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ABSTRACT
The dynamic responses of fluid-saturated porous continua

subject to transient excitations such as seismic waves or ground
vibrations are modeled with Biot’s theory. The most natural
choice of unknowns are the solid displacement and the pore pres-
sure. However, in a time domain representation only a formula-
tion with solid and fluid displacements is possible. But, under the
assumption of a negligible inertia of the interstitial fluid a solid
displacement/pore pressure formulation can be obtained. This
approximation can be applied e.g. for soil.

Here, for this simplified dynamic Biot theory a boundary
element formulation is given. First, the respective fundamen-
tal solutions are derived in Laplace domain with the method of
Hörmander. These are implemented in the time domain BE for-
mulation based on the Convolution Quadrature Method. For this
formulation no time dependent fundamental solutions are neces-
sary. Finally, an example show the applicability of the proposed
formulation.

INTRODUCTION
In all versions of a poroelastic theory, the question arise

which set of unknowns is used to formulate the set of govern-
ing differential equations. In the most general case, the vector of
the solid displacement, the vector of the seepage velocity, and the
pore pressure are used to derive the governing equations. In total
there are seven degrees of freedom (dof) in a three-dimensional
(3-d) formulation and five dof in a two-dimensional (2-d) formu-

lation.
Either from a physical point of view as well as from a numer-

ical point of view a reduction of these dof is desirable. Usually a
fluid is described by a scalar value like the pressure and a solid by
a vector quantity like the displacement vector. This can also be
done here resulting in a sufficient set of unknowns [1], i.e., the
solid displacement vector is chosen to describe the solid skele-
ton and the pore pressure for the fluid. However, this requires
the elimination of the seepage velocity. Because the seepage ve-
locity is given in a differential equation with respect to time by
the balance law of the fluid, i.e., by Darcy’s law, their elimina-
tion is only possible in a transformed domain, e.g., Laplace or
Fourier domain [2, 3]. For modeling consolidation a quasi-static
model is used, i.e., inertia effects are neglected, and, therefore,
this elimination is even possible in time domain. However, the
aimed application is wave propagation so such a simplification is
not possible.

To avoid these difficulties in the Finite Element (FEM) lit-
erature on poroelastic wave propagation a simplified poroelastic
model is introduced to be able to formulate and solve the govern-
ing differential equations directly in the time domain [4]. This
simplification neglects only the inertia effects of the fluid but
not those of the solid skeleton. In the following, this approach
will be called simple poro. The applicability of this approach
has been studied by Zienkiewicz et al. [5] showing that problems
with low frequency accelerations can be treated well by this ap-
proach, e.g., applications in earthquake engineering.

In contrast to the FEM, for the Boundary Element Method
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(BEM) no fundamental solution and, therefore, no BE formu-
lation has been published for the simple poro model. This is
due to the availability of a time domain formulation of the gen-
eral poroelastic model [6]. This BE formulation is based on
the Laplace domain fundamental solutions using the Convolution
Quadrature Method proposed by Lubich [7,8]. The usage of the
Laplace domain solutions avoids any difficulties with the elimi-
nation of the seepage velocity. However, for treating also wave
propagation problems in a non-linear poroelastic model, e.g., to
take liquefaction into account, a coupled BE-FE procedure seems
to be the best choice. But, for such a coupled formulation also a
BE formulation for simple poro must be available.

In the next section, Biot’s theory is recalled and the simpli-
fication is presented. For these governing equations fundamental
solutions are derived using the method of Hörmander [9]. The
next step, to establish a BE formulation is straight forward fol-
lowing exactly the procedure given for the general Biot equa-
tions [6,10].

Throughout this paper, the summation convention is ap-
plied over repeated indices and Latin indices receive the values
1,2, and 1,2,3 in two-dimensions (2-d) and three-dimensions (3-
d), respectively. Commas(),i denote spatial derivatives and, as
usual, the Kronecker delta is denoted byδi j .

BIOT’S THEORY – GOVERNING EQUATIONS
Following Biot’s approach to model the behavior of porous

media, one possible representation of poroelastic constitutive
equation is obtained using the total stressσi j = σs

i j + σ f δi j and
the pore pressurep as independent variables [11]. Introducing
Biot’s effective stress coefficientα and the solid displacementui

the constitutive equation reads

σi j = Gui, j +
(

K− 2
3

G

)
uk,kδi j −αδi j p (1)

with the shear modulus and the compression modulus of the solid
frameG andK, respectively. In this equation, a linear strain dis-
placement relation is used, i.e., small deformation gradients are
assumed. Additional to the total stressσi j , as a second consti-
tutive equation the variation of fluid volume per unit reference
volumeζ is introduced

ζ = αuk,k +
φ2

R
p (2)

with material constantR and the porosityφ. This variation of
fluid ζ is defined by the mass balance over a reference volume,
i.e., by the continuity equation

∂ζ
∂t

+qi,i = a (3)

with the specific fluxqi = φwi , the seepage velocitywi , and a
source terma(t).

Further, the balance of momentum for the bulk material must
be fulfilled. Here, in the simplified theory the inertia of the fluid
is neglected yielding

σi j , j +Fi = ρ
∂2ui

∂t2 , (4)

with the bulk body force per unit volumeFi and the bulk den-
sity ρ = ρs(1−φ)+ φρ f (ρs andρ f denotes the solid and fluid
density, respectively).

Next, the fluid transport in the interstitial space expressed by
the specific fluxqi = φwi is modeled with a simplified dynamic
version of Darcy’s law

φwi = qi =−κ
(

p,i +ρ f
∂2ui

∂t2

)
, (5)

whereκ denotes the permeability.
To eliminate in the equations (1)-(5) the seepage velocity

wi , Darcy’s law has to be rearranged to find an expression for the
seepage velocity. With the above introduced simplification (ne-
glection of the fluid inertia) it is possible to express with equation
(5) the seepage velocity which yields subsequently the governing
equations with this reduced set of unknowns

Gui, j j +
(

K +
1
3

G

)
u j,i j −αp,i −ρ

∂2ui

∂t2 =−Fi (6a)

κp,ii −
φ2

R
∂p
∂t
−α

∂ui,i

∂t
−κρ f

∂2ui,i

∂t2 =−a . (6b)

In [5], the authors discussed with the help of an analytical 1-
d example the limitations of this simplification. Summarizing
their results, in soil mechanics or geomechanical applications
with mostly low frequency acceleration the complete Biot the-
ory does not differ from the simplified form.

In the next section, fundamental solutions for the simplified
Biot’s equations are derived. These solutions will be later used
in a Convolution Quadrature based BE formulation. Therefore,
it is sufficient and to the authors knowledge the only possible
way to deduce the fundamental solutions in Laplace domain. To
do so, first, the set of governing equations (6) is transformed to
Laplace domain, denoted byL { f (t)}= f̂ (s) with the complex
Laplace variables. Further, vanishing initial conditions are as-
sumed. This leads in operator notation toB[ûi p̂]T = [F̂i â]T with
the not self-adjoint operator

B =

(G∇2−s2ρ
)

δi j +
(
K + 1

3G
)

∂i∂ j −α∂i

−s(α−sκρ f )∂i κ∂ii −
φ2s
R

 . (7)
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FUNDAMENTAL SOLUTIONS
A fundamental solution is mathematically spoken a solution

of the equationBG + Iδ(x−y) = 0 where the matrix of funda-
mental solutions is denoted byG, the identity matrix byI , and
the Dirac distribution byδ(x−y). Physically interpreted the so-
lution at pointx due to a single force at pointy is looked for.

The operator type in (7) is an elliptical operator so the same
method as for Biot’s theory to find the fundamental solutions, the
method of Ḧormander [9], can be used. The idea of this method
is to reduce the operator given in (7) to well known operators.
Following this idea the definition of the inverse matrix operator
B−1 = Bco/det(B) with the matrix of cofactorsBco is used. The
ansatzG = Bcoϕ for the matrix of fundamental solutions with
an unknown scalar functionϕ inserted in the operator equation
BG + Iδ(x−y) = 0 yields to a more convenient representation
of equations (7)

BBcoϕ+ Iδ(x−y) =det(B) Iϕ+ Iδ(x−y) = 0

 det(B)ϕ+δ(x−y) = 0 . (8)

With this reformulation, the search for a fundamental solution is
reduced to solve the simpler scalar equation (8).

From the mathematical theory of Green’s formula it is
known that the fundamental solutions should satisfy the adjoint
operator [12]. Opposite to elasticity the governing operator in
poroelasticity is not self-adjoint. Therefore, here the solution for
the adjoint operatorB? is required.

Following formula (8), first, the determinant of the operator
B? is calculated. This yields to the result

detB? = κG2
(

K +
4
3

G

)(
∇2−λ2

3

)2(∇2−λ2
1

)(
∇2−λ2

2

)
(9)

with the rootsλi , i = 1,2,3

λ2
1,2 =

1
2

[
φ2s
κR

+
αs(α−sρ f κ)(

K + 4
3G
)

κ
+

s2ρ
K + 4

3G

±

√√√√(φ2s
κR

+
αs(α−sρ f κ)(

K + 4
3G
)

κ
+

s2ρ(
K + 4

3G
))2

−4
s2ρφ2s

R
(
K + 4

3G
)

κ

]

λ2
3 =

ρs2

G
.

(10)

Expressing the determinant using this roots the scalar equation
corresponding to (10) is given by

(
∇2−λ2

3

)(
∇2−λ2

1

)(
∇2−λ2

2

)
ψ+δ(x−y) = 0 (11)

using an appropriate abbreviationψ = G2κ
(
K + 4

3G
)

ϕ. The so-
lution of the modified higher order Helmholtz equation (11) is

ψ =
1

4πr

[ e−λ1r(
λ2

1−λ2
2

)(
λ2

1−λ2
3

) +
e−λ2r(

λ2
2−λ2

1

)(
λ2

2−λ2
3

)
+

e−λ3r(
λ2

3−λ2
2

)(
λ2

3−λ2
1

)] .

(12)

The distance between the two pointsx andy is denoted byr =
|x−y|.

Having in mind that the Laplace transformation of the func-
tion describing a traveling wave front with constant speedc is
e−rs/c = L {H (t− r/c)} (in 3-d), it is obvious that the above
solution (12) represents three waves. However, as the rootsλi

are functions ofs, here, the wave speeds are time dependent rep-
resenting the attenuation in a poroelastic continuum. This is in
accordance with the well known three wave types of a poroelas-
tic continuum [2]. The rootsλ1,λ2, and λ3 correspond to the
wave velocities of the slow and fast compressional wave and to
the shear wave, respectively.

The next steps are to insert the solutionψ back in the defi-
nition G = Bcoϕ taking into account the relation betweenϕ and
ψ. After calculating the respective matrix of cofactorsBco the
fundamental solutions are found

G =

[
Ûs

i j Û f
i

P̂s
j P̂f

]

=
1

Gκ
(
K + 4

3G
) [(F∇2 +AD

)
δi j −F∂i j −Aα∂i

−AE∂i A
(
B∇2 +A

)]ψ

(13)

with the abbreviationsA = G∇2 − s2ρ, B =
(
K + 1

3G
)
, D =

κ∇2−φ2s/R, E = s(α−ρ f κ) , F = BD−C2s. The explicit ex-
pressions for the fundamental solutions can be found in [13].

Comparing the fundamental solutions of Biot’s complete
theory the same solution is found with differentλi but the sin-
gular behavior is equal.

BOUNDARY ELEMENT FORMULATION
The boundary integral equation based on Biot’s theory can

be written in the following form (for details see [6])

∫
Γ

[
US

i j −PS
j

UF
i −PF

]
∗
[
ti
q

]
dΓ =

∫
Γ

C

[
TS

i j QS
j

TF
i QF

]
∗
[
ui

p

]
dΓ+

[
ci j 0
0 c

][
ui

p

] (14)
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with the convolution integralf ∗g =
∫ t

0 f (t− τ)g(τ)dτ. In eq.
(14), the total stress vector is denoted byti and the normal flux
by q, whereas capital letters denote the respective fundamental
solutions. Further, the domain isΩ with boundaryΓ.

The integral free termsci j andc in (14) result from the lim-
iting behavior of the fundamental solutions ify approachesx.
A series expansion of the fundamental solutions with respect to
r = |y−x| shows that̂TS

i j andQ̂F are strongly singular and in the
limit r → 0 equal to their elastostatic and acoustic counterparts,
respectively. Therefore, the integral free termsci j andc are cal-
culated as known from elastostatic and acoustic BE formulations
and the first integral on the right hand side of (14) has to be de-
fined in the sense of a Cauchy Principal Value (denoted by

∫
c ).

The other fundamental solutions are either regular,P̂S
j andÛF

i ,

or weakly singularÛS
i j , P̂

F , T̂F
i , andQ̂S

j . Clearly, also the time de-
pendent counterparts of the fundamental solutions have the same
singular behavior with respect tor (for details see [13]).

According to the boundary element method the boundary
surfaceΓ is discretized byE elementsΓe and for the state vari-
ablesF polynomial shape functionsN f

e (x) are defined. Further,
the convolution integrals are approximated by the Convolution
Quadrature Method [7,8]. Applying these approximations to the
integral equation (14) results in the boundary element time step-
ping formulation forn = 0,1, . . . ,N

[
ci j ui (n∆t)
c p(n∆t)

]
=

E,F

∑
e, f=1

n

∑
k=0

{[
ωe f

n−k

(
ÛS

i j

)
−ωe f

n−k

(
P̂S

j

)
ωe f

n−k

(
ÛF

i

)
−ωe f

n−k

(
P̂F
)][te f

i (k∆t)
qe f (k∆t)

]

−

[
ωe f

n−k

(
T̂S

i j

)
ωe f

n−k

(
Q̂S

j

)
ωe f

n−k

(
T̂F

i

)
ωe f

n−k

(
Q̂F
)][ue f

i (k∆t)
pe f (k∆t)

]}
.

(15)

The integration weights are calculated corresponding to

ωe f
n

(
ÛS

i j

)
=

R−n

L

L−1

∑̀
=0

∫
Γ

ÛS
i j

γ
(
Rei` 2π

L

)
∆t


· uN f

e (x)dΓ e−in` 2π
L ,

(16)

respectively. A backward differential formula of order 2 (γ de-
notes the quotient of its characteristic polynomials) and the pa-
rameter choiceL = N and RN =

√
10−10 yield the best re-

sults [14].
Note, the calculation of the integration weights is only based

on the Laplace transformed fundamental solutions which are de-
rived in the previous section. In order to arrive at a system of
algebraic equations, point collocation is used.

According tot−τ = (n−k)∆t, the integration weightsωe f
n−k

in (15) are only dependent on the differencen−k. This property
is analogous to elastodynamic time domain BE formulations and
can be used to establish a recursion formula forn = 1,2, . . . ,N
(m= n−k)

ω0 (C)dn = ω0 (D) d̄n +
n

∑
m=1

(
ωm(U) tn−m−ωm(T)un−m)

(17)
with the time dependent integration weightsωm containing the
Laplace transformed fundamental solutionsU and T, respec-
tively (see eq. (16)). Similarly,ω0 (C) andω0 (D) are the cor-
responding integration weights of the first time step related to
the unknown boundary datadn and the known boundary datādn

in time stepn, respectively. Finally, a direct equation solver is
applied where only the matrix of the first time step has to be in-
verted.

NUMERICAL EXAMPLES
To demonstrate that the results of the u-p formulation with

neglect of the derivative of the seepage velocity are similar to the
results of Biot’s complete theory, the displacement response and
the pore pressure distribution of a poroelastic half space in 3-d
is compared. The material data are those of a soil (E = 2.544·
108 N

m2 ,ν = 0.298,ρ = 1884kg
m3 ,ρ f = 1000kg

m3 ,φ = 0.48,R= 1.2·
109 N

m2 ,α = 0.98,κ = 3.55·10−9 m4

Ns).
For the 3-d model of the half space a strip of 33m× 6m

has been discretized with 396 triangular linear elements on 238
nodes (see Fig. 1). The half space is loaded by a vertical total

20 m

A
t

−1000

zt

zt

xy

z

Figure 1. Poroelastic half space in 3-d: mesh and loading

stress vectortz =−1000N
m2 H(t) at an area of 1m2 which is kept

constant over the whole observation period. The remaining sur-
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face is traction free and assumed to be permeable, i.e., the pore
pressure is zero all over the surface.

In figure 2, the calculated vertical displacement is plotted
versus time at point A. Different to a 2-d calculation where no
differences are visible [13] in 3-d some differences between the
simplified theory and Biot’s theory are visible. However, these
differences are very small and in the range which can also be
affected by numerics, i.e., also a change in the time step size can
result in differences of the same order. So, in principle it can be
concluded that in the 3-d calculation both formulations give the
same result.

The pore pressure distribution in different depths (see the co-
ordinates in Fig. 3 with origin at the tip of the load) is presented
in Fig. 3. Due to the larger distance from the excitation point the
fast compressional wave needs different times to reach the cho-
sen points. The pore pressure does not vanish after the passage
of the wave because the load is kept over the total observation
period. Further, the pore pressure reduces with increasing depth
as expected.

Finally, this comparison shows that the simplified theory can
be used for the chosen material, a soil, and the presented excita-
tions. There is no significant difference to Biot’s complete the-
ory. This confirms the results presented in [5].

CONCLUSIONS
Based on Biot’s theory, a poroelastodynamic boundary el-

ement formulation with neglected derivative of the seepage ve-
locity is presented for analyzing wave propagation in two and
three-dimensional saturated porous continua. For a half space
example, this formulation has been compared with a BE formu-
lation based on Biot’s complete theory. For the investigated ma-
terial the solution from the complete u-p formulation and from
the simplified poroelasticity are quite similar. Hence, for this ex-
ample the influence of the derivative of the seepage velocity can
be neglected.
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Figure 2. Vertical displacement at point A versus time
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Figure 3. Pore pressure distribution below point A

6


