2015 IEEE International Conference on Software Quality, Reliability and Security

Attack Pattern-Based Combinatorial Testing
with Constraints for Web Security Testing

Josip Bozic*, Bernhard Garn', Toannis KapsalisT, Dimitris E. Simos, Severin Winklert and Franz Wotawa*
*Institute for Software Technology, Graz University of Technology, A-8010 Graz, Austria
Email: jbozic@ist.tugraz.at, wotawa@ist.tugraz.at
TSBA Research, A-1040 Vienna, Austria
Email: ikapsalis @sba-research.org, bgarn @sba-research.org, dsimos@sba-research.org, swinkler @sba-research.org

Abstract—Security testing of web applications remains a
major problem of software engineering. In order to reveal
vulnerabilities, manual and automatic testing approaches use
different strategies for detection of certain kinds of inputs that
might lead to a security breach. In this paper we compared
a state-of-the-art manual testing tool with an automated one
that is based on model-based testing. The first tool requires
user input from the tester whereas the second one reduces the
necessary amount of manual manipulation. Both approaches
depend on the corresponding test case generation technique
and its produced inputs are executed against the system under
test (SUT). For this case we enhance a novel technique, which
combines a combinatorial testing technique for input generation
and a model-based technique for test execution. In this work the
input parameter modelling is improved by adding constraints to
generate more comprehensive and sophisticated testing inputs.
The evaluated results indicate that both techniques succeed in
detecting security leaks in web applications with different results,
depending on the background logic of the testing approach. Last
but not least, we claim that attack pattern-based combinatorial
testing with constraints can be an alternative method for web
application security testing, especially when we compare our
method to other test generation techniques like fuzz testing.

Keywords—Combinatorial testing, model-based testing, web se-
curity testing, attack patterns, injection attacks.

Web application security is as important as ever but perva-
sive ubiquitous computing, bundled with 24/7 network access,
makes any connected web application especially susceptible
to attacks. Cross-site scripting (XSS) constitutes one of the
most serious vulnerabilities according to the Open Web Ap-
plication Security Project (OWASP). We focus on exploiting
XSS vulnerabilities and in particular we distinguish between
two different types of XSS, namely reflected XSS (RXSS) and
stored XSS (SXSS).

The authors from [1] depict an attack model in form of
a UML state machine and describe a testing tool that uses
libraries of attack inputs for test case execution. The biggest
difference to our work presented here is the proposed test
generation technique and also the technical implementation of
the approach. We also put great emphasis on the modeling
and detection of XSS. A comparison of several penetration
testing tools is given by van der Loo in [2]. In this work,
several web applications are tested with commercial as well as
open source penetration testing tools. However, when testing

The work of the fourth author was carried out during the tenure of an
ERCIM “Alain Bensoussan” Fellowship Programme.
Authors are listed in alphabetical order.

978-1-4673-7989-2/15 $31.00 © 2015 IEEE
DOI 10.1109/QRS.2015.38

207

for XSS vulnerabilities our approach achieves much more
positive results. Attack grammars for generation of XSS attack
vectors via learning and fuzzing approaches were employed in
[3] and [4], respectively, where some based on combinatorial
modelling have been presented in [5], [6].

In this paper, we propose an enhanced automated penetra-
tion testing technique, whereby the presented modelling builds
upon the work from [5]. Furthermore, the paper includes a
detailed case study for testing various SUTs against our auto-
mated testing method as well as manual testing approaches and
presents a detailed evaluation and comparison. We also draw
useful conclusions that further strengthen the applicability of
attack pattern-based combinatorial testing to security testing,
building on the comparison of the test results of the testing
methods given in [5], [6]. Most important, we present an
extensive comparison in terms of (total) vulnerabilities found
by our generated test suites versus ones that are being produced
mostly as a result from fuzzers and our findings indicate that
our combinatorial test generation method rises as an alternative
approach for web security testing. The main contributions of
this paper are summarized as follows:

Remodelled XSS attack grammar which also includes
a set of constraints. The test inputs (XSS attack
vectors) are generated in an automated way;

Revision of the attack pattern-based combinatorial
testing technique with respect to the new grammar;

Detailed evaluation of a case study for web security
testing, including automated and manual test execution
methods;

Extensive comparison between the test generation
component of the attack pattern-based combinatorial
testing technique with various fuzzers.

The paper is structured as follows: In Section I we elaborate
on a detailed explanation of combinatorial testing as well
as its potential contribution to security testing. Afterwards,
Sections II and III describe the goals of our case study
and the penetration testing execution methods, namely the
attack pattern-based approach and manual penetration testing
frameworks. Then Section IV discusses the testing results
of our automated and manual approach against several web
applications and finally, Section V concludes the work.

IEEE
computer
® psouety

I. COMBINATORIAL SECURITY TESTING

An overview of the combinatorial test design process can
be found in [7] and in [5], [6] for a more related usage to
security testing. In particular, we used the ACTS combinatorial
test generation tool [8] for automated test generation of inputs
and subsequently the attack pattern-based methodology given
in Section III for test execution.

Combinatorial Grammar for XSS Attack Vectors: Re-
visited. In this section, we consider a general structure for
XSS attack vectors (test inputs) where each one of them
is comprised of 11 discrete parameters (types) discussed in
detail below. This structure builds upon a combinatorial gram-
mar given in [5] by modelling white spaces and executable
JavaScript that can appear in an XSS attack vector but also
extends the one given in [6] by adding constraints between
the different parameter values. To this point, we would like to
note that we follow the terminology used in security testing
when we are referring to XSS attack vectors as test inputs, as
this is described for example in [9], [3]. A fragment of our
combinatorial grammar, denoted by G, is presented below in
BNF form so as to be able to generate possible parameter
values through ACTS, where inside the parentheses in the
parameters we list the full range of values we have taken into
account in our implementation.

JSO(15) ::=_<script>_ |, <img, | _''><script>_ | _...

WS1(3) ::=_tab |, space_ | _empty

INT (14) ::= \"; 1 >0 1. ">> L e -

WS2(3) ::=_tab,|, space_ | _empty

EVH (3) : :=_onLoad(,_|, onMouseOver (.| _onError (

WS3(3) ::=_tab,|, space_| _empty

PAY (23) ::=_alert ('XSS’) | _SRC="javascript:alert ('17);">_ |,
HREF="http://ha.ckers.org/xss.js">_| ...

WS4 (3) ::=_tab_|, space_ | _empty

PAS (11)::=_") I i// 1. >000---

WS5(3) ::=_tab,|, space_| _empty

JSE (9) ::=_</script>_ | \>_ ["\>_ 1 ...

BNF Grammar for XSS Attack Vectors

Note that, publicly available resources for XSS vectors are
in high demand in the (industrial) testing community, see
for example [9]. In our attack grammar the given parameter
values are just a fragment of possible options. If the designer
would like to increase the number of test inputs in a test suite,
one possibility is the addition of new parameter values in the
given BNF for XSS attack vectors. As a result, the generated
combinatorial object will also grow. Based on the presented
attack grammar and incorporating expert knowledge we will
build upon the following form of an XSS attack vector (AV):
(JSO,WS1,INT,WS2,EVH,WS3,PAY,WS4,PAS,WS5,JSE).

The expert knowledge was essential in the design of the
AV, where our goal is to produce valid JavaScript code when
this is injected into SUT parameters. The description of the
types in the previous AV has briefly been mentioned in [6],
however we include it also here, in more detail, for the sake
of completeness:

e The JSO (JavaScript Opening Tags) type represents
tags that open a JavaScript code block. They also
contain values that use common techniques to bypass
certain XSS filters, like <script> or <img.

e The WS (white space) type family represents the white
space but also variations of it like the tab character in
order to circumvent certain filters.

e The INT (input termination) type represents values
that terminate the original valid tags (HTML or others)
in order to be able to insert and execute the payload,
like "’ > or ">.

e The EVH (event handler) type contains values for
JavaScript event handlers. The usage of JavaScript
event handlers, like onLoad (or onError (, is a
common approach to bypass XSS filters that filter out
the typical JavaScript opening tags like <script> or
filters that remove brackets (especially < and >).

e The PAY (payload) type contains exe-
cutable JavaScript like alert ("XSS") or
ONLOAD=alert (*XSS’”)>. This type contains
different types of executable JavaScript in order to
bypass certain XSS filters.

e The PAS (payload suffix) type contains different val-
ues that should terminate the executable JavaScript
payload (PAY parameter). The PAS is necessary to
produce valid JavaScript code that is interpreted by a
browser like /) or " >.

e The JSE (JavaScript end tag) type contains different
forms of JavaScript end tags in order to produce valid
JavaScript code like </script> or >.

The combinatorial test design process for XSS attack vector
generation, has been explained in detail in [6], [10].

Adding Constraints. In this section we consider adding
constraints to our XSS attack grammar. The motivation for this
reason rises from the fact that in real-world systems adding
constraints may produce test suites with better quality and
also considerably reduce the input space. This approach for
combinatorial testing has been followed for example in [11].
We would like to note that although attack grammars for XSS
attack vectors have been given in [5], [6], [3], [4], this is
the first time that sets of constraints are imposed on such
attack grammars in terms of combinatorial modelling and our
approach for revisiting the notion of combinatorial security
testing is novel in that sense. We present below the full set
of constraints for our grammar using the constraint tool from
ACTS where the symbol => means an implication and the
symbol | | an OR statement. We will denote this grammar with
G_c to distinguish it from G when constraints are enforced.

=>

2 || JSE=4)
|| JSE=6
Il JSE=6

JSE=3 || JSE=4)
JSE=6 || JSE=7 || JSE=8 || JSE=9)
JSE=6 || JSE=7 || JSE=8 || JSE=9)
JSE=3 || JSE=4)

JSE=3 || JSE=4)

PAY=14 || PAY=17 || PAY=18 || PAY=19)
PAY=14 || PAY=17 || PAY=18 || PAY=19
PAY=13 || PAY=17 || PAY=18 || PAY=19
PAS=11)
PAS=11)
PAS=11)

PAS=7 || PAS=8

(
(
(
(
(
(
(
(
(
(
(Js0=12) =>
(Js0=13) =>
(Js0=14) =>
(Js0=15) =>
(
(
(
(
(
(
(
(
(
(
(
(
(
(

= PAS=7 || PAS=8
=> PAS=7 || PAS=8
=> | PAS=7 || PAS=8
9) => Il PAS=7 || PAS=8

IN 0) => S || PAS=7 || PAS=8 || PAS=9)
INT=11) => (PAS=10 || PAS=11)
WS1=WS2 && WS2=WS3 && WS3=WS4 && WS4=WS5)

Constraints for XSS Attack Grammar

We remark that in our implementation, we used a trans-
lation layer from the integer values presented previously to
actual values per derivation type, in a similar manner to the
ones presented for G. The rationale for the used constraints by
incorporating the expert knowledge is as follows:

e Constraints of the form (JSO=x) => (JSE=y) for
appropriate values x and y ensure coupling of the
outermost JavaScript opening and closing tags. An
alignment between these two types is necessary to

produce valid JavaScript code.

Constraints of the form (EVH=x) => (PAY=y) for
appropriate values x and y offer the possibility to
use only those payload values, which are, derived
from expert knowledge, most likely to succeed when
coupled with the respective event handler.

Constraints of the form (INT=x) => (PAS=y) for
appropriate values x and y further express necessary
correlations/conditions between the two stages to be
able to ultimately execute the payload type, which
an experienced tester would intuitively use when per-
forming manual penetration testing.

Constraints between the white space types mainly
serve to reduce the overall size of the test suites.

Combinatorial Metrics for Security Testing. There has been
a great need for metrics, e.g. how to measure the efficiency of
testing experiments, in software security the latest years. Many
different notions of coverage criteria used in traditional soft-
ware testing such as branch coverage and statement coverage
have been adopted by security researchers [12]. In this work, to
avoid confusion with the term of combinatorial coveragel, we
will instantiate a metric used in combinatorial testing to mea-
sure the efficiency of our test suites when these are executed
versus SUTs that are web applications and we target to exploit
XSS vulnerabilities. In particular, in [7] the success rate of test
suites when these are executed versus various SUTs is defined
as, P := set of t-way combinations in passing tests. In the
context of automated security testing for web applications (c.f.
[12]), we define as the exploitation rate of an SUT, denoted by
ER, the proportion of XSS attack vectors that were successful,
e.g. the ones that exploit an XSS vulnerability, per given test
suite and SUT:

Attack vectors that exploit an XSS vulnerability
Total number of attack vectors per test suite and SUT

ER =

Even though from a security testing point of view, it might
be sufficient for at least one XSS attack vector to be successful,
for combinatorial testing it is of utter importance to estimate
the quality of the generated test suites. Reverse engineering the
structure of successful vectors, which implies remodelling the
attack grammar, we can hope to achieve better results in terms
of exploitation rate but also to find vulnerabilities in SUTs that
we were unable to penetrate before in [5].

II. CASE STUDY

The SUTs used in our case study comprised a set of web
applications that are included in the Open Web Application

IRefers to the covered t-way tuples of given k parameters of an SUT in a
mixed-level covering array.

209

Security Project (OWASP) Broken Application Project’ and
in the Exploit Database Project’. Some of these applications,
i.e. Webgoat, Mutillidae and DVWA, were already tested in [5]
and [6] but we added WebGoat*, Gruyere® and Bitweaver® to
the list of SUTs. Also, Mutillidae and DVWA comprise several
difficulty levels, every one of them activating additional built-
in filtering mechanisms against submitted inputs. All of these
programs are web applications that were deployed locally and
comprise a corresponding database.

One of the goals of our case study is to investigate how
our attack pattern-based combinatorial testing method behaves
in relation to manual based approaches. This in effect, will
indicate whether we can further strengthen the applicability
of our method to web security testing. Secondly, on the same
level of importance, we want to explore whether combinatorial
testing can be an alternative method when compared to fuzz
testing for usage in web security testing methodologies. In
particular, we want to compare the exploitation rate between
test suites that have been generated with combinatorial testing
versus ones that are produced with various fuzzers (c.f. XSS
repos) focused on triggering XSS exploits (higher exploitation
rate is better). The SUTs were tested with different sets of test
suites, produced by the ACTS tool and based on the combi-
natorial grammar given in Section I. The difference between
the two sets of test suites rely on imposing various constraints
on the different types of the attack grammar. This issue was
pointed to us by a reviewer of [5] and thus is intriguing to
investigate whether in our experiments we will confirm the
findings of [11], which states that imposing constraints on
real-world applications makes higher strength combinatorial
interaction testing feasible.

III. PENETRATION TESTING EXECUTION METHODS

In this section we provide details about the two penetration
testing execution methods, automated and manual ones, we
have used in our case study. We give a description of their test
oracles as their functionality has been described already in
past works. Both methods can be applied to security testing,
but in this paper we focus explicitly on penetration testing,
e.g. exploiting XSS vulnerabilities, where the main difference
(to security testing) relies on the fact that we initiate the
testing procedure once the web applications are installed in
an operational environment.

Attack Pattern-Based Testing: Revisited. This method is
taken from [13] and elaborated in more detail in [14], [15].
Its main characteristics are the usage of a model of an
attack, which itself is initially manually modelled in form
of a UML statechart with help of the open source tool-kit
YAKINDU Statechart Tools. In our case, the attack model
consists of attack steps for detection of both types of XSS.
Because the expected outcome might be hard to predict, the
implemented test oracle relies on encountering an unexpected
HTML element like <script>, etc. that serves as an
indicator for unwanted behavior caused by the input. After a

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_
Project

3hitp://www.exploit-db.com/

“https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

Shttp://google- gruyere.appspot.com/

Ohttp://www.bitweaver.org/

HTTP request is sent with a malicious input value against some
element of the web application, its corresponding response is
parsed by a HTML parser. If an expected outcome has been
generated during the process, a vulnerability is considered to
be detected.

Manual Penetration Testing Tools. The Burp Suite’ is an
integrated platform for performing security testing of web
applications. It is widely used by security professionals since
it allows them to perform many penetration testing tasks [6].
The oracle used within Burp Suite was enabled by using the
“Search responses for payload strings” configuration option
within the intruder. This option flags all results where the
payloads were exactly reflected to the response. The rationale
behind this decision is that if the vector was not blocked
or potential dangerous characters were not stripped out, we
assume an XSS vulnerability was triggered. Additionally, for
the cases where we tested for stored XSS, we enable the
option “Follow redirections:On-site only” in order to catch
the redirections triggered from the injected vectors that we
managed to stored on the server side.

IV. EVALUATION

As described in Section I we formulated a more complex
XSS grammar for the input model in ACTS and generated
inputs for combinatorial interaction strengths ¢t € {2,3,4}
twice. The first dataset consists of inputs that were created
without setting any constraints on the model and comprises
different test suites depending on the strength while the second
one comprises of analogue test suites, which were generated
according to constraints introduced in Section I. We tested
all mentioned applications against both attack inputs and
displayed the responsive results. In the first case, for interaction
strength ¢ = 2 the combinatorial tool generated 345 inputs and
respectively 4875 and 53706 attack strings for ¢ = 3 and t = 4.
Because constraints put a limitation on the data structure, a
remarkably smaller amount of strings were created for the
second dataset, namely 250, 1794 and 8761 inputs. Both sets
were used in the attack pattern-based approach and in Burp
Suite so a comparison could be made according to the results
from both cases. In order to draw a meaningful comparison,
we tested the same parts of a SUT, which were input fields
with textual and password values or textarea tags but we also
attached attack strings to the URL paths without any variable
binding.

Exploitation Rate of SUTs. In this section we investigate how
the exploitation rate of the different SUTs we considered in our
case study scales when the combinatorial interaction strength
increases, for given difficulty level and input field in each one
of the SUTs per penetration testing tool. The evaluation results
are depicted in Table I for the XSS combinatorial grammar we
have modelled (with and without constraints on the derivation
types) and when the generated vectors where executed using
our attack pattern-based testing method and also with a manual
penetration testing framework (Burp suite). In particular, in
Table I we give information about the combinatorial interac-
tion strength (Str.), the SUT (App), the input parameter ID
(inp_ID), type of vulnerability (VT), eventually the difficulty
level (DL), the exploitation rate (the number of positive inputs

Thttp://portswigger.net/burp/

210

divided by the total number of tested vectors) and its respective
percentage. Further, the table gives the corresponding results
for constrained values, where in only a few cases in Gruyere
some test runs were not completed due to its unexpected
behavior (denoted by “N/A” in the table).

In the majority of the input fields of the SUTs we con-
sidered in our case study we confirm the fundamental rule of
combinatorial testing; testing with higher interaction strengths
is likely to reveal more errors (see for example WebGoat,
Bodgelt in Table I). In our context, we interpret and confirm
this rule in terms of exploitation rate, e.g. increasing the
interaction strength implies higher exploitation rates of web
applications when these are tested for XSS vulnerabilities.

Evaluation of Combinatorial Grammars. In almost all of
our experiments, a better exploitation rate was achieved by
applying constraints upon input generation, which leads to
the conclusion that even better results might be achieved by
setting even more constraints but also testing with greater
combinatorial interaction strengths. For both input sets we
got a somehow higher rate with increasing ¢. In all test runs
when testing with attack vectors generated with constraints,
we either had a significant increase of the exploitation rate or
exactly the same was achieved. In detail, in some test runs the
improvement in the exploitation rate is up to 7 times greater
than the exploitation rate achieved with the vectors generated
by the combinatorial grammar without constraints. We believe
that the reason the obtained results when constraints were
applied are better (from the ones without constraints) because
we generated a test suite with better quality, i.e. by excluding
many low quality attack vectors.

Comparison of Fuzzers and Combinatorial Testing. In this
section, we change the focus of our evaluation and now we aim
to investigate how our test suites generated by combinatorial
testing compare to fuzzers. We have collected a number of such
test suites (produced by fuzzers), that are publicly available and
executed them against the same SUTs using both automated
and manual test case execution methods. We compare the
exploitation rate for the vectors produced with combinatorial
and fuzz testing within the same test execution method (when
these are tested against the same web application), in order
to draw more accurate conclusions. In the evaluation results
presented in Table II we take into account the best exploitation
rate achieved with combinatorial testing for the same test run
from Table I, denoted by best CT % ER. When comparing
the exploitation rate of fuzzers and combinatorial testing in
Table II, as before, we give information for the SUT (App),
the input parameter ID (inp_ID), type of vulnerability (VT)
for our attack pattern-based testing method and also with the
manual testing tool, Burp. In particular, we have considered
the following resources:

1) OWASP XSS Filter Evasion Cheat Sheet® with 113
vectors.

2) Attack and Discovery Pattern Database for Applica-
tion Fuzz Testing® (rsnake) with 76 vectors.

3) HTMLS Security Cheat Sheet'® with 170 vectors.

Shitps://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
“https://code.google.com/p/fuzzdb
1Ohttps://html5sec.org/

TABLE 1. EVALUATION RESULTS PER SUT FOR GIVEN DIFFICULTY LEVEL AND INPUT FIELD WITH INCREASING STRENGTH.

SUT parameters Str. Attack Pattern-Based Testing Manual Testing (Burp Suite)
G G_c G G_c
App DL vT inp_id ER % ER ER % ER ER % ER ER % ER
Webgoat 0 RXSS 2 2 198/345 57.39 145/250 58.00 177/345 51.30 156/250 62.40
Webgoat 0 RXSS 2 3 2842/4875 583 1073/1794 59.81 4240/4875 86.97 1672/1794 93.20
Webgoat 0 RXSS 2 4 31441/53706 58.54 5366/8761 61.26 47249/53706 87.98 8586/8761 98.00
Bodgelt 0 RXSS 1 2 175/345 50.72 145/250 58.00 315/345 91.30 250250 100.00
Bodgelt 0 RXSS 1 3 2518/4875 51.64 1073/1794 59.81 4445/4875 91.18 1794/1794 100.00
Bodgelt 0 RXSS 1 4 31441/53706 58.54 5366/8761 61.25 49012/53706 91.26 8761/8761 100.00
Bodgelt 0 RXSS 2 2 107/345 31.01 97250 38.80 9/345 2.61 407250 16.00
Bodgelt 0 RXSS 2 3 156474875 32.08 73771794 41.08 117/4875 2.40 264/1794 14.72
Bodgelt 0 RXSS 2 4 20926/53706 38.96 3918/8761 44.72 1279/53706 2.38 1379/8761 15.74
Bodgelt 0 SXSS 3 2 31/345 8.99 42/250 16.80 57/345 16.52 75250 30.00
Bodgelt 0 SXSS 3 3 561/4875 11.51 294/1794 16.39 831/4875 17.05 524/1794 29.21
Bodgelt 0 SXSS 3 4 6052/53706 11.27 1481/8761 16.90 8996/53706 16.75 2531/8761 28.89
Bodgelt 0 SXSS 4 2 308/345 89.28 175250 70.00 0/345 0.00 0/250 0.00
Bodgelt 0 SXSS 4 3 4434/4875 90.95 1264/1794 70.46 0/4875 0.00 0/1794 0.00
Bodgelt 0 SXSS 4 4 42899/53706 79.88 6172/8761 70.45 0/53706 0.00 1/8761 0.01
DVWA 0 RXSS 1 2 175/345 50.72 128/250 51.20 315/345 91.30 250/250 100.00
DVWA 0 RXSS 1 3 2517/4875 51.63 954/1794 53.18 4445/4875 91.18 1794/1794 100.00
DVWA 0 RXSS 1 4 27864/53706 51.88 4755/8761 54.28 49012/53706 91.26 8761/8761 100.00
DVWA 0 SXSS 2 2 104/345 30.14 98/250 39.20 150/345 43.48 138/250 55.20
DVWA 0 SXSS 2 3 1364/4875 27.98 565/1794 31.50 2149/4875 44.08 996/1794 55.52
DVWA 0 SXSS 2 4 13862/53706 25.81 2581/8761 29.46 23402/53706 43.57 4739/8761 54.09
DVWA 1 RXSS 1 2 106/345 30.72 80/250 32.00 210/345 60.87 170250 68.00
DVWA 1 RXSS 1 3 1547/4875 31.73 613/1794 34.17 2966/4875 60.84 1219/1794 67.95
DVWA 1 RXSS 1 4 17172/53706 31.97 3285/8761 37.50 32724/53706 60.93 6223/8761 71.03
DVWA 1 SXSS 2 2 0/345 0 0/250 0.00 0/345 0.00 0/250 0.00
DVWA 1 SXSS 2 3 0/4875 0 0/1794 0.00 0/4875 0.00 0/1794 0.00
DVWA 1 SXSS 2 4 0/53706 0 0/8761 0.00 2/53706 0.00 6/8761 0.07
Gruyere 0 RXSS 1 2 122/345 35.36 89/250 35.60 315/345 91.30 250/250 100.00
Gruyere 0 RXSS 1 3 1744/4875 3577 671/1794 37.40 4445/4875 91.18 1794/1794 100.00
Gruyere 0 RXSS 1 4 19382/53706 36.09 3303/8761 37.70 N/A N/A N/A N/A
Gruyere 0 SXSS 2 2 23/345 6.67 171250 6.80 50/345 14.49 42/250 16.80
Gruyere 0 SXSS 2 3 326/4875 6.69 118/1794 6.58 629/4875 12.90 256/1794 14.27
Gruyere 0 SXSS 2 4 3576/53706 6.66 456/8761 5.20 N/A N/A N/A N/A
Mutillidae 0 RXSS 1 2 1117345 32.17 116/250 46.40 345/345 100.00 250250 100.00
Mutillidae 0 RXSS 1 3 158074875 3241 836/1794 46.60 4875/4875 100.00 1794/1794 100.00
Mutillidae 0 RXSS 1 4 17344/53706 3229 1833/8761 20.92 53706/53706 100.00 8761/8761 100.00
Mutillidae 0 RXSS 2 2 158/345 45.8 161/250 64.40 63/345 18.26 83/250 33.20
Mutillidae 0 RXSS 2 3 2304/4875 47.26 1153/1794 64.27 921/4875 18.89 581/1794 32.39
Mutillidae 0 RXSS 2 4 25199/53706 46.92 5521/8761 63.02 9803/53706 18.25 2812/8761 32.10
Mutillidie 0 RXSS 3 2 07345 0 0/250 0.00 345/345 100.00 2501250 100.00
Mutillidae 0 RXSS 3 3 0/4875 0 0/1794 0.00 4875/4875 100.00 1794/1794 100.00
Mutillidae 0 RXSS 3 4 0/53706 0 0/8761 0.00 | 53706/53706 100.00 8761/8761 100.00
Mutillidae 1 RXSS 1 2 111/345 3217 116/250 46.40 345/345 100.00 250/250 100.00
Mutillidae 1 RXSS 1 3 158074875 32.41 836/1794 46.60 4875/4875 100.00 1794/1794 100.00
Mutillidae 1 RXSS 1 4 17344/53706 32.29 1833/8761 20.92 53706/53706 100.00 8761/8761 100.00
Mutillidae 1 RXSS 2 2 158/345 45.8 161/250 64.40 63/345 18.26 83/250 33.20
Mutillidae 1 RXSS 2 3 2304/4875 47.26 1154/1794 64.33 921/4875 18.89 581/1794 32.39
Mutillidae 1 RXSS 2 4 25199/53706 46.92 5521/8761 63.02 9803/53706 18.25 2812/8761 32.10
Mutillidae 1 RXSS 3 2 0/345 0 0/250 0.00 345/345 100.00 2507250 100.00
Mutillidae 1 RXSS 3 3 0/4875 0 0/1794 0.00 4875/4875 100.00 1794/1794 100.00
Mutillidae 1 RXSS 3 4 0/53706 0 0/8761 0.00 53706/53706 100.00 8761/8761 100.00
Bitweaver 0 RXSS 1 2 0/345 0 07250 0.00 72/345 20.87 84/250 33.60
Bitweaver 0 RXSS 1 3 0/4875 0 0/1794 0.00 1269/4875 26.03 588/1794 32.78
Bitweaver 0 RXSS 1 4 0/53706 0 0/8761 0.00 14225/53706 26.49 2904/8761 33.15
Bitweaver 0 RXSS 2 2 0/345 0 0/250 0.00 72/345 20.87 84/250 33.60
Bitweaver 0 RXSS 2 3 0/4875 0 0/1794 0.00 1269/4875 26.03 588/1794 32.78
Bitweaver 0 RXSS 2 4 0/53706 0 0/8761 0.00 14225/53706 26.49 2904/8761 33.15
Bitweaver 0 RXSS 3 2 198/345 57.39 145/250 58.00 345/345 100.00 250/250 100.00
Bitweaver 0 RXSS 3 3 2842/4875 58.69 1073/1794 59.81 4875/4875 100.00 1794/1794 100.00
Bitweaver 0 RXSS 3 4 31441/53706 58.54 5366/8761 61.25 53706/53706 100.00 8761/8761 100.00
Bitweaver 0 RXSS 4 2 0/345 0 0/250 0.00 345/345 100.00 250/250 100.00
Bitweaver 0 RXSS 4 3 0/4875 0 0/1794 0.00 4875/4875 100.00 1794/1794 100.00
Bitweaver 0 RXSS 4 4 0/53706 0 0/8761 0.00 53706/53706 100.00 8761/8761 100.00
TABLE II. EVALUATION RESULTS FOR FUZZERS AND COMBINATORIAL TESTING PER SUT FOR GIVEN DIFFICULTY LEVEL AND INPUT FIELD.
SUT parameters ‘Attack Pattern-Based Testing Manual Testing (Burp Suite)
Fuzzers Best CT Fuzzers Best CT
App DL vT inp_id OWASP Rsnake HTML Xenotix % ER OWASP Rsnake HTML Xenotix % ER
SSEC SSEC

Mutillidae 0 RXSS 1 41.59 43.42 32.94 38.91 46.60 99.12 97.37 93.53 88.82 100.00

Mutillidae 0 RXSS 2 71.68 60.53 92.94 89.86 64.40 39.82 30.26 61.76 63.86 33.20

Mutillidae 0 RXSS 3 2.65 0.00 16.47 9.35 0.00 83.19 82.89 74.12 78.37 100.00

Mutillidae 1 RXSS 1 41.59 43.42 32.94 38.91 46.60 99.12 96.05 93.53 88.82 100.00

Mutillidae 1 RXSS 2 71.68 60.53 92.94 89.86 64.40 39.82 30.26 61.76 63.86 33.20

Mutillidae 1 RXSS 3 2.65 0.00 16.47 9.35 0.00 83.19 82.89 74.12 78.37 100.00

Bodgelt 0 RXSS 1 43.36 46.05 32.94 40.88 61.25 98.23 97.37 90.59 85.69 100.00

Bodgelt 0 RXSS 2 43.36 46.05 22.35 28.52 44.72 7.96 0.00 5.29 1.11 16.00

Bodgelt 0 SXSS 3 12.39 23.68 23.53 28.12 16.90 46.02 15.79 0.00 0.00 30.00

Bodgelt 0 SXSS 4 71.68 85.53 40.59 51.60 90.95 0.00 0.00 0.00 0.00 0.01

Gruyere 0 RXSS 1 6.19 3.95 14.12 19.23 37.70 83.19 82.89 74.12 78.37 100.00

Gruyere 0 SXSS 2 0.00 0.00 7.06 11.25 6.80 6.19 3.95 6.47 26.41 16.80

WebGoat 0 RXSS 2 43.36 46.05 33.53 41.39 61.26 39.82 57.89 42.35 76.67 98.00

DVWA 0 RXSS 1 41.59 43.42 31.76 40.88 54.28 83.19 82.89 74.12 78.37 100.00

DVWA 0 SXSS 2 39.82 31.58 30.59 27.73 39.20 92.04 93.42 84.12 68.56 55.52

DVWA 1 RXSS 1 41.59 43.42 20.59 27.99 37.50 83.19 82.89 60.00 66.93 71.03

DVWA 1 SXSS 2 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.59 2.48 0.07

Bitweaver 0 RXSS 1 0.00 0.00 0.00 0.00 0.00 26.55 40.79 8.24 26.73 33.60

Bitweaver 0 RXSS 2 0.00 0.00 0.00 0.00 0.00 26.55 40.79 8.24 26.73 33.60

Bitweaver 0 RXSS 3 43.36 46.05 32.94 41.14 59.81 99.12 96.05 93.53 88.82 100.00

Bitweaver 0 RXSS 4 0.00 0.00 0.00 0.00 0.00 99.12 96.05 93.53 88.82 100.00

211

4) OWASP Xenotix XSS Exploit Framework'' where

we extracted its 1530 vectors.

Comparing the exploitation rate that the different test inputs
achieve against the SUTSs in both tools, we can argue that the
diversity of the vectors generated with combinatorial testing
has achieved better results than fuzzers in some cases. In other
words, the fact that we can generate test suites with different
sizes (attributed to the interaction strength) for given SUT
offers us a larger attack surface when compared to the one
achieved with fuzz testing. Moreover, the use of constraints
in the attack grammar can filter out many low quality attack
vectors and this is another reason why combinatorial testing
outperforms fuzz testing in some test runs. Clearly, these two
features of combinatorial testing cannot be achieved with fuzz
testing. We would also like to note that even in the case
where combinatorial testing and fuzz testing achieve the same
exploitation rate, in practice the number of actual positive
inputs differs since the size of test suites generated with
combinatorial testing is quite larger. To give an example, for
t = 4 we have 8761 attack vectors when G_c is considered.
To conclude with, it is evident from Table II, that in half
of the test runs in both automated and manual test execution
methods, inputs generated with combinatorial testing achieve
better exploitation rates. It is safe to argue at this point that
combinatorial testing can be an alternative method for test
input generation, when compared to fuzz testing, applicable
to web application security testing.

Comparison of Automated vs. Manual Test Execution
Methods. The obtained results rely heavily on the test oracles
from the tools. While testing with Burp, there have been
several cases where a detection rate of 100% is noticed. This
would indicate that every submitted vector was able to trigger
a vulnerability. In other words, both testing procedures have
produced a certain amount of false positives, which influenced
the final results. The used tools were not able to detect
such potential outcomes in an automatic manner. We believe
that the obtained results depend more on the test execution
method rather than the quality of the inputs due to different
mechanisms that take place on the test oracles of the testing
tools. This argument is further supported by the fact that we
noticed differences on the results not only when comparing the
combinatorial grammars themselves, but also when comparing
the results that we obtained when testing with the vectors that
were produced with fuzzers. However, we will investigate this
issue further in future work.

V. CONCLUSION AND FUTURE WORK

In this work, we revised an input grammar for combina-
torial generation of test inputs and made use of constraints
for another test suite. These test suites were used by both
an automated and a manual testing approach in order to test
several web applications for reflected and stored XSS. We
would like to highlight that testing with combinatorial attack
grammars with increasing interaction strength results in higher
exploitation rates. Also, setting constraints inside the input
model results in significantly improved attack vectors. How-
ever, in order to further improve our testing results in the attack

htps://www.owasp.org/index. php/OWASP_Xenotix_XSS_Exploit_
Framework

212

pattern-based technique, a revisited test oracle might be taken
into consideration since we witnessed some discrepancies with
manual penetration testing methods. Last but not least, from
the comparison of the combinatorial grammars against the
ones used by fuzzers we conclude that attack pattern-based
combinatorial testing can be seen as an alternative method for
revealing XSS vulnerabilities in web security testing.

Acknowledgements. The research presented in the paper has
been funded in part by the Austrian Research Promotion
Agency (FFG) under grant 832185 (MOdel-Based SEcurity
Testing In Practice) and the Austrian COMET Program (FFG).

REFERENCES

A. Blome, M. Ochoa, K. Li, M. Peroli, and M. T. Dashti, “Vera: A
flexible model-based vulnerability testing tool,” in Proceedings of the
Sixth International Conference on Software Testing, Verification and
Validation (ICST’13), 2013.

F. van der Loo, “Comparison of Penetration Testing Tools for Web
Applications,” Master’s thesis, University of Radboud, Netherlands,
2011.

O. Tripp, O. Weisman, and L. Guy, “Finding your way in the testing
jungle: A learning approach to web security testing,” in Proceedings of
the 2013 International Symposium on Software Testing and Analysis,
ser. ISSTA 2013. New York, NY, USA: ACM, 2013, pp. 347-357.

F. Duchene, R. Groz, S. Rawat, and J.-L. Richier, “XSS vulnerability
detection using model inference assisted evolutionary fuzzing,” in Pro-
ceedings of the 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, ser. ICST *12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 815-817.

J. Bozic, D. E. Simos, and F. Wotawa, “Attack pattern-based combi-
natorial testing,” in Proceedings of the 9th International Workshop on
Automation of Software Test (AST), 2014, pp. 1-7.

B. Garn, I. Kapsalis, D. E. Simos, and S. Winkler, “On the appli-
cability of combinatorial testing to web application security testing:
A case study,” in Proceedings of the 2nd International Workshop on
Joining AcadeMiA and Industry Contributions to Testing Automation
(JAMAICA’14). ACM, 2014.

D. Kuhn, R. Kacker, and Y. Lei, Introduction to Combinatorial Testing,
ser. Chapman & Hall/CRC Innovations in Software Engineering and
Software Development Series. Taylor & Francis, 2013.

L. Yu, Y. Lei, R. Kacker, and D. Kuhn, “Acts: A combinatorial test
generation tool,” in Software Testing, Verification and Validation (ICST),
2013 IEEE Sixth International Conference on, March 2013.

A. Javed and J. Schwenk, “Towards elimination of cross-site scripting
on mobile versions of web applications,” in Lecture Notes in Computer
Science, 2014, pp. 103-123.

J. Bozic, B. Garn, D. Simos, and F. Wotawa, “Evaluation of the IPO-
family algorithms for test case generation in web security testing,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2015
IEEE Eighth International Conference on, April 2015, pp. 1-10.

J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing,” in Proceedings of the 9th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE’13), 2013, pp.
26-36.

T. Dao and E. Shibayama, “Coverage criteria for automatic security
testing of web applications,” in Information Systems Security, ser.
Lecture Notes in Computer Science, S. Jha and A. Mathuria, Eds.
Springer Berlin Heidelberg, 2010, vol. 6503, pp. 111-124.

J. Bozic and F. Wotawa, “XSS pattern for attack modeling in testing,”
in Proceedings of the 8th International Workshop on Automation of
Software Test (AST), 2013.

, “Security testing based on attack patterns,” in Proceedings of the
5th International Workshop on Security Testing (SECTEST’14), 2014.

A. P. Moore, R. J. Ellison, and R. Linger, “Attack Modeling for
Information Security and Survivability,” in Technical Note CMU/SEI-
2001-TN-001, March 2001.

(1]

[11]

[12]

