acTvSM: A Dynamic Virtualization Platform for
Enforcement of Application Integrity

Ronald Toegl, Martin Pirker, Michael Gissing

Institute for Applied Information Processing and Communications (TAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria
{rtoegl, mpirker}@iaik.tugraz.at,
m.gissing@tugraz.at

Abstract. Modern PC platforms offer hardware-based virtualization
and advanced Trusted Computing mechanisms. Hardware primitives al-
low the measuring and reporting of software configurations, the separa-
tion of application execution environments into isolated partitions and
the dynamic switch into a trusted CPU mode.

In this paper we present a practical system architecture which leverages
hardware mechanisms found in mass-market off-the-shelf PCs to improve
the security of commodity guest operating systems by enforcing the in-
tegrity of application images. We enable the platform administrator to
freely and deterministically specify the configurations trusted. Further-
more, we describe a set of tools and operational procedures to allow
flexible and dynamic configuration management and to guarantee the se-
cure transition between trusted platform configurations. We present our
prototype implementation which integrates well with established Linux
distributions.

1 Introduction

The ever evolving PC platform now integrates hardware that offers enhanced
security to selected services. The concept of Trusted Computing extends the
standard PC architecture with trust anchors such as the Trusted Platform Mod-
ule (TPM) [49]. Also, commodity platforms [23] now provide hardware Virtu-
alization with strong isolation of partitions (i.e. virtual machines) and novel
mechanisms for safer computing. These hardware primitives can be used to ex-
actly determine the software configuration of a system. A software platform may
then collect and report expressive information on its configuration - an impor-
tant precondition to leverage local integrity enforcement or remote attestation
in distributed systems. Unfortunately, there is little available system software
employing those technologies.

In recent years, a number of security-oriented virtualization platforms have
been proposed or partially prototyped using specialized hypervisors (i.e. virtual
machine monitors) to enable remote attestation [32I13], to protect code integrity
[33/44] or to isolate critical code at runtime [20/46/16], some also employing a
dynamic switch into specially protected CPU modes [45I3TJ30]. However, there

is currently no approach that both supports unlimited types of guest operating
systems and takes advantage of hardware security features like strong memory
isolation and integrity enforcement.

In this papelﬂ we present the acTvSM software platform which demonstrates
that by a combination of up-to-date mass-market PC hardware and available
open source software an enhanced security level (see Section can be achieved.
For protection at runtime our design integrates a dynamic root of trust for mea-
surement (DRTM) with a virtualization platform offering hardware-isolation of
partitions. With this platform, we restrict the execution of critical partitions to
trustworthy, integrity enforced configurations. Also, our contribution includes
mechanisms that allow the practical application of sealing and remote attesta-
tion by providing deterministic configuration measurements into the TPM. To
this end, we modify the file system structure so that we achieve a separation
of non-volatile storage into read-only, administrator-controlled areas, ephemeral
in-memory space, and encrypted per-application logical volumes. Considering
operational problems, we describe a set of administrative procedures and novel
mechanisms which help us retain flexibility in the face of configuration changes
and guarantee secure transition between trusted states. Our prototype imple-
mentatiorﬂ demonstrates good integration with established Linux distributions
and does not add runtime overhead.

Outline The remainder of this paper is organized as follows: Section [2] provides
an introduction to Trusted Computing, Trusted Execution and Virtualization
technologies. Section [3| presents our platform architecture. We discuss its prop-
erties and describe platform operations. Section [4 details the prototype imple-
mentation of our architecture and presents performance and a security analysis.
In Section [5] we discuss related work. The paper concludes in Section [6]

2 Security Mechanisms of Commodity PC Hardware

2.1 TCG’s Trusted Computing

Trusted Computing as it is available today is based on specifications of the
Trusted Computing Group (TCG). The core hardware component is the Trusted
Platform Module (TPM) [49]. Similarly to a smart card the TPM features tamper-
resilient cryptographic primitives, but is physically bound to its host device.

An integrated circuit contains implementations of public-key cryptography,
key generation, cryptographic hashing, and random-number generation. With
these components the TPM is able to enforce security policies on hierarchies of
secret keys to protect them from software attacks by any remote attacker. A
unique Endorsement Key (EK) identifies each TPM.

! The design of the platform presented here was first sketched in [35], and the hyper-
visor integrity mechanisms were presented in [36].
? Available for download from [34].

The TPM helps to guarantee the integrity of measurements of software com-
ponents by offering a set of Platform Configuration Registers (PCRs), which can
only be written to via the one-way extend operation. PCRs are reset to defined
values at platform boot. On version 1.2 TPMs, a PCR with index i,4 > 0 in
state ¢ may then be extended with input x by setting

POR!*! = SHA-1(PCR!||z)

with
0xFF20 17 <4 < 22 with static boot
PCR! = {0x00%0 17 < i < 22 after dynamic (re-)boot
0x00%9 else.

PCRs can be used to exactly document the software executed on a machine
by implementing the transitive trust model. Here, each software component is
responsible to measure the following component before invoking it. Every caller
computes hash values and extends a PCR with the result, before any of this
executable code is allowed to run. In the simplest case, which we call static,
this is done starting from the BIOS, covering bootloader, kernel, and system
libraries etc., up to application code. Ultimately, a chain of trust is established
where the full Trusted Computing Base (TCB), meaning the fundamental base
system which needs to be trusted, and configuration of the platform is mapped
to PCR values. If such a PCR configuration fulfills the given security or policy
requirements, we refer to the system state as a trusted state.

The TPM can also bind data to the platform by encrypting it with a non-
migratable key, which never leaves the TPM’s protection. An extension to this is
sealing, where a key may only be used with a specific PCR configuration. Thus,
decryption of sealed data can be restricted to a trusted state of the computer. A
current state may also be signed and quoted in the Remote Attestation protocol
[48/13140]. TPMs also provide a limited amount of non-volatile memory (NV-
RAM) to store user- or owner-supplied information.

2.2 Virtualization

Virtualization is a methodology of dividing the resources of a computer into
multiple execution environments, by applying concepts such as time-sharing [47],
hardware and software partitioning, machine simulation or emulation. Hardware
architectures can be designed to offer complete virtualization [37] in hardware
and then host unmodified operating systems in parallel. Only recently, the PC
platform has been modified accordingly (see [I] for an overview).

Commonly, virtualization is controlled by a singleton hypervisor, a superior
control entity which directly runs on the hardware and manages it exclusively.
It enables the creation, execution and hibernation of isolated partitions, each
hosting a guest operating system and the virtual applications building on it.

Such a system provides multiple isolation layers: Standard processor privi-
lege rings and memory paging protect processes executing within a virtualiza-
tion. Hardware support for monitoring all privileged CPU instructions enables

the hypervisor to transparently isolate virtualization instances from each other.
Finally, the chipset is able to block direct memory accesses (DMA) of devices to
defined physical memory areas, thus allowing the hypervisor to control device

1/0.

2.3 Dynamic Switch to Trusted State

Modern platforms from AMD [2] and Intel [23] extend the basic TCG model of
a static chain-of-trust anchored in a hardware reboot. They provide the option
of a dynamic switch to a trusted system state. In this paper we focus on Intel’s
Trusted Ezecution Technology (TXT), which we build our implementation on.
Similar functionality is provided by AMD’s Secure Virtual Machine (SVM).

A so-called late launch is initiated by the special Intel TXT CPU instruction
GETSEC[SENTER]. It stops all processing cores except one. The chipset locks
all memory to prevent outside modification by DMA devices and resets PCRs
17 to 22. A special Intel-provided and cryptographically signed Authenticated
Code Module (ACM) starts a fresh chain-of-trust after setting the platform into
a well-defined state. This provides a Dynamic Root of Trust for Measurement
(DRTM).

Subsequently, a Measured Launch Environment (MLE) [26] is first measured
and then executed. Piece-by-piece the MLE decides which system resources to
unlock and thus cautiously restores normal platform operation. The platform
remembers that she is running in “secrets” mode and automatically enforces
memory scrubbing whenever a system (re)boot is initiated.

The ACM is also capable of enforcing specific Launch Control Policies (LCPs).
Here, the ACM measures the MLE and compares it with the trusted LCP stored
in the non-volatile memory of the TPM. Changes to the LCP can only be au-
thorized by the TPM owner. Any other, not authorized software configuration
is not allowed to continue; the ACM will reset the platform.

3 An Integrated Architecture for Enhanced Security on
Off-the-shelf PC Platforms

In the following we present our design of the acTvSM virtualization platform,
which is able to enforce the integrity of software services. It is built for flexible
operation and allows for the practical protection of commodity software.

3.1 Identification of Platform Security Properties

First, we present the security goals we want to achieve and the leitmotifs we
want our architecture to follow.

Defined platform states The main objective of our platform is to guarantee
that only well-defined software configurations are executed. The key prerequisite
for building a chain of trust that precisely describes such a software state is
to start measuring from a well-defined, known secure hardware state. Intel’s

TXT with its DRTM provides exactly this. Furthermore, the advanced hardware
isolation primitives of TXT platforms allow us to contain (malicious) code so
that it cannot alter other partitions’ memory (and thus state).

Consistent, expressive and deterministic chain-of-trust In order to
document a system’s configuration the platform must be able to account for what
components are involved in the boot process. We use the TPM provided set of
PCRs to guarantee the integrity and authenticity of measurements, but special
care must be taken to achieve expressive PCR values. Mapping the intricacies of
PC system configurations into a few PCRs is a difficult task: For a deterministic
result the measurements must be stable, the number of measurements finite, and
their order constant. These properties allow us to calculate the expected PCR
values a priori. Only then it becomes practically feasible to seal data and the
desired executable code to known-good configurations.

Integrity Guarantees in Trusted States A security sensitive application
and its working data should never be stored on platform storage media in plain-
text. Instead, we encrypt the file system by default, and only when the platform
attains the good running configuration defined by the system administrator, ac-
cess and modifications are possible. As unsealing can only occur at runtime, this
prevents off-line attacks and limits attacks by running maliciously modified soft-
ware. Transparent encryption implicitly provides us with integrity protection of
executables and keys can be managed automatically, as they are protected by
sealing.

Attestation friendly An independent remote third-party should be able
to request an attestation of the services offered on the platform. Protection of
privacy is an essential requirement for Remote Attestation and PCR information
should not unnecessarily link the service to the platform manufacturer, owner,
operator or user - instead, if an application requires this information it should
explicitly and transparently to the user include it in the reporting process. The
TXT measurement chain provides this separation of concerns as is starts from
the ACM, identifying only the general chipset generation and the following com-
ponents.

Another challenge is keeping track of known-good system PCR configura-
tions. This proves extremely challenging due to the high number of possible
combinations found in today’s complex and ever-updated operating systems [18].
However, with virtualization in place the hypervisor can be assigned to perform
this task. In our architecture, we choose to do measurements of complete file sys-
tem images instead. We measure at file system granularity and therefore greatly
simplify the comparison against known-good values. This allows practical appli-
cation of Remote Attestation.

Appropriate Usability We do not want to restrict the choice of software
the platform may execute. Our platform should allow to install any application
and define it as trusted. In its partitions, it may also execute images which con-
tain general purpose software, which does not require or provide elevated security
levels. The overhead to maintain configuration integrity and to perform updates
should be reasonable. Mechanisms to back-up applications and data must exist.

We believe that appropriate usability is needed for practical applications and so
we target professional system administrators, who we entrust with the critical
maintenance operations of the platform.

3.2 Proposed Architecture

We now outline a practical architecture for use on contemporary PC platforms.
The components used in our architecture can be broken down into different
blocks, namely Secure Boot, Base System, Trust Management and Virtualization
partitions. Figure[I]illustrates the roles and execution flow of each of these blocks.
For implementation details see Section

The Secure Boot block is responsible for initializing the system to a pre-
defined configuration. This requires close cooperation of hardware and software.
We use an Intel TXT enabled physical platform.

Upon power-on, the platform performs a conventional boot, but does not
start an operating system; instead, a Measured Launch Environment (MLE) is
prepared and a TXT late launch is performed. This is accomplished by coopera-
tion of a bootloader that prepares the system and the hardware-vendor provided
Authenticated Code Module (ACM). The precise, desired software configuration
can be specified by the administrator in the form of two policies stored in the
TPM. The Launch Control Policy (LCP) is evaluated by the ACM and specifies
which MLE is allowed to be executed. The MLE is configured with a Veri-
fied Launch Policy (VLP), which contains known-good values for measurements
of the system kernel and its configuration. For the remainder of the paper we
assume that the platform is built around the Linux Kernel. The temporary in-
memory filesystem environment initramfs contains code and data to configure
devices and to perform complex initialization operations, especially PCR extend
and unsealing, early in the boot process. Thus, a secure boot is performed into
a hardware guaranteed state and the chain of trust is extended over the kernel
and its configuration. If the measurements do not match the expected values
provided by the policies, the platform will shut down. Else, the startup code
unseals the cryptographic keys needed to mount the file system which contains
the Base System. Also, an unbroken chain-of-trust is ensured by measuring the
filesystem image of the Base System into a PCR, before it is mounted.

Together with the kernel, the Base System takes the role of the hypervisor.
It manages the hardware, provides virtualization services to virtual applications
and protects their integrity at run-time. As a critical component, it must be a
mature, reliable technology and actively maintained with regular security up-
dates. To support deterministic PCR measurement, the Base System file system
must be read-only. A seemingly contradiction is the requirement of a read-write
file system for Linux platform operation. To solve this dilemma, we merge a
ephemeral file system with the measured image. As changes to the Base System
do not survive a reboot of the platform - except by explicit patching or system
update (see Section - this ensures robustness of the base system image to
malicious modifications.

App e+ App

S

TVAM

initramfs - Base System

Linux Kernel with KVM

Bootloader

Chipset, CPU & TPM

t >

Fig. 1. Overview of the interaction of the main components of the platform. Trusted
components are green, untrusted are red. The timeline indicates the different phases
of platform boot and operations.

Management of the virtual applications itself is done by a component called
TVAM, the Trusted Virtual Application Manager. It is the central com-
ponent which manages the import, initialization, startup, cleanup etc. of virtual
applications. The images only exist encrypted on storage media. The crypto-
graphic key to decrypt and run a specific application is sealed to a specific sys-
tem (PCR) configuration. TVAM therefore unseals key data, and if the system
is in exactly the trusted configuration, TVAM is able to startup a virtualization
partition, mount it and execute the desired application. Another task of TVAM
is to calculate future trusted states, prepare the necessary policies and to reseal
data and keys.

Virtualization Partitions may host any system normally running stand-
alone. This can be a unmodified out-of-the-box Linux or Windows system, or a
special purpose system. Multiple partitions can be started in parallel, connected
by network interfaces. This allows to set-up multiple services. TVAM is capable
of continuing the chain-of-trust into the application layer by measuring virtual
partition images before start. However, if stable PCR measurements are expected
the image must be read-only with read-write storage provided externally.

3.3 Operating the Platform

In the previous section, we outlined the basic components for booting the system
and starting one or more partition. We now identify and describe basic platform
operations which allow the initialization and long-term maintenance of our setup.

Installation In order to start from an initial trusted state the software needs
to be distributed on a trusted medium. A root of trust for installation can be
ensured by read-only media such as CD-ROM and appropriate organizational

measures. Once booted from it, the installation routine wipes the system’s hard-
disk(s) and installs a default configuration of the platform. Immediately, the
measurement values for the MLE, the platform’s filesystem, kernel and initial
ramdisk are calculated and appropriate policies are stored in the TPM. Already
in this early stage, the platform is ready to do its first reboot into trusted mode.

Update and Application Mode After a successful late launch, the plat-
form runs in Update Mode, where it waits for maintenance commands. In Update
Mode the platform is capable of upgrading software packages. At the end of this
process, the same procedure is triggered that was run during installation. If no
external login attempt is received, the platform switches into Application Mode.
In this mode TVAM unseals the decryption key of application images and mounts
them. TVAM then extends a PCR to document the state transition and finally
starts the applications.

Base System Update and Resealing In Update Mode the platform is
capable of upgrading software packages of the base system. A remote adminis-
trator can login and update the system as needed. After that, the base system
image is assembled, compressed and linked in the bootloader menu. As all data
blobs holding the decryption keys for the application partitions are sealed to the
old platform state, they must be (re)sealed to the new one. If the kernel or its
initramfs was updated, a new VLP is written into the TPM. This also applies
to a MLE update, where a new LCP needs to be written.

Small Updates The full update procedure outlined in the previous para-
graph may be cumbersome for minor configuration changes such as a change of
a static IP address in some configuration file. Instead, a “patch” facility allows
the remote administrator to provide a patch file on a separate partition. The
authenticity of the patch is guaranteed by a cryptographic signature added by
the administrator - the certificate to validate it is contained within the platform
image. Upon next full system update these patches are automatically integrated
into the system. This mechanism allows for small bug fixes and easy distribution
of pre-configured system platform images for instance in homogeneous datacen-
ters, where machines only vary in small configuration details.

Application management TVAM provides a comprehensive feature set
for the management of application images. This allows the import, backup and
deletion of images, along with the required encryption and TPM (un)sealing
operations. The simplest way to install an application image is to import a raw
disk image. This allows the convenient creation and customization of virtual
applications on remote hosts. TVAM will create an encrypted storage space and
copy the raw data to it. The access secret is sealed to the trusted platform
configuration and stored. Since our architecture can handle multiple secrets for
each encrypted disk, the administrator can also provide a backup secret, which
can be stored securely, i.e. on a smart card. This allows the administrator to
decrypt the image even in case the TPM would be damaged or failed. This
flexibility is also useful for migrating an image to a different machine.

External Reboot A remote way to force a reboot of the platform is an
important feature for administration. Intel TXT capable platforms are usually

combined with a set of features called Intel Active Management Technology
(AMT) [24]. AMT allows, amongst other features, externally triggered reboots
as well as serial console redirection via a network connection. A reboot will cause
the platform to boot into a trusted state, regardless of the runtime state it was
before. In some environments this may be warranted at a regular basis to limit
the attack surface.

Trusted Administration Channel The Administrator can access the plat-
form via SSH in Update Mode. Remember that a policy update process requires
the TPM owner password. Before the administrator provides this password, she
a) must confirm that she is connected to the right platform and b) that the plat-
form is in the correct Update Mode configuration. The first constraint demands
that the client must verify that the server always presents the same trusted pub-
lic key. Second, we seal the SSH daemon’s private key to Update Mode. If no
external log-in attempt is received, the platform switches into Application Mode.
This is performed as follows. The SSH daemon is stopped and its private key
is removed, and the PCRs are extended to document the state transition and
prevent further access to the TPM sealed blobs. Finally, applications are started.

4 Implementation

We assembled a prototype of the platform described in Section [3] The follow-
ing subsections give an in-depth description of implementation details and our
storage management concept and provide a security analysis.

4.1 Components

In theory, any Linux distribution can be customized for our architecture. In
practise, a substantial number of patches and changes were needed to assemble
a working prototype and available Trusted Computing utilities needed modifi-
cations.

Secure boot is accomplished by using a standard bootloader (GRUBED along
with SINIT and tboot [25]. SINIT is Intel’s implementation of an ACM, while
tboot is Intel’s prototype implementation of an MLE (see Section . Upon
boot GRUB loads SINIT, tboot, the kernel and its initramfs into memory
and executes tboot, which sets up the ACM and then late-launches into it. The
authenticity and integrity of the ACM code is guaranteed under an Intel private
key, of which the public part is hardwired into the chipset. The ACM’s task is
then to measure the tboot binary and compare it to the LCP. Tboot takes over
and continues to measure the kernel and initramfs and compares them against
the VLP. Once the integrity of the kernel and its environment has been assured,
control is passed to it and the standard boot process continues. Customized
64-bit ports of tools from IBM’s TPM-utils[41] provide the PCR extend and
unsealing capabilities in the initial ramdisk (initramfs) environment.

8 http://www.gnu.org/software/grub/

http://www.gnu.org/software/grub/

In our architecture, we use a customized Linux operating system augmented
with the Kernel-based Virtual Machine (KVM) [38128] hypervisor module, which
is fully maintained in mainline Linux. KVM can run multiple virtual machines
on x86 CPUs equipped with virtualization mode extensions. It extends the Linux
Kernel to offer, besides the existing Kernel and User modes, an additional Guest
process mode. Each virtual machine offers private virtualized hardware like a net-
work card, hard disk, graphics adapter, etc. Those virtual devices are forwarded
to QEMU [6], a fast software emulator. QEMU can emulate all standard hard-
ware devices of a x86 platform, including one or several processors. For the Base
system, we use packages from the x86_64 Debian Linux lennyﬂ release. It acts as
the host for the virtualization partitions. This is a pragmatic choice for a robust
base system, as Debian is known for its emphasis on a stable code base, frequent
security releases and conservative approach to adding immature features. To
support current Trusted Computing and virtualization hardware we need to add
selected packages from the Debian testing tree. For example, only Linux kernels
2.6.32 or newer integrate Intel TXT support and drivers for chipsets that im-
plement it. Scripts for installation, initial ramdisk management and rebuilding
of the Base System image are taken from Debian and customized to our needs.
The system bootstrap scripts for creation of distributable and bootable CDs for
initial installation are taken from GRML LinuxEI, a distribution specialized for
system administrators.

The runtime architecture of our platform is outlined in Figure [2| After suc-
cessful boot, the architecture supports several virtual applications. Raw hard
disk storage space and the hardware TPM are assigned to the emulated hard-
ware provided to each virtual application.

The implementation of the Trusted Virtual Application Manager in the Base
System is scripted in the Ruby language. TVAM offers operations to define new
trusted system states and re-seal the base system and applications to them.
It also adds and removes system states from the list of trusted states in the
launch policies. It allows to import an application image into the platform, start,
stop, list and remove virtual applications. The more complex operations such as
calculating trusted states, sealing, unsealing or policy creation and storage in
TPM NV-RAM are performed by jTpmTools and jTSS from IAIK’s “Trusted
Computing for Java“ project [34].

After boot, PCR 17 holds the LCP and details on the MLE [26]. PCR 18
contains the measurements (hashes) of MLE and kernel module and the respec-
tive command lines (4 hashes). PCRs 19-22 contain the elements described in
the VLP - the modules defined in the bootloader configuration (kernel, SINIT
module, tboot binary and initramfs). The read-only image of the Base System
is extended to PCR 14. PCR 13 is assigned for the measurement of virtual appli-
cations. We use PCR 15 to indicate the transition from Update to Application
Mode. These state descriptions can be used to seal data, especially file system
encryption keys, to known good values in all phases of the boot process.

4 http://www.debian.org/releases/lenny/
® http://grml.org/

http://www.debian.org/releases/lenny/
http://grml.org/

fdevisda

/7| gedevisdal | (] fdev/sdad)
1 exl.;l: +| lvm physical volume |‘\

|vm volume group

/boot

| fvm logical volume
—
D —— 5
(=)
—
Virtual
g%’ Application
<
o
&
Ve VY4 ™\
Normal
User TVAM
Process
U U J

Fig. 2. The hardware platform consists of RAM, CPU, TPM and harddisk storage.
KVM/QEMU runs applications providing isolated memory and defined storage areas.
TVAM is the process that manages the base system configuration and set-up, start
and tear-down of applications. The hardware TPM can be forwarded to applications.

4.2 Disk Storage Management

We use a complex disk layout with different file systems to create a measur-
able platform. Such a on-disk structure is automatically generated at initial
installation and maintained by the TVAM. An exemplary layout of our archi-
tecture’s structures is depicted in Figure[3] In the example, the system harddisk
is /dev/sda and divided into two partitions.

The first partition (sdal) contains a read-write filesystem hosting all the
components necessary for the platform boot process. This encompasses the boot-
loader, tboot, SINIT and Linux kernel plus associated initramfs images. The
remainder of the harddisk storage (sda4) is allocated as a Logical Volume Man-

/dev/sda

/dev/sdal /1 /dev/sdad i

-
E—\ Ivm physical volume w
/boot Ivm volume group

<

STOREW | 1 L0GWV |\ /| Asaw [~{ Asiv [A asaw [\~ Bsv [
ext3 ks [| ks Luks N || eos

:

HEEN e HEEN e
/store/ ext3 ext3 squashFS
@) @™ @) maw
' ' ' '
/var/log
config image config /
\)\) S <)\) N 2SS 7
| — ——
\ one application //
\ IS y

Fig. 3. The detailed disk layout of the platform. All trusted code and data of the base
system and of the virtual applications is stored on logical volumes (LV) and sealed to
PCR states. See Section [£.2]for a detailed description and explanation of the acronyms.

ager (LVMﬂ dynamically managed space, which is assigned to a single LVM
volume group. This volume may be assembled from multiple physical volumes
distributed over multiple physical disks, enabling online resizing and RAID tech-
nologies.

The LVM managed volume group contains both plaintext and encrypted
logical volumes (LVs). These block devices are transparently encrypted with
Linux kernel’s dm-crypt subsystem. Each LV contains either a file system for use
on the platform, or raw storage which is assigned to, and managed by, virtual
partitions. dm-crypt encrypts block devices with symmetric AES keys, called
masterkeys. Each encrypted LV contains a Linux Unified Key Setup (LUKS)
[19] partition header, which is responsible for key management. LUKS provides
8 key slots that encrypt the same masterkey with different access secrets. If a
client knows one correct secret for one of the key slots, it may decrypt and access
the data. This abstraction layer adds flexibility and provides several advantages:
The masterkey can be generated with high entropy, independent of user input or
password memorization. Key slot secret changes do not require re-encryption of
the whole block device. Key slots can also be assigned to maintenance processes,
such as backup. The plaintext logical volume STORFELV contains the TPM

S http://sourceware.org/lvm2/

http://sourceware.org/lvm2/

sealed data structures holding the primary access secrets for the encrypted logical
volumes.

As a running Linux system requires some writable file system, the root ”/“
file system of the platform is assembled from multiple layers via aufsﬂ Figure
illustrates this process which is performed at boot time. Base System Logical
Volumes BASELV contain compressed read-only squashfs images which con-
tain binaries and configuration files of the Base System. They are measured by
initramfs. aufs merges this squashfs with an in-memory tmpfs to provide
writable, but ephemeral storage. In addition, we copy administrator signed con-
figuration patches from STORELV, after verification of the signature. Thus, we
create a runtime read-write file system which is based on authenticated images
with robust and deterministic hash values. In Update Mode, we can even create
these images and pre-calculate their expected measurement values in situ. This
unique feature enables our platform to update from one trusted configuration to
another without exposing sealed data.

overlay.tar.gz

etc/
e N
memory
~LUKS | Vg tmpfs copy
-
-
squashFS ,/
<
- -]
/
,
read only read/write
— —

Fig. 4. The writable platform root file system is merged at boot time from a read-only
static image and an in-memory file system. An authentic configuration patch for minor
adjustments is integrated.

In the scenario of a service that encompasses multiple partitions running in
parallel, i.e. a webservice front-end, a database partition and a firewall parti-

" lhttp://aufs.sourceforge.net/

http://aufs.sourceforge.net/

tion, configuration files for such application groups are stored in the Applica-
tion Group Specific Configuration Logical Volume AGCLV. The configurations
specify which virtual partitions are to be started, which platform resources are
assigned to them, and how they interconnect.

Each Application Specific Logical Volume ASLV contains one virtual parti-
tion application image. The configuration in the AGCLV specifies if additional
logical volumes containing Application Specific Configuration data ASCLV (or
simply more mass storage) are attached. The LOGLV keeps system logs.

4.3 Performance

The prototype size of the Base System installation image is 402 MB. We use a
HP dc790q§| with Intel Core 2 Duo E8400 CPU clocked at 3GHz, 4GB RAM,
Intel Q45 Express Chipset and Infineon TPM 1.2 as reference platform. Instal-
lation and setting up the encrypted file systems on such a system is done in just
under 15 minutes. The measurement and integrity enforcing mechanisms of our
platform are only performed at boot time, which takes 57 seconds from power-on
to displaying the login-prompt. The added delay by the late launch at boot time
is 5 seconds. The Base System kernel boot time and runtime performance of ap-
plications is not different to what can be expected from a Linux/KVM platform
with hard disk encryption done in software and QEMU device emulation and
not influenced by our measurement and boot-time enforcement process.

4.4 Shared TPM Access

Several different services may access the singleton TPM. The Base System needs
the hardware TPM only at start-up. After that, it can be assigned to application
partitions, one at a time. We enhanced QEMU to allow byte stream forwarding
to the /dev/tpm interface in the base system in a non-blocking manner. Con-
sequently, one virtualized partition can run Trusted Computing applications at
a time. More general approaches have been proposed to solve multiplexing of
the hardware TPM for multiple partitions, for example virtual software TPMs
[7/43]. Full support in the acTvSM platform is planned for future work.

4.5 Security Analysis

The previous sections gave an overview of the workings of our platform. In this
section we reflect on several of the security design features, their consequences
and countermeasures.

8 Note that in our experiments some other hardware platforms suffered permanent
damage during late launch due to BIOS bugs.

Attacker Model As we base our platform on TCG’s TPM and Intel’s TXT
technology our assumptions on the adversary and possible attacks closely follow
those of the hardware designers [23]. Attackers will attempt either to modify the
state measurements, extract cryptographic materials from hardware, manipulate
code execution, or attempt control of the base platform or the applications exe-
cuting on top of it. Commodity devices can only be assumed to protect against
very simple hardware attacks. Hardware security therefore depends on physi-
cal access control and diligent operational procedures in datacenters and other
deployment scenarios. Thus, we consider software and network attacks only. Fur-
ther, attackers are also assumed to have control over external network traffic, but
are unable to break cryptography [14]. Also, we do not consider side effects of
System Management Mode (SMM), the overruling processor mode for low-level
system event management by the BIOS. In contrast to TCG’s security model
we fully trust the system administrator to handle and back-up secrets and key
material of the platform and of applications.

Security Analysis Our platform does not protect all data on the system at
all times. However, the TPM protects the sensitive cryptographic data (keys)
that the platform uses to guarantee the integrity of itself and of the applications.
The platform fully utilizes the hardware based PCR mechanisms that protect
measurements in the chain-of-trust of the components booted. Thus, a malicious
boot with a following attempt to start a virtual application will fail if any part
in the chain of trust was modified. Therefore, our platform can ensure that a
trusted system state is reached after boot.

However, the general time-of-check-time-of-use [8] problem remains: As the
security of a program is in general undecidable, successful runtime attacks cannot
be ruled out. Still, they are much more difficult to perform in our architecture
when compared to systems without TXT based integrity enforcement.

Within each partition, priviledged system software supports normal user ap-
plications which communicate to the outside. Security history suggests that (al-
most) any application can be exploited remotely and taken control of. The ma-
licious elevation of application privileges to system privileges may follow. Hori-
zontally, such a compromised partition will be contained by the Intel VT feature.
Vertically, attackers could further attempt to jail-break from the KVM/QEMU
environment, the security of which is not easy to assess: KVM itself is a rather
small piece of code encouraging security evaluation, but QEMU, which provides
the emulation for devices associated with a KVM instance is more complex.
Further, QEMU runs as standard user process in the base system and is not
hardware isolated. Naturally, the more devices are emulated by QEMU, the
higher is the possibility of a bug which would allow tampering.

If an attacker succeeds as far as obtaining root privileges in the Base System
layer, access to the encrypted application file images currently mounted at that
time is possible, as the required key material is kept in kernel memory. Still, a
security break-out would not be able to permanently modify the Base System,
since updating the secure boot chain to a new configuration requires a rewrite

of the policies in the TPM, which can only be performed with TPM owner
permission. However, the owner password is neither stored on the system nor
transmitted in clear text. The next reboot will either restore a trusted state or
fail.

Therefore, our platform empowers the administrator to freely define what is
known-good and trusted. It also clearly defines the boundaries of each service, so
that those exposed interfaces can be inspected meticulously. We believe that this
allows an structured approach for forming an informed opinion on the security
of specific configurations and enforcing it in practice.

5 Related Work

Security critical code can be isolated using hardware security co-processors [3],
like the IBM 4758 [I5]. An early example of extending the trust from dedicated
hardware security modules into applications is given in the Dyad System [50].
AEGIS [4] is an early mechanism to support secure boot on PC platforms assum-
ing a trusted BIOS. The Enforcer platform [29] and IBM’s Integrity Measurement
Architecture [42] show how to integrate TCG-style static measurements into the
Linux environment. While this collects precise information, it does not always
allow to identify a limited number of possibly good configurations. Instead of
individual files, file system images have been used to transport user software
and data with SoulPads [10] or Secure Virtual Disk Images in grid services [22]
between platforms.

Early demonstration of a system that makes use of the advantages of vir-
tualization for security and trust are PERSEUS [33] and Terra [20]. The Nizza
virtualization architecture [46] extracts security critical modules out of legacy
applications, transferring them into a separate, trusted partition with a small
TCB. None of these platforms relied on the TPM.

Microsoft’s now apparently inactive NGSCB [I7] envisioned the security crit-
ical Nexus kernel to provide an environment for security critical services, while
running a legacy OS in parallel. The EMSCB [16] platform demonstrates TPM-
based Trusted Computing on an L4-based virtualization platform. The OpenTC
[32] project demonstrated a system based on a static chain-of-trust from the
BIOS to the bootloader via Trusted Grub to Xen [5] or L4 hypervisors, and into
application partitions measured and loaded from CD images. An example of a
trusted installation medium is described in [12]. [13] describe a Xen-based plat-
form which is focussed on Remote Attestation. Schiffman et al. [44] describe
an all-layer (Xen hypervisor to application) integrity enforcement and reporting
architecture for distributed systems. Cabuk et al. [9] propose to use a software-
based root of trust for measurement to enforce application integrity in federated
virtual platforms, i.e. Trusted Virtual Domains [IT].

Other recent proposals have directly supported hardware virtualization or a
dynamic switch to a trusted system state. Vasudevan et al. [51] discuss general
requirements for such systems. BIND [45] uses AMD’s Secure Virtual Machine
(SVM) [2] protection features to collect fine grained measurements on both input

and the code modules that operate on it so that the computation results can be
attested to. Flicker [31] isolates sensitive code by halting the main OS, switching
into AMD SVM, and executing with a minimal TCB small, short-lived pieces of
application logic (PALs). PALs may use the TPM to document their execution
and handle results. TrustVisor [30] is a small hypervisor initiated via the DRTM
process. It assumes full control and allows to manage, run and attest multiple
PALs in its protection mode, however without the repeated DRTM mode switch
costs incurred by the Flicker approach. Intel’s P-MAPS [39] launches a tiny hy-
pervisor parallel to a running OS to protect process integrity, hidden from the
OS. The hypervisor authenticates code and data areas, which are protected in-
place and can only be accessed via well-defined interfaces. LaLa [2I] performs
a late launch from an instant-on application to boot a fully fledged OS in the
background. OSLO [27] is an OS loader module which implements a dynamic
switch to a measured state in the OS bootchain on AMD SVM systems.

6 Conclusions

In this paper we present a practical architecture for mass-market off-the-shelf
PC hardware that combines Trusted Computing and hardware virtualization
to provide a platform that offers integrity guarantees to the applications and
services it hosts.

Our architectures achieves a distinct set of characteristics, the combination
of which sets it apart from previous results. We take advantage of Intel TXT
to shorten the chain-of-trust and make use of the KVM hypervisor to separate
service partitions. This choice of virtualization technology frees us from restric-
tions in the choice of guest operating systems and at the same time isolates
memory areas of virtual applications by hardware mechanisms. While other ap-
proaches measure the executed binaries only on fragment ([45I3T30]), or process
([39]) granularity, we measure a structured set of file systems. This contribution
simplifies the problem of defining known good states and allows to do integrity
enforcement in practical scenarios. Besides just sealing to current states, our
architecture allows to calculate future trusted configurations, with trusted state
transitions that do not expose data. We empower administrators to easily cus-
tomize and update the platform offered and to enforce these configuration. Our
prototype implementation shows that any OS or application can be run inside
the partitions, and that commodity Linux distributions can be adapted this way.

Acknowledgments

This work was supported by the Osterreichische Forschungsforderungsgesellschaft
(FFG) through project acTvSM, funding theme FIT-IT, no. 820848. We thank
Andreas Niederl and Michael Gebetsroither for insightful discussions and their
help in implementing the prototype and the anonymous reviewers for their help-
ful comments on the paper.

References

10.

11.

12.

13.

14.

15.

Adams, K., Agesen, O.: A comparison of software and hardware techniques for x86
virtualization. In: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems. pp. 2-13. ACM, San
Jose, California, USA (2006)

Advanced Micro Devices: AMD64 Virtualization: Secure Virtual Machine Archi-
tecture Reference Manual (May 2005)

Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors-a
survey. Proceedings of the IEEE DOI - 10.1109/JPROC.2005.862423 94(2), 357—
369 (2006)

Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap archi-
tecture. In: Proceedings of the 1997 IEEE Symposium on Security and Privacy.
p. 65. IEEE Computer Society (1997)

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP ’'03: Proceedings
of the nineteenth ACM symposium on Operating systems principles. pp. 164-177.
ACM, New York, NY, USA (2003)

Bellard, F.: Qemu, a fast and portable dynamic translator. In: ATEC ’05: Pro-
ceedings of the annual conference on USENIX Annual Technical Conference. pp.
41-41. USENIX Association, Berkeley, CA, USA (2005)

Berger, S., Céceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vITPM:
virtualizing the trusted platform module. In: USENIX-SS’06: Proceedings of the
15th conference on USENIX Security Symposium. pp. 305-320 (2006)

Bratus, S., D’Cunha, N., Sparks, E., Smith, S.W.: Toctou, traps, and trusted com-
puting. In: Trusted Computing - Challenges and Applications. LNCS, vol. 4968.
Springer Verlag (2008)

Cabuk, S., Chen, L., Plaquin, D., Ryan, M.: Trusted integrity measurement and
reporting for virtualized platforms. In: Chen, L., Yung, M. (eds.) INTRUST 2009.
Lecture Notes in Computer Science, vol. 6163, pp. 180-196. Springer (2009)
Céceres, R., Carter, C., Narayanaswami, C., Raghunath, M.: Reincarnating pcs
with portable soulpads. In: Proceedings of the 3rd international conference on
Mobile systems, applications, and services. pp. 65—78. ACM, Seattle, Washington
(2005)

Catuogno, L., Dmitrienko, A., Eriksson, K., Kuhlmann, D., Ramunno, G., Sadeghi,
A.R., Schulz, S., Schunter, M., Winandy, M., Zhan, J.: Trusted virtual domains
- design, implementation and lessons learned. In: Chen, L., Yung, M. (eds.) IN-
TRUST 2009. Lecture Notes in Computer Science, vol. 6163, pp. 156-179. Springer
(2010)

Clair, L.S., Schiffman, J., Jaeger, T., McDaniel, P.: Establishing and sustaining
system integrity via root of trust installation. Computer Security Applications
Conference, Annual 0, 19-29 (2007)

Coker, G., Guttman, J., Loscocco, P., Sheehy, J., Sniffen, B.: Attestation: Evidence
and trust. Information and Communications Security pp. 1-18 (2008), http://dx.
doi.org/10.1007/978-3-540-88625-9_1

Dolev, D., Yao, A.C.: On the security of public key protocols. In: Information
Theory, IEEE Transactions on. Stanford University, Stanford, CA, USA (1981)
Dyer, J., Lindemann, M., Perez, R., Sailer, R., van Doorn, L., Smith, S.: Building
the ibm 4758 secure coprocessor. Computer 34(10), 57-66 (2001)

http://dx.doi.org/10.1007/978-3-540-88625-9_1
http://dx.doi.org/10.1007/978-3-540-88625-9_1

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

EMSCB Project Consortium: The European Multilaterally Secure Computing Base
(EMSCB) project (2004), http://www.emscb.org/

England, P., Lampson, B., Manferdelli, J., Willman, B.: A trusted open platform.
Computer 36(7), 55-62 (July 2003)

England, P.: Practical techniques for operating system attestation. In: Trust ’08:
Proceedings of the 1st international conference on Trusted Computing and Trust
in Information Technologies. pp. 1-13. Springer-Verlag, Berlin, Heidelberg (2008)
Fruhwirth, C.: New methods in hard disk encryption. Tech. rep., Institute for
Computer Languages, Theory and Logic Group, Vienna University of Technology
(2005), http://clemens.endorphin.org/publications

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual
machine-based platform for trusted computing. In: Proceedings of the 19th Sympo-
sium on Operating System Principles(SOSP 2003). pp. 193-206. ACM New York,
NY, USA (October 2003)

Gebhardt, C., Dalton, C.: Lala: a late launch application. In: Proceedings of the
2009 ACM workshop on Scalable trusted computing. pp. 1-8. ACM, Chicago, Illi-
nois, USA (2009)

Gebhardt, C., Tomlinson, A.: Secure Virtual Disk Images for Grid Computing.
In: 3rd Asia-Pacific Trusted Infrastructure Technologies Conference (APTC 2008).
IEEE Computer Society (October 2008)

Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press (February 2009), iSBN 978-1934053171

Intel Corporation: Intel active management technology (amt), http://www.intel.
com/technology/platform-technology/intel-amt/index.htm

Intel Corporation: Trusted Boot (2008), http://sourceforge.net/projects/
tboot/

Intel Corporation: Intel Trusted Execution Technology Software Development
Guide (December 2009), http://download.intel.com/technology/security/
downloads/315168.pdf

Kauer, B.: Oslo: improving the security of trusted computing. In: SS’07: Proceed-
ings of 16th USENIX Security Symposium on USENIX Security Symposium. pp.
1-9. USENIX Association, Berkeley, CA, USA (2007)

Kivity, A., Kamay, V., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux Virtual
Machine Monitor. In: OLS2007: Proceedings of the Linux Symposium. pp. 225-230
(2007)

Marchesini, J., Smith, S., Wild, O., MacDonald, R.: Experimenting with tcpa/tcg
hardware, or: How i learned to stop worrying and love the bear. Tech. rep., De-
partment of Computer Science/Dartmouth PKI Lab, Dartmouth College (2003)
McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: Efficient TCB reduction and attestation. In: Proceedings of the IEEE Sympo-
sium on Security and Privacy (May 2010)

McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an
execution infrastructure for tcb minimization. In: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008. pp. 315-328.
ACM, Glasgow, Scotland UK (2008)

OpenTC Project Consortium: The Open Trusted Computing (OpenTC) project
(2005-2009), http://www.opentc.net/

Pfitzmann, B., Riordan, J., Stueble, C., Waidner, M., Weber, A., Saarlandes, U.D.:
The perseus system architecture (2001)

Pirker, M., Toegl, R., Winkler, T., Vejda, T.: Trusted computing for the
Java™platform (2009), http://trustedjava.sourceforge.net/

http://www.emscb.org/
http://clemens.endorphin.org/publications
http://www.intel.com/technology/platform-technology/intel-amt/index.htm
http://www.intel.com/technology/platform-technology/intel-amt/index.htm
http://sourceforge.net/projects/tboot/
http://sourceforge.net/projects/tboot/
http://download.intel.com/technology/security/downloads/315168.pdf
http://download.intel.com/technology/security/downloads/315168.pdf
http://www.opentc.net/
http://trustedjava.sourceforge.net/

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.
50.

51.

Pirker, M., Toegl, R.: Towards a virtual trusted platform. Journal of Univer-
sal Computer Science 16(4), 531-542 (2010), http://www.jucs.org/jucs_16_4/
towards_a_virtual_trusted

Pirker, M., Toegl, R., Gissing, M.: Dynamic enforcement of platform integrity (a
short paper). In: Acquisti, A., Smith, S.W., Sadeghi, A.R. (eds.) Trust '10: Pro-
ceedings of the 3rd International Conference on Trust and Trustworthy Computing.
LNCS, vol. 6101. Springer Berlin / Heidelberg (2010)

Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Commun. ACM 17(7), 412-421 (1974)

Qumranet: KVM - Kernel-based Virtualization Machine (2006), http://www.
qumranet.com/files/white_papers/KVM_Whitepaper.pdf

Ravi Sahita, U.W., Dewan, P.: Dynamic software application protection. Tech.
rep., Intel Corporation (2009), http://blogs.intel.com/research/trustedy,
20dynamic%20launch-flyer-rls_pss001.pdf

Sadeghi, A.R., Stiible, C.: Property-based attestation for computing platforms:
caring about properties, not mechanisms. In: Hempelmann, C., Raskin, V. (eds.)
NSPW. pp. 67-77. ACM (2004)

Safford, D., Kravitz, J., Doorn, L.v.: Take control of tcpa. Linux Jour-
nal 2003(112), 2 (2003), http://domino.research.ibm.com/comm/research_
projects.nsf/pages/gsal.TCG.html

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a TCG-based integrity measurement architecture. In: Proceedings of the 13th
USENIX Security Symposium. USENIX Association, San Diego, CA (2004)
Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., Vishik, C.: Tpm virtualiza-
tion: Building a general framework. In: Pohlmann, N., Reimer, H. (eds.) Trusted
Computing, pp. 43-56. Vieweg (2007)

Schiffman, J., Moyer, T., Shal, C., Jaeger, T., McDaniel, P.: Justifying integrity
using a virtual machine verifier. In: ACSAC ’09: Proceedings of the 2009 Annual
Computer Security Applications Conference. pp. 83-92. IEEE Computer Society,
Washington, DC, USA (2009)

Shi, E., Perrig, A., Van Doorn, L.: Bind: a fine-grained attestation service for
secure distributed systems. In: 2005 IEEE Symposium on Security and Privacy.
pp. 154-168 (2005)

Singaravelu, L., Pu, C., Hartig, H., Helmuth, C.: Reducing TCB complexity for
security-sensitive applications: three case studies. In: EuroSys ’06: Proceedings of
the ACM SIGOPS/EuroSys European Conference on Computer Systems 2006. pp.
161-174. ACM, New York, NY, USA (2006)

Strachey, C.: Time sharing in large, fast computers. In: IFIP Congress (1959)
Trusted Computing Group: TCG infrastructure specifications, https://wuw.
trustedcomputinggroup.org/specs/IWG/

Trusted Computing Group: TCG TPM specification version 1.2 revision 103 (2007)
Tygar, J., Yee, B.: Dyad: A system for using physically secure coprocessors. In:
Technological Strategies for the Protection of Intellectual Property in the Net-
worked Multimedia Environment. pp. 121-152. Interactive Multimedia Association
(1994)

Vasudevan, A., McCune, J.M., Qu, N., van Doorn, L., Perrig, A.: Requirements for
an Integrity-Protected Hypervisor on the x86 Hardware Virtualized Architecture.
In: Proceedings of the 3rd International Conference on Trust and Trustworthy
Computing (Trust 2010) (Jun 2010)

http://www.jucs.org/jucs_16_4/towards_a_virtual_trusted
http://www.jucs.org/jucs_16_4/towards_a_virtual_trusted
http://www.qumranet.com/files/white_papers/KVM_Whitepaper.pdf
http://www.qumranet.com/files/white_papers/KVM_Whitepaper.pdf
http://blogs.intel.com/research/trusted%20dynamic%20launch-flyer-rls_pss001.pdf
http://blogs.intel.com/research/trusted%20dynamic%20launch-flyer-rls_pss001.pdf
http://domino.research.ibm.com/comm/research_projects.nsf/pages/gsal.TCG.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/gsal.TCG.html
https://www.trustedcomputinggroup.org/specs/IWG/
https://www.trustedcomputinggroup.org/specs/IWG/

	acTvSM: A Dynamic Virtualization Platform for Enforcement of Application Integrity

