. In that case the inner strain 
contours are erased from the strain history of the stress 
point. The different cases are shown schematically in 
Figure 4. 
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Figure 4. Schematic representation of global stress-strain 
curves and development of local shear strain contours in 
triaxial loading - unloading - reloading 
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1. Monotonic loading: Only 1 strain contour (SC) exists, 
whose centre is fixed at the origin of axis. 

2. First load reversal: A second shear strain contour is 
created, which is fixed at the reversal point and 
gradually enlarged. 

3. Second load reversal: A third strain contour is 
created, following the same procedure as in 2. 

4. Intersection with primary loading path: The current 
load step enlarges the outer strain contour SC 1, 
hence all inner contours are erased and γdeg is 
calculated from SC 1. 

With that approach the two original and the two 
extended Masing rules (Pyke 1979) are fulfilled for the 
elastic part of the model: 

1. For primary loading the stress-strain curve follows 
the back-bone curve. 

2. After load reversal the size of the hysteretic loop is 
increased by a factor of 2. 

3. If the past maximum shear strain is exceeded the 
stress-strain curve follows the backbone curve. 

4. If an unloading-reloading curve intersects a previous 
unloading-reloading curve, it follows the previous 
curve. 

The third Masing rule is treated as a special case of the 
fourth rule, as the primary strain contour differs from 
the others only by its fixed centre at the origin of axis. 
Rule 2 is fulfilled without modifying degradation 
parameters in unloading / reloading, as the shear strain 
controlling stiffness degradation refers to the centre of 
the strain contour rather than the reversal point. 

In principle, an infinite number of strain contours 
could be taken into account. As the information of the 
local strain contours has to be stored as state variables, a 
limited number of four strain contours is considered in 
the model. It should be noted that still an infinite 
number of load cycles can be modeled, as only the 
number of load reversals going inside the primary strain 
contour is limited. 
 
5. FIRST MODEL VALIDATION 
5.1 Triaxial load cycles 
Triaxial test simulation on isotropic elastic material 
demonstrate the capability of the strain contour 
approach to reproduce the Masing rules (Figure 5). The 
simulation starts at an isotropic compression stress state 
und involves various unloading – reloading loops. In 
particular, after a small unloading – reloading loop the 
stress – strain curve joins the previous curve once the 
previous strain level is exceeded, indicating fulfillment 
of the third Masing rule. 

If the strain contour approach is coupled with an 
elastoplastic strain hardening model, no closed loops are 
obtained anymore if primary loading is involved (Figure 
6). While the first, third and fourth Masing rule are still 
enforced, plastic strains result in faster stiffness 
degradation in primary loading than in unloading / 
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Figure 5. Triaxial loading / unloading / reloading loop for the 
elastic model 
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Figure 6. Triaxial loading / unloading / reloading loops for the 
elastoplastic strain hardening model 
 
reloading. Once the position of the yield surface is 
shifted during primary loading, the material behavior 
inside the yield surface is elastic (albeit with strain 
dependent stiffness). Plastic strains only occur if the 
previous stress level is exceeded. 
 
5.2 Biaxial tests 

Starting at an initial stress state of σxx = σyy = -100kPa 
and σzz = -40kPa, biaxial strain increments εxx = εyy and 
εzz = 0 are applied to an intrinsically isotropic material. 
At axial strain levels of 0.1%, 0.2% and 0.3% small 
strain steps are applied which enclose the angle α with 
the direction of the monotonic strain path (Figure 7). 
Degradation of small strain stiffness already takes place 
along the initial strain path. As shear strains evolve at 
different pace on different planes, the initially isotropic 
material becomes anisotropic during biaxial loading. In 
order to quantify the regain of shear stiffness with 
deviation from the monotonic strain path the tangent 
shear modulus has been derived from the increments of 
the second deviatoric stress and strain invariants J and 
Ed. 
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Figure 8 shows the small strain stiffness recovery in 
dependency on the deviation from the monotonic 
loading path. The shear stiffness obtained for the 
different strain increments only depends on the direction 
of the strain step, not on the strain level. At 0.1% axial 
strain slightly higher values of Gtan are observed, as not 
all relevant planes have reached the large strain range 
yet. From α = 0° to α = 140° the tangential stiffness 
increases gradually, as more and more local shear strain 
paths turn inside the primary strain contour. A minor 
increase in shear stiffness is already noticeable for α = 
45°, even though on local level the model enforces a 
change in stiffness only if the local shear strain 
increment deviates by more than 90° from the 
monotonic strain path. Beyond α = 140° the full initial 
shear stiffness is restored. 
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Figure 7. Simulated small strain steps in drained biaxial tests 
at different strain levels 
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Figure 8. Elastic shear stiffness with varying deviation from 
monotonic loading 

6. TRIAXIAL TESTS ON HAM RIVER SAND 
6.1 Test results 
Kuwano and Jardine (2002) conducted numerous bender 
element aided triaxial tests on loose and dense Ham 
River Sand (HRS) in order to investigate the 
applicability of cross anisotropic elasticity at very small 
strains. Their findings can be summarized as follows: 
1. The concept of cross anisotropic elasticity describes 

soil behavior within the small strain region 
reasonably well. 

2. Axial Young’s and shear moduli vary strongly with 
effective stress level. Empirical correlations are 
proposed with Eh and Ev depending on the 
corresponding axial stresses σh and σv, while the 
shear moduli Ghh and Gvh depend on a combination 
of the axial stresses (eq. 21). Beyond a stress ratio R 
= σh / σv, > 2.2 these relationships are not applicable 
any more due to dilation. 

3. Unloading – reloading loops at unloading stress 
states show evidence of kinematic yielding. 
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Table 1. Anisotropic small strain stiffness moduli for Ham 
River Sand (Kuwano and Jardine 2002)  

 Ev Ev Gvh Ghh 
C [MPa] 204 174 72 81 

a 0.52 -- 0.32 -0.04 
b -- 0.53 0.20 0.53 

 
The function f(e) = (2.17 – e)2 / (1+e) accounts for 
variability of elastic stiffness with void ratio e. 
Poisson’s ratios cover a range of νvh = 0.2 … 0.4 and νhh 
= 0.05 … 0.2. 
 
6.2 Stress dependency 
The two approaches presented in section 3.3 are 
compared with the experimental data for the cross 
anisotropic stress state (K0 = 0.45) in Figure 9. Constant 
values of vh = 0.3, νhh = 0.07 and f(e) = 1.37 are applied. 
While Gvh and Ghh (not shown) match the experimental 
data reasonably well, distinct differences can be 
observed for the axial moduli. Both approaches deliver 
higher values for Eh and lower values for Ev than 
observed experimentally. Even though in approach 2 
local stiffness moduli depend on the normal stress on 
that plane (which is the same as the axial stresses for 
orientations perpendicular to these axes), due to the 
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Figure 9. Stiffness moduli with varying mean effective stress 
at an anisotropic stress state (K0 = 0.45, e = 0.66) 
 
summation of the contributions of all planes the 
difference between both approaches on global level is 
negligible. 

The considerable difference between the modeled 
stress dependency and the experimental data raises the 
question why the elastic part of the model was not 
implemented according to eq. 21. In fact it turned out 
that such stress dependency has consequences if used as 
the elastic part of an elasto-plastic constitutive model. 
Even for an isotropic material with Eh,ref = Ev,ref , 
material behavior will be anisotropic for any non-
isotropic stress state. For a smooth transition from 
small-strain (purely elastic) to large strain (elasto-
plastic) behavior the stress dependency of elastic 
stiffness moduli must be the same in both strain regions. 
Hence, also the calculation of plastic strains had to be 
based on an anisotropic hyperelastic part. For 
macroscopic plasticity such a model is proposed by 
Gajo (2009). However, incorporating anisotropic 
elasticity in the calculation of plastic strains in 
multilaminate models is beyond the scope of this study. 
 
6.3 Stress / strain paths 
The drained triaxial test starts at an nearly K0 – 
anisotropic stress state. It is reported that the material 
was allowed to age before testing, which is taken into 
account in the simulation by deleting all traces of strain 
history in the material (resetting of state variables 
concerning strain contours). At first the vertical stress is 
reduced by 10kPa (unloading). Then the specimen is 
reloaded beyond the stress state at the start of the test by 
a margin of 10kPa. Finally the vertical stress is again 
reduced by 10kPa to get back to the initial stress state. 
The horizontal stress σh was held constant during the 
test. 

Simulation results (Figure 10) show that the modeled 
behavior at load reversals in general matches well with 
the experimental results. The inclination of the predicted 
σv – εv curve is slightly lower due to the lower vertical 
stiffness Ev discussed in section 6.2. The difference in 
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Figure 10. Stress – strain curves for vertical unloading–
reloading loops at an anisotropic initial stress state (σv = 
316kPa, σh = 142kPa, e = 0.66) 
 
the curves for positive and negative Δσv are caused by 
the occurrence of plastic strains once the previous stress 
level is exceeded, which results in faster degradation of 
stiffness in primary loading than in unloading/reloading. 

In the experiment further unloading-reloading loops 
were carried out at different stress states, which are not 
considered here. However, it should be noted that these 
tests showed evidence of kinematic hardening, which 
can not be taken into account by the elastoplastic model 
used in this study. Capturing such behavior would be 
essential in modeling repeated cyclic loading as in 
earthquakes or other types of dynamic loading. The 
model presented in this study is therefore restricted to 
cases in which only a limited number of unloading–
reloading cycles take place, which usually is sufficient 
for typical geotechnical engineering problems. 
 
 
7. CONCLUSIONS 
 
A novel approach to modeling cross anisotropic small 
strain stiffness and behavior at load reversals within the 
multilaminate framework has been presented. The 
anisotropic elastic small strain part is coupled with an 
isotropic strain hardening plasticity model at 
intermediate and larger strains. Anisotropy in stiffness is 
assumed to diminish with accumulating shear strain. 
Load reversals are detected by memorizing local shear 
strain paths. 

The proposed model obeys all four Masing rules and 
matches well with soil behavior at load reversal 
observed in experiments. However, the modeled 
dependency of stiffness moduli on mean effective stress 
p’ or on plane normal stress does not fully match with 
experimental results, where axial moduli were found to 
depend on the corresponding axial stresses. In numerical 
simulations of boundary value problems this 
discrepancy can be approximately accounted for by 
choosing input moduli according to the initial 
anisotropic stress state.  
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APPENDIX 
 
Macroscopic cross anisotropic compliance matrix (in 
Kelvin notation): 
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Eigenvalues of cross anisotropic compliance matrix: 
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Eigenangle: 
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Idempotent matrices for cross anisotropic material: 
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