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Abstract. The time-domain Boundary Element Method has been found to be well suited for
modeling wave propagation phenomena in large or unbounded media. Nevertheless, material
discontinuities or local non-linear effects are beyond the scope of classical BEM and require
special techniques. Here, a (possibly hybrid) Domain Decomposition method is proposed in
order to circumvent these limitations.

By means of local Dirichlet-to-Neumann maps and a weak statement of the interface condi-
tions one obtains a concise formulation describing the global problem in a variational principle
without specification of the descritization method (e.g., BEM or FEM).

Whereas this methodology has been fully established for elliptic partial differential equa-
tions, the aim is to transfer it to hyperbolic initial boundary value problems.
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1 INTRODUCTION

Contrary to the popular belief that boundary element methods (BEM) compete with finite
element methods (FEM), both methods are rather complementary [10]. Especially, in the case of
the dynamic analysis of soil-structure interaction this fact becomes clear. The FEM is very well
suited for the treatment of non-linear material behaviour in domains of finite size. Therefore,
it is reasonable to discretise the structure and a surrounding box of soil where non-linearities
are likely to occur with finite elements. On the other hand, the BEM is ill-suited for such non-
linearities but very powerful for domains of large or infinite size. Moreover, it implicitly fulfils
the radiation condition whereas a standard finite element discretisation yields artificial wave
reflections polluting the numerical results in the given case.

Therefore, for the numerical analysis of the described and many other problems, such as, e.g.,
sound emission and fluid-structure interaction [3, 7], it is logical to make use of both methods,
thus benefiting from the respective advantages.

Ω1

Ω2

Γ12

n1

n2

Figure 1: Domain Ω subdivided in two sub-domains, Ω1 and Ω2.

The standard approach to combine these methods is based on a strong fulfilment of the
interface conditions, implying that the continuity requirement for the primal variable u (e.g.,
the pressure or the displacements) and the equilibrium condition for the dual variable q (e.g.,
the normal flux or the traction),

u|Ω1 = u|Ω2 and q|Ω1 + q|Ω2 = 0 x ∈ Γ12 , (1)

have to hold at every discretisation point on the interface Γ12 of the two sub-domains Ω1 and Ω2,
see figure 1. This classical way to impose the interface conditions (1) is based on conforming
discretisations at the interface, i.e., the discretisations of the sub-domains have to be such that
their interface nodes coincide. This imposes a restriction which can simply cause practical in-
conveniences for the mesh generation, especially in case of the analysis of large structures with
complicated geometries. But it can also conflict with stability conditions, especially in dynamic
analyses (cf. Courant-Friedrichs-Lévy condition), when combining two different discretisation
schemes.

In order to circumvent the latter problem, a coupling algorithm for the dynamic analysis of
partitioned problems with boundary and finite element methods is proposed which is based on
the incorporation of the interface conditions (1) in a weak form.

Within the context of finite element analysis of elliptic problems such methodology is well-
established. Especially the so-called mortar element method has gained fame within the mathe-
matical community (see the monograph of Wohlmuth [9] and references therein). Steinbach has
put this method in a broader context and formulated method-independent Dirichlet-to-Neumann
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maps, which allow for a concise theoretical analysis and the flexible use of both boundary and
finite elements. Among other, his monograph [8] was an indispensable basis for this work.

Engineering applications of these ideas can be found for instance in [3] and [5]. In the former
the classical mortar formulation with global Lagrange multipliers is used, whereas in the latter
a three-field method is applied, whose theoretical background can be found in [8] as well.

2 A BOUNDARY-BASED FORMULATION FOR ELLIPTIC PROBLEMS

An elliptic boundary value problem can be given in the form

Lu(x) = f(x) x ∈ Ω

u(x) = ū(x) x ∈ ΓD

q(x) := T (x)u(x) = q̄(x) x ∈ ΓN

(2)

with the given Dirichlet and Neumann boundary values ū and q̄ on the respective boundary
parts ΓD and ΓN . L is the elliptic differential operator of the problem (e.g., L = ∆ + λ for the
Helmholtz equation) and T defines the co-normal derivative of u, which is the traction operator
in elasticity.

A method-independent formulation motivates the boundary-based formulation of (2)

q(x) = S(x)u(x)−N (x)f(x) x ∈ Γ , (3)

which acts as a Dirichlet-to-Neumann map. The new operators are the Steklov-Poincaré op-
erator S and the Newton potential N [8]. Together with the boundary conditions of (2), this
formulation can be considered as an alternative representation to the given boundary value prob-
lem (2). A corresponding variational form is given by∫

Γ

(Su) v ds−
∫

ΓD

q v ds =

∫
ΓN

q̄ v ds+

∫
Γ

(N f) v ds∫
ΓD

u p ds =

∫
ΓD

ū p ds

(4)

with weight functions v and p corresponding to u and q, respectively. Note, that the argument x
has been omitted for the sake of a simpler notation. Effectively, the first equation of (4) states
in a weighted form that the dual function q, obtained by the mapping (3), has to equal to the
given q̄ on the Neumann boundary ΓN and to the unknown data of q on the Dirichlet boundary
ΓD. The second equation of (4) simply assures the weak fulfilment of the Dirichlet boundary
conditions. In order to show the feasibility of this expression, it will be given in discrete form
in the following. First, discretised with FEM and afterwards with BEM.

In classical FEM, a Galerkin approximation of the bilinear form appearing in the weak form
of (2) yields a linear system of equations of the form Au = f with the stiffness matrix A, the
vector of nodal unknowns u, and the force vector f . Sorting the equations according to nodes
in the interior of the domain and nodes on its boundary results in the block structured system[

AII AΓI

AIΓ AΓΓ

] [
uI

uΓ

]
=

[
fI
fΓ

]
. (5)

The indices ()I and ()Γ refer to the interior and the boundary of the domain and are only used
in the finite element context and are otherwise omitted. Solving the first block system for the
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unknowns uI and inserting the result into the second equation yields the Schur-complement
system [

AΓΓ −AT
ΓIA

−1
II AIΓ

]︸ ︷︷ ︸
SFEM

uΓ = fΓ −AT
ΓIA

−1
II fI . (6)

The left hand side matrix is the FEM-discretisation of the operator S from the Dirichlet-to-
Neumann map (3).

In BEM, a system of equations is obtained for the homogeneous problem, i.e., f = 0 in (2),(
1

2
I + K

)
u = Vq (7)

with the discretised single layer potential V, double layer potential K, the discrete identity I,
and the vectors of nodal unknowns for the primal and dual variables on the boundary, u and q,
respectively. The system matrices can be obtained from either the collocation or the Galerkin
method as the underlying discretisation scheme. Here, only the first integral equation has been
used. Now, a discrete Dirichlet-to-Neumann map can be easily established by

BV−1

(
1

2
I + K

)
︸ ︷︷ ︸

SBEM

u = Bq = f . (8)

This new mass matrix B merely contains integrals over the products of the trial functions for
the primal and the dual variables and thus coincides with the discrete identity I in case of the
Galerkin method, i.e., B[i, j] =

∫
Γ
ϕi ψj ds when ϕi is a trial function for u and ψj for q.

Nevertheless, in a collocation scheme these two matrices are different, because then I is the
evaluation of the trial functions for the primal variable at the collocation points, i.e., I[i, j] =
ϕj(x

∗
i ).

Returning now to the variational formulation (4), its discrete version can be written as the
system of equations [

S −BD

BT
D 0

] [
u
qD

]
=

[
fN
fD

]
, (9)

where u contains the nodal values of the unknown function u on the whole boundary and qD

the nodal values of the function q on the Dirichlet boundary. BD has the same definition as
B but with the range of integration only on the Dirichlet boundary ΓD. Moreover, there is a
BN , which is defined analogously, and defines fN = BN q̄. In the same manner fD contains the
Dirichlet boundary conditions ū. The matrix block S is obtained from a FEM (6) or a BEM
(8) discretisation. Note that in case of an inhomogeneous problem and a FEM discretisation,
simply the terms appearing on the right hand side of (6) have to be added to the first block
equation in (9).

The expressions for SFEM (6) and SBEM (8) contain the inverse of a matrix, but this inverse
does not have to be computed directly. In the case of a FEM discretisation for instance, one
would replace the subsystem of type as in (9) byAII AΓI 0

AIΓ AΓΓ −B
0 BT 0

uI

uΓ

qD

 =

 fI
fΓ
fD

 (10)

and thereby circumventing the computation of the inverse of AII .
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For a BEM discretisation, the according matrix system would be−V 1
2
M̃ 0

M 0 −B
0 BT 0

 q
u
qD

 =

 0
fN
fD

 (11)

and the inverse of V must not be computed.

3 DOMAIN DECOMPOSITION FOR ELLIPTIC PROBLEMS

Now, consider the case of two sub-domains Ω1 and Ω2 with common interface Γ12 (see
figure 1). In each sub-domain a boundary value problem of type (2) is defined, where the
operators L1 and L2 need not be equal, and is complemented with the interface conditions (1).
A consistent extension of the above boundary-based formulation (4) to a two-domain problem
is ∫

Γ1

(S1u1)v1 ds−
∫

Γ1
D

q1 v1 ds−
∫

Γ12

λ(v1 − v2) ds =

∫
Γ1

N

q̄1 v1 ds+

∫
Γ1

(N1f1)v1 ds∫
Γ2

(S2u2)v2 ds−
∫

Γ2
D

q2 v2 ds+

∫
Γ12

λ(v1 − v2) ds =

∫
Γ2

N

q̄2 v2 ds+

∫
Γ2

(N2f2)v2 ds∫
Γ1

D

u1 p1 ds+

∫
Γ12

(u1 − u2)µ ds =

∫
Γ1

D

ū1 p1 ds∫
Γ2

D

u2 p2 ds−
∫

Γ12

(u1 − u2)µ ds =

∫
Γ2

D

ū2 p2 ds

(12)

with weight functions vi and pi (cf. [8] for a deeper insight concerning the specific trial spaces to
be chosen). The interface conditions have been incorporated in a weak form by means of a La-
grange multiplier function λwith corresponding weight function µ. Actually, the Lagrange mul-
tiplier λ is physically the same as the dual function q. Here, it holds that λ = q1|Γ12 = −q2|Γ12

(consequently, µ = p1|Γ12 = −p2|Γ12) and therefore the second of the interface conditions is
prescribed in the classical strong form. Discretisation of the variational problem (12) yields the
system of equations 

S1 0 −B1 0 −C1

0 S2 0 −B2 C2

BT
1 0 0 0 0

0 BT
2 0 0 0

CT
1 −CT

2 0 0 0




u1

u2

qD1

qD2

λ

 =


fN1

fN2

fD1

fD2

0

 . (13)

With this methodology, the interface meshes of the sub-domains do not have to match, since the
continuity of u is not imposed point-wise. Nevertheless, the Lagrange multipliers inherit their
mesh from one side, the slave side, using the terminology of the mortar element method [9],
which is here Ω1. Therefore, the computation of the entries of C2 requires integration over the
interface of the product of the trial functions for λ and u2, which do not necessarily live on the
same mesh.

4 FINITE AND BOUNDARY ELEMENT METHODS FOR HYPERBOLIC PROBLEMS

An abstract hyperbolic boundary value problem has the form

∂2

∂t2
u(x, t)− L(x)u(x, t) = f(x, t) x ∈ Ω, t ∈ (0, T ) , (14)
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where (0, T ) is the interval on the time axis to be considered and L an elliptic differential
operator. Furthermore, one needs the boundary conditions

u(x, t) = ū(x, t) x ∈ ΓD, t ∈ (0, T )

q(x, t) = q̄(x, t) x ∈ ΓN , t ∈ (0, T )
(15)

and the initial conditions

u(x, t) = u0(x) x ∈ Ω, t = 0

∂

∂t
u(x, t) = v0(x) x ∈ Ω, t = 0

(16)

to completely describe the problem. Classical examples for equations of type (14) are the scalar
wave equation and the elastodynamic equations.

The classical FEM approach to these equations is to perform the spatial discretisation as in
the elliptic case and obtain the semi-discrete system of equations [4]

Mü(t) + Au(t) = f(t) (17)

with the mass and stiffness matrices, M and A, respectively. Application of Newmark’s method
for time discretisation yields the solution after n+ 1 time steps of size h in the form

[
M + h2βA

]
un+1 =

[
2M− h2

(
1

2
− 2β + γ

)
A

]
un

−
[
M− h2

(
1

2
+ β − γ

)
A

]
un−1

+ h2

[
βfn+1 +

(
1

2
− 2β + γ

)
fn +

(
1

2
+ β − γ

)
fn−1

] (18)

with the method-specific parameters β and γ [4]. The system (18) can be abbreviated as

A0un+1 = A1un + A2un−1 + fn+1 . (19)

Reordering these equations as it has been done in (5), one can obtain similarly to (6)

S̃FEMun+1,Γ = f̃n+1 (20)

which provides a discrete Dirichlet-to-Neumann map for the current time step. Note, that in
the given case the left hand side matrix does not change throughout the computation if an
equidistant time grid is chosen.

In the case of BEM, one gets for the homogeneous equation with vanishing initial conditions,
i.e., f = u0 = v0 = 0, in operator form [2](

1

2
I +K

)
∗ u = V ∗ q (21)

where ∗ denotes the time convolution, i.e., g ∗ h =
∫ t

0
g(τ − t)h(τ) dτ . The operators are

the identity I, the single layer V and the double layer K potential. Choosing a certain time
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discretisation, e.g., the convolution quadrature method or analytical time integration [6], one
obtains the recursive system of equations(

1

2
I + K0

)
un+1 +

n∑
i=1

Kn−iui = V0 qn+1 +
n∑

i=1

Vn−iqi (22)

which, in the same manner as in (8), can be reformulated to

BV−1
0

(
1

2
I + K0

)
︸ ︷︷ ︸

S̃BEM

un+1 = Bqn+1 + BV−1
0

n∑
i=1

(Vn−iqi −Kn−iui) = f̃n+1 . (23)

Similarly to the elliptic case, the discrete Dirichlet-to-Neumann map for the current time
step, as given in (20) or (23), can now be replaced by either its FEM or its BEM discretisation.
Moreover, the same replacement of subsystems as in (10) and (11), respectively, can be carried
out to avoid the computation of an inverse matrix.

Be means of (20) and (23), discrete mappings from the primal to the dual variable on the
boundary, i.e., from u to q, have been established. Therefore, by keeping the time step fixed the
discrete system of equations for a coupled problem (13) as derived in section 3 can be reused
for the hyperbolic problem.

5 EXAMPLE

As a test example, the homogeneous scalar wave equation is considered

∂2

∂t2
u(x, t)− c2∆u(x, t) = 0 (24)

where c denotes the wave velocity. Initial conditions are assumed to be identical zero. The
considered two-dimensional domain is Ω = (0, 2) × (0, 1) which will be subdivided into two
squares, Ω1 = (0, 1)× (0, 1) and Ω2 = (1, 2)× (0, 1), see figure 2. In this specific problem, the
primal variable u can be considered the fluid pressure and the dual variable q the normal flux at
the boundaries, q = ∂

∂n
u with the outward normal vector n.

In the computation, zero Dirichlet boundary conditions are prescribed, ū = 0, on the bound-
ary part Γ1 (cf. figure 2, right). A unit step function q̄(t) = H(t) is applied on the side Γ3 and
zero Neumann conditions, q̄ = 0, elsewhere. The wave velocities are assumed to be equal in
both sub-domains, i.e., c1 = c2 = 1. For the FEM discretisation, 10×10 bi-linear quadrilaterals
have been used for Ω1 and 9 × 9 for Ω2. The BEM computation has been carried out with 10
linear elements in the first sub-domain and 9 linear elements for the second. These numbers
were chosen arbitrarily to ensure non-conforming interface meshes. Figure 2 shows the FEM
and BEM meshes and it can be seen that the interface mesh is inherited from Ω1, the so-called
slave side. The Lagrange multipliers λ and normal fluxes q are assumed to be linear as well but
discontinuous at the corners. The discretisations are depicted in figure 2, on the right.

Figure 2, left, shows the results for a coupled FEM (top) and a coupled BEM (bottom)
computation for the given problem and the first 20 time units. The chosen time steps are
hFEM = 0.005 for the finite element and hBEM = 0.05 for the boundary element discreti-
sation.

This example has been chosen merely to show the feasibility of the proposed method. The
numerical results show a fairly good agreement with the analytical solution.

7



M. Schanz and T. Rüberg
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Figure 2: Problem description (right) with points of evaluation (circles for u, crosses for q) and the chosen FEM
mesh and boundary elements. The top picture shows the results of a finite element and the bottom picture the
results of boundary element analysis. The computed solution is shown by solid lines and the analytical solution by
dashed lines. The zig-zag curves represent the pressure u(t) at the side of the applied unit step function (blue) and
the interface (green). The piece-wise constant curves represent the normal flux q(t) at the interface (cyan) and at
the Dirichlet boundary (red).

A second simulation was performed by changing the wave velocity in sub-domain Ω2 to
c2 = 2. Due to the lack of an analytical solution, in figure 3 simply the results of the numerical
solution are shown. This computation has been only carried out with a BEM discretisation and
could not have been performed with a single-domain approach, since there does not exist a
fundamental solution for discontinuous material parameters.

Contrary to the first test with equal wave velocities in both domains, the interpretation of
the results is not as easy as before. In the first example in figure 2, the primal variable at the
free end Γ3 (depicted in blue) shows clearly the wave reflections, e.g., after four time units the
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Figure 3: Solution curves for the case of c2 = 2 and c1 = 1. The colours refer to the same points as in figure 2.
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wave front has travelled to the bottom and back. Then, it is reflected at the free end causing
a reduction of the value of u(t). This reflection can be observed also for later times resulting
in a periodic figure. Here, in the second example, the various reflections can not been traced
because, now, there are reflections at the interface Γ12 and at the fixed end at Γ1. However, some
wave phenomena can be identified in figure 3. The slope at the beginning of the blue line in
figure 3 corresponds to the wave velocity c2 = 2 in domain Ω2 until the first wave reflection at
the interface is observed at time unit one. Then, the slope is decreased to one corresponding to
the wave velocity c1 = 1 in domain Ω1. The next slight change at time unit two should be the
second reflection at the interface, however, as this is no longer a reflection at a fixed end it is no
sharp change. The kink at time unit three may be interpreted as the arrival of a wave reflected
at the bottom Γ1, i.e., the wave propagated from top to the bottom and back to the top. More
reflections can not be clearly identified, but due to these first identifiable wave reflections the
results seem to be reasonable.

6 CONCLUSION

By comparison of a well-established formulation of non-conforming domain decomposition
for elliptic problems (mainly based on [8]) with the discrete equations arising in the treatment
of hyperbolic problems with either the finite or the boundary element method, an algorithm for
the treatment of coupled time-domain problems with non-matching interface meshes has been
proposed. Small test examples show the feasibility of this method.

Nevertheless, the efficient solution of the final systems of equations has yet to be formulated.
Especially, the fact, that the system matrices might not change throughout the time steps, leads
to the question whether an iterative solver can still be more efficient than a direct solver. In
the same context, data-sparse methods seem appealing for an efficient treatment of the fully
populated BEM matrices [1].

Next to these numerical issues, the possible extension to multi-physical problems, where
the local differential operators are not the same (fluid-structure interaction, sound emission [3],
poro- and viscoelastic wave propagation [6], etc.), has to be analysed.
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