
Energy-Efficient Software Implementation of
Long Integer Modular Arithmetic?

Johann Großschädl1, Roberto M. Avanzi2, Erkay Savaş3, and Stefan Tillich1

1 Institute for Applied Information Processing and Communications
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

{Johann.Groszschaedl,Stefan.Tillich}@iaik.tugraz.at
2 Faculty of Mathematics and Horst Görtz Institute for IT-Security

Ruhr University Bochum, Universitätsstrasse 150, D–44780 Bochum, Germany
Roberto.Avanzi@ruhr-uni-bochum.de

3 Faculty of Engineering and Natural Sciences
Sabanci University, Orhanli-Tuzla, TR–34956 Istanbul, Turkey

erkays@sabanciuniv.edu

Abstract. This paper investigates performance and energy character-
istics of software algorithms for long integer arithmetic. We analyze and
compare the number of RISC-like processor instructions (e.g. single-
precision multiplication, addition, load, and store instructions) required
for the execution of different algorithms such as Schoolbook multipli-
cation, Karatsuba and Comba multiplication, as well as Montgomery
reduction. Our analysis shows that a combination of Karatsuba-Comba
multiplication and Montgomery reduction (the so-called KCM method)
allows to achieve better performance than other algorithms for modu-
lar multiplication. Furthermore, we present a simple model to compare
the energy-efficiency of arithmetic algorithms. This model considers the
clock cycles and average current consumption of the base instructions to
estimate the overall amount of energy consumed during the execution
of an algorithm. Our experiments, conducted on a StrongARM SA-1100
processor, indicate that a 1024-bit KCM multiplication consumes about
22% less energy than other modular multiplication techniques.

1 Introduction

The reduction of energy consumption is a first-class design goal for embedded
systems, driven mainly by the proliferation of mobile, battery-powered devices
like cell phones, handheld computers, portable media players, and so on. The
clock frequency of microprocessors exploded from 33 MHz in the early 1990s
to more than 3 GHz in 2005. During the same period, the power consumption

? The work described in this paper has been supported by the Austrian Science Fund
under grant number P16952-N04 (“Instruction Set Extensions for Public-Key Cryp-
tography”), and in part by the European Commission through the IST Programme
under contract IST-2002-507932 ECRYPT. Erkay Savaş is supported by the Scien-
tific and Technical Research Council of Turkey under project number 104E007.

J. R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 75–90, 2005.
c© International Association for Cryptologic Research 2005

mailto:Johann.Groszschaedl@iaik.tugraz.at?cc=Stefan.Tillich@iaik.tugraz.at
mailto:Roberto.Avanzi@ruhr-uni-bochum.de
mailto:erkays@sabanciuniv.edu


76 J. Großschädl et al.

of microprocessors increased by an order of magnitude, even though transistor
sizes shrunk by roughly one half every 18-24 months and the supply voltages
were scaled down from 5 V to less than 1.5 V. It is expected that the increase
in transistor density of microchips will follow Moore’s law for (at least) another
ten years. Unfortunately, progress in battery technology has not kept up with
Moore’s law since the average annual growth in battery capacity is less than
12%. Dramatic improvements in battery technology are not foreseen in the next
years, which means that the gap between power consumption of microprocessors
and available battery capacity will widen in the future.

During the last 15 years, a significant effort has been spent on reducing the
overall power and energy consumption of battery-operated devices. Low-power
hardware design is a well-established area of research and numerous approaches
for power and energy minimization have been proposed. Of fundamental impor-
tance in low-power VLSI design is the availability of supporting EDA tools and
an appropriate design flow that considers power consumption in all phases of a
design. However, since much of the activity of hardware is controlled by soft-
ware, it is also necessary to analyze the software impact on the hardware energy
consumption. A significant problem in this context is the lack of development
tools which enable a software designer to systematically evaluate and reduce
the energy consumption. While hardware designers have a number of different
circuit and gate-level power analysis tools at their disposal, there exist no ad-
equate tools for analyzing the power consumption at high levels of abstraction
or to quantify the power cost of software. On the other hand, most software
development tools allow functional verification and performance profiling, but
provide no support for energy-related cost metrics [23].

Design methodologies for energy-efficient software are a relatively new field
of research, whereby especially the trade-off of performance versus energy has
received large attention. This is, to some extend, also a result of the exponen-
tial growth in processor performance, which allows to realize more and more
computation-intensive applications in software instead of hardware. It was ar-
gued in [23] that software offers a great potential for energy reduction, but soft-
ware savings are more difficult to achieve than hardware savings. A common
finding of previous work [25,26,19,15] is that the energy consumption of soft-
ware is closely tied to the execution time. However, reducing execution time is
not the only way to extend battery lifetime. The software energy optimization
techniques found in recent literature can be divided into three general categories
[19]: reduction of the cost or frequency of memory accesses, selection of the least
expensive instructions or instruction sequences, and processor-specific optimiza-
tions. References [26,19,4] demonstrate with a number of examples that smart
software design can indeed lead to substantial energy savings.

As security and cryptography play an increasingly important role in battery-
operated products, energy and power consumption are evolving to critical con-
straints for embedded cryptographic software. However, while there exists a rich
literature dealing with the performance of cryptographic software [2,3,14,21], the
aspect of energy-efficiency has not been widely researched so far, especially in



Energy-Efficient Software Implementation of Long Integer Arithmetic 77

the context of software for public-key cryptography4. With the present paper
we attempt to fill this gap. In the following sections, we analyze and compare
the execution time and energy dissipation of different algorithms for long integer
arithmetic. We show that different algorithms for one and the same arithmetic
operation, e.g. multiple-precision multiplication, can require different amounts
of energy and that these differences are not only given through unequal execu-
tion times, but also through the number of energy-intensive processor instruc-
tions executed by the algorithm. Typical examples of costly instructions (in
terms of energy) in modern RISC processors are multiply instructions as well
as load/store instructions [24]. The use of multiplication algorithms which re-
quire fewer load/store instructions (e.g. Comba’s method [2]) or fewer multiply
instructions (e.g. Karatsuba’s method [11]) can reduce the total energy dissi-
pation compared to the “conventional” schoolbook method [16], even when the
execution times do not vary significantly.

2 Energy Characteristics of the StrongARM SA-1100

Intel’s StrongARM SA-1100 is a high-performance, low-power RISC processor
for portable wireless multimedia devices. The SA-1100 processor incorporates
the efficiency of the ARMv4 instruction set architecture (ISA) [1] along with
the quality of Intel design and process technology [9]. Because of its excellent
performance and energy figures, the StrongARM SA-1100 has found widespread
use in pocket computers and PDAs such as the HP Jornada 720, Sharp Zaurus
SL-5500G, or Compaq iPAQ H3630.

2.1 SA-1100 Instruction Timing

The SA-1100 consists of a 32-bit RISC core with separate instruction and data
caches (of size 16 kB and 8 kB, respectively), a memory management unit
(MMU), and peripheral controllers (DRAM controller, serial ports, etc.) inte-
grated onto a single chip. It can be run at a variety of clock frequencies, ranging
from 39 MHz up to 220 MHz, with a nominal core supply voltage of between 1.5
and 2.0 V [10]. Key characteristics of the processor core are a classic five-stage
pipeline (Fetch, Issue, Execute, Buffer, and Register Write) with static branch
prediction, and a multiply/accumulate (MAC) unit featuring a (32× 12)-bit Wal-
lace tree multiplier. The instruction set of the StrongARM SA-1100 is specified
in the ARM Architecture Reference Manual [1].

The SA-1100 employs an early termination mechanism for multiply and mul-
tiply/accumulate operations, which means that it detects “small” operands and
completes a multiplication more quickly. For example, if bits 31-11 of the first
operand are all 0, then the multiply operation completes in one cycle. When
bits 31-23 are all 0, the multiply spends two cycles in the Execute stage of the
pipeline. In all other cases, it spends three cycles in the Execute stage [8].
4 Contrary to public-key cryptosystems, there exist papers about the energy-efficiency

of block ciphers in software [6] and energy aspects of security protocols [7,18,12].



78 J. Großschädl et al.

Table 1. Average current consumption of SA-1100 instructions (at 206 MHz) [24]

Instruction type Avg. current Avg. energy

Arithmetic/logical instructions 0.178 A 1.296 nJ

Multiply and MAC instructions 0.196 A 1.427–5.709 nJ

Load instructions (cache hit) 0.196 A 1.427 nJ

Store instructions (cache hit) 0.229 A 1.667 nJ

Other instructions 0.170 A 1.238 nJ

The SA-1100 executes “conventional” arithmetic/logical instructions at a
rate of one instruction per clock cycle, i.e. every stage of the pipeline is occupied
for a single cycle. Load instructions, such as LWR, also require one cycle in each
pipeline stage, provided that they hit the data cache. However, the pipeline will
stall for a cycle if the immediately following instruction uses the loaded value
as operand. Store instructions (e.g. STR) normally require one clock cycle in
each pipeline stage when they hit the data cache. Multiply instructions spend
up to three clock cycles in the Execute stage of the pipeline, depending on the
magnitude of the first operand. In addition, the “long” multiply instructions
producing a 64-bit result (e.g. UMULL) require a second cycle in the Buffer stage
of the pipeline [8].

2.2 SA-1100 Power Consumption

The energy consumed by a processor while running a certain program can be
estimated through instruction-level power analysis, first proposed by Tiwari et
al. [25,26]. This technique estimates the total amount of energy drawn during the
execution of a program by summing up the energy consumed by each individual
instruction. Therefore, an instruction-level energy model requires to determine
the energy cost of the processor instructions. Tiwari et al. propose to measure
the average current dissipation while the processor repeatedly executes a single
instruction [25]. Advanced energy models also consider inter-instruction effects
like switching activity of buses, pipeline stalls, or cache misses [26].

Sinha and Chandrakasan [24] developed an instruction-level energy profiling
tool for the StrongARM SA-1100, called JouleTrack. Table 1 shows the average
current consumption of SA-1100 instructions, measured at a clock frequency
of 206 MHz and a supply voltage of 1.5 V. It is stated in [24] that, on average,
arithmetic and logical instructions consume 0.178 A, multiplies 0.196 A, loads
0.196 A, stores 0.229 A, while the other instructions consume about 0.170 A.
The StrongARM’s total variation in current consumption is 0.072 A, which is
38% of the overall average current consumption [24]. Sinha and Chandrakasan
also observed that the current consumptions are pretty uniform and depend only
marginally on addressing modes or operand values. However, other processors
can have a quite different current profile. For example, the current consumption
of the multiply instruction in DSPs will typically be far greater than the current
consumed by other instructions.



Energy-Efficient Software Implementation of Long Integer Arithmetic 79

Load and store instructions are more expensive (in terms of current dissi-
pation) than other instructions that involve just register accesses. Reading or
writing a memory location causes switching on highly capacitive address and
data buses, row and column decode logic, and data lines with a high fan-out
[19]. Also multiply instructions generally have an above-average current con-
sumption. The (32× 12)-bit multiplier in the StrongARM SA-1100 is a fairly
large circuit and hence a significant source of switching activities. Moreover, it
must be considered that the energy depends not only on the current consump-
tion, but also on the number of clock cycles that an instruction requires for its
execution. The UMULL instruction, for example, requires three extra cycles until
it leaves the pipeline (two extra cycles in the Execute stage and one extra cycle
in the Buffer stage). Therefore, the energy consumption of UMULL is about 4.4
times higher than the energy of an “ordinary” arithmetic/logical instruction.

The product of average current consumption, supply voltage, and running
time is exactly the energy that the processor dissipates during execution of a
program. Although there is a strong relation between execution time and energy
consumption, we stress the fact that optimizing for low energy is not the same
as minimizing the execution time. Software energy savings can be achieved by
reducing the running time or by reducing the average current dissipation of the
instructions involved in the execution (or by a combination of both).

3 Multiple-Precision Multiplication

In this section we analyze three principal methods to perform a multiple-pre-
cision multiplication: the schoolbook method [16], Comba’s method [2], and
Karatsuba’s method [11]. These three methods form the basis of the algorithms
for Montgomery multiplication discussed in Section 4. The schoolbook method
represents the most straightforward way to realize a multiple-precision multipli-
cation and is covered in many textbooks. However, the two other methods may
perform better in practice. Comba’s method requires fewer memory accesses (in
particular store operations), whereas Karatsuba’s method reduces the number
of multiply instructions.

Before describing the methods in detail, we introduce some notation. We
represent long integers as arrays of w-bit digits. A typical choice for w is the
word-size of the processor, which means w = 32 for the implementation that we
describe in this paper. The bitlength of the integers is denoted by n, and s is
the number of digits necessary to store them, whereby s = dn/we. For example,
a 256-bit integer requires s = 8 digits on a 32-bit architecture. We shall denote
long integers by uppercase letters and use the corresponding lowercase letters
for the individual w-bit digits, e.g. A = (as−1, . . . , a1, a0) with 0 ≤ ai < 2w.

3.1 Schoolbook Method

The schoolbook method, shown in Algorithm 1, consists of two nested loops,
each looping through the digits of one operand. In each iteration of the outer



80 J. Großschädl et al.

Algorithm 1. Multiple-precision multiplication (schoolbook method)

Input: Two s-digit operands A = (as−1, . . . , a1, a0), B = (bs−1, . . . , b1, b0).
Output: The 2s-digit product P = A ·B = (p2s−1, . . . , p1, p0).
1: P ← 0
2: for i from 0 by 1 to s− 1 do
3: u← 0
4: for j from 0 by 1 to s− 1 do
5: (u, v)← aj × bi + pi+j + u
6: pi+j ← v
7: end for
8: ps+i ← u
9: end for

loop, a digit bi of the operand B is multiplied by all digits of the operand A, and
the (n + w)-bit results are accumulated according to their weight. The school-
book method is also called operand scanning method since the outer loop moves
through the digits of an operand.

An ordered pair of the form (u, v) represents the 2w-bit (i.e. double-precision)
integer u · 2w + v. The schoolbook method performs an operation of the form
a× b + p + u in its inner loop, whereby a, b, p, and u are all w-bit quantities.
Therefore, the result of this inner-loop operation is at most 2w bits long. This
makes the schoolbook method easy to implement in high-level programming
languages which provide a double-precision integer datatype. For instance, com-
mon extensions of the C and C++ programming language support the datatype
unsigned long long for 64-bit integers. The Java language provides the long
type, which has a precision of 64 bits on all platforms.

The square of a long integer can be computed almost twice as fast as the
product of two distinct integers, which can be observed from Equation (1).

A2 =
s−1∑
i=0

s−1∑
j=0

aj · ai · 2(i+j)·w =
s−1∑
i=0

a2
i · 22·i·w + 2 ·

s−2∑
i=0

s−1∑
j=i+1

aj · ai · 2(i+j)·w (1)

Long integer squaring is typically performed in two steps. In the first step, all
inner-product terms aj · ai with j 6= i are calculated and summed up as shown
in Equation (1). The second step doubles the result obtained in the first step
and adds the inner products from the “main diagonal”, i.e. the terms a2

i .

3.2 Comba’s Method

Algorithm 2 illustrates an alternative method to accomplish a long integer mul-
tiplication. This method, first described by Comba [2], also consists of a nested
loop structure with a relatively simple inner loop. The two outer loops of Al-
gorithm 2 move through the digits pi of the product P , and therefore Comba’s
method is also referred to as product scanning method. To obtain the i-th digit pi

of P = A ·B, all inner-product terms aj × bi−j with 0 ≤ j ≤ i are accumulated



Energy-Efficient Software Implementation of Long Integer Arithmetic 81

Algorithm 2. Multiple-precision multiplication (Comba’s method)

Input: Two s-digit operands A = (as−1, . . . , a1, a0), B = (bs−1, . . . , b1, b0).
Output: The 2s-digit product P = A ·B = (p2s−1, . . . , p1, p0).
1: (t, u, v)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i do
4: (t, u, v)← (t, u, v) + aj × bi−j

5: end for
6: pi ← v
7: v ← u, u← t, t← 0
8: end for
9: for i from s by 1 to 2s− 2 do

10: for j from i− s + 1 by 1 to s− 1 do
11: (t, u, v)← (t, u, v) + aj × bi−j

12: end for
13: pi ← v
14: v ← u, u← t, t← 0
15: end for
16: p2s−1 ← v

and eventually added to carries from the computation of previous digits. The
store operation corresponding to each digit of the result only takes place in the
outer loop, when the digit is completely evaluated.

Comba’s method performs multiply/accumulate (MAC) operations in its in-
ner loop, which means that two w-bit digits are multiplied and the 2w-bit prod-
uct is added to a cumulative sum. This sum can easily get longer than 2w bits
and hence we need three w-bit registers for its storage. Algorithm 2 represents
these three registers by the triple (t, u, v). The operation carried out at line 7 and
14 is just a w-bit right-shift of (t, u, v). However, the extended precision of the
cumulative sum makes an implementation of Comba’s method rather difficult
when using high-level programming languages like C/C++ or Java, since they
have neither triple-precision data types, nor built-in support for handling carries
in an efficient way. On the other hand, Comba’s method is typically faster than
the schoolbook multiplication when implemented in assembly language.

3.3 Karatsuba’s Method

Karatsuba’s method reduces a multiplication of two s-digit operands to three
multiplications of size s/2, but at the cost of an increased number of additions
[11]. The three half-size multiplications can either be performed with the school-
book method, Comba’s method, or again Karatsuba’s method, provided that the
operands are large enough. A product of two s-digit operands with methods such
as the schoolbook method or Comba’s requires calculating s2 single-precision
multiplications. Karatsuba’s method performs only 3s2/4 single-precision mul-
tiplications. However, when applied recursively, Karatsuba’s method results in
an algorithm with complexity O(slog2 3) where log2 3 ≈ 1.584.



82 J. Großschädl et al.

AH ·BH AL ·BL

+ AH ·BH

+ AL ·BL

− (AH −AL) · (BH −BL)

Fig. 1. Graphical representation of Karatsuba’s method

In order to explain Karatsuba’s method, let us assume, for simplicity, that
the bitlength n and the number of digits s are both even. The operands A and
B are split into two parts of equal length, whereby AL, BL consist of the s/2
least significant digits, and AH , BH of the s/2 most significant digits of A and
B, respectively. Since A = AH · 2n/2 + AL and B = BH · 2n/2 + BL, the product
P = A ·B can be computed as according to the following equation.

P = AH ·BH ·2n +[AH ·BH +AL ·BL−(AH−AL)·(BH−BL)]·2n/2 +AL ·BL (2)

A graphical representation of Karatsuba’s method is given in Figure 1. It is also
possible to do the calculation with the absolute value for (AH −AL) · (BH −BL)
and to use the sign to decide whether this value is added to or subtracted from
AH ·BH + AL ·BL [13]. Note that carries may propagate from the most sig-
nificant digits of AH ·BH , AL ·BL, and (AH −AL) · (BH −BL) when they are
added. Karatsuba squaring is similar to multiplication, but with A = B the
equation reduces to three (s/2)-digit squares that have to be added according to
Figure 1. The middle term (AH −AL)2 is always positive, which simplifies the
implementation of Karatsuba squaring [5].

3.4 Analysis of the Algorithms

Both the execution time and the energy consumption of the algorithms described
in this section depend heavily on the concrete implementation. An implementer
could, for instance, fully unroll the inner and outer loops of the algorithms. In
this case, only the base instructions like multiplies, adds, loads and stores have
to be performed. However, while loop unrolling allows to achieve the best possi-
ble performance, it can significantly increase the code size, especially when the
number of digits is large. On the other hand, an implementation with “rolled”
loops represents the other end of the spectrum. Rolled-loop implementations do
not only execute the base instructions mentioned above, but also instructions
which do not directly contribute to the calculation of the result. We may think
about operations such as incrementing loop counters, branch instructions, regis-
ter moves, or pointer arithmetic. While an implementation with rolled loops has
the benefit of small code-size, it can be significantly slower than an optimized
variant with unrolled loops. This makes it necessary to find a trade-off between
performance (i.e. unrolled loops) and code-size (i.e. rolled loops). One possible
solution is to partially unroll the loops. For instance, the body of the loop can be



Energy-Efficient Software Implementation of Long Integer Arithmetic 83

Table 2. Comparison of base instructions for long integer multiplication algorithms

Algorithm # MUL # ADD # LOAD # STORE

Schoolbook Mul. s2 4s2 2s2+s s2+s

Schoolbook Sqr. 1
2
s2+ 1

2
s 2s2 + 10s s2+s 1

2
s2+ 3

2
s

Comba Multiplication s2 3s2 2s2 2s

Comba Squaring 1
2
s2+ 1

2
s 3

2
s2+ 15

2
s−3 s2+s 2s

Karatsuba-Schoolb. Mul. 3
4
s2 3s2+4s+2 3

2
s2+ 15

2
s+1 3

4
s2+ 11

2
s+1

Karatsuba-Schoolb. Sqr. 3
8
s2+ 3

4
s 3

2
s2+19s+2 3

4
s2+ 15

2
s+1 3

8
s2+ 25

4
s+1

Karatsuba-Comba Mul. 3
4
s2 9

4
s2+4s+2 3

2
s2+6s+1 7s+1

Karatsuba-Comba Sqr. 3
8
s2+ 3

4
s 9

8
s2+ 61

4
s−7 3

4
s2+ 15

2
s+1 7s+1

replicated multiple times (e.g. 8 or 16 times), which replaces a number of loop
iterations by non-iterated straight-line code. Partial loop unrolling eliminates, or
substantially reduces, the effects of the loop overhead (i.e. incrementing the loop
counter, branch instruction, etc.). In such case, the loop overhead is (almost)
negligible, which means that the execution time and the energy consumption
are primarily determined by the base instructions.

Table 2 summarizes the number of base instructions (i.e. multiplies, adds,
loads, and stores) for the algorithms described before. The schoolbook method
performs exactly s2 iterations of the inner loop. In each iteration, an operation
of the form a× b + p + u is executed, i.e. two w-bit digits are multiplied and
another two w-bit digits are added to the product. Note that adding a single-
precision digit to a double-precision digit actually involves two ADD instructions
since a single-precision addition may produce a carry which has to be processed
properly5. Furthermore, two load instructions (for aj and pi+j) and one store
(for pi+j) are executed in any iteration of the inner loop. The 2w-bit quantity
(u, v) is kept in registers and bi is loaded once per iteration of the outer loop.

Comba’s method also iterates the inner loop exactly s2 times. Therefore, we
have s2 multiplications and 3s2 single-precision additions since the accumulation
of a 2w-bit product to the running sum in (t, u, v) requires one ADD and two ADC
instructions. In any iteration of the inner loop, two operands are loaded from
memory, but the stores only take place in the outer loops. Therefore, Comba’s
method requires only 2s STORE instructions. Both the Comba and the school-
book squaring perform only (s2 + s)/2 MUL instructions (see Equation 1), which
reduces also the number of additions, loads and stores.

A Karatsuba multiplication of two s-digit operands basically consists of three
(s/2)-digit multiplications and five (s/2)-digit additions or subtractions. Table 2
shows the number of base instructions when using the schoolbook method or
Comba’s method for the half-size multiplications (we do not apply Karatsuba’s

5 More precisely, an ADD and an ADC (add with carry) instruction are required. How-
ever, we ignore this distinction in our analysis and count only the number of single-
precision additions, regardless of whether or not the carry flag is considered.



84 J. Großschädl et al.

Table 3. Running time (in µs) and average current consumption IAVG (in Ampere)

512 bit 1024 bit 1536 bit 2048 bit
Algorithm

Time IAVG Time IAVG Time IAVG Time IAVG

Schoolbook Mul. 13.8µ 0.193 55.0µ 0.193 124µ 0.193 219µ 0.193

Comba Multiplication 11.3µ 0.191 45.1µ 0.190 101µ 0.190 180µ 0.190

Karatsuba-Schoolb. Mul. 11.6µ 0.194 43.7µ 0.193 96.3µ 0.193 169µ 0.193

Karatsuba-Comba Mul. 9.7µ 0.192 36.2µ 0.191 79.5µ 0.191 140µ 0.191

trick recursively). Note that the addition or subtraction of the s-digit products
AH ·BH , AL ·BL, and (AH−AL) · (BH−BL) may produce a carry. For simplic-
ity, we count one ADD, one LOAD, and one STORE for the processing of this carry.

Performance and Energy Evaluation. The product of average current con-
sumption, supply voltage, and running time is exactly the energy that a processor
consumes during the execution of a program. Consequently, we have to estimate
the average current and running time in order to analyze the energy efficiency
of the algorithms. However, as already mentioned, the running time depends
heavily on implementation details like loop unrolling. Therefore, we only con-
sider the base instructions (i.e. multiplications, adds, loads, and stores) for the
analysis of the energy efficiency. This is clearly a coarse approach as it ignores
pipeline stalls, cache misses, and, in the case of a rolled-loop implementation,
the impact of “glue instructions” such as loop control, register moves, pointer
management6, and so on. Nonetheless, this approach is capable of making ba-
sic predictions about the execution time and energy consumption, especially for
implementations with fully or partially unrolled loops. Note that our estimation
can be easily refined to consider also other instructions, e.g. branches.

Table 3 shows the average current consumption and the running time of the
multiplication algorithms on a StrongARM SA-1100 processor (at a frequency
of 206 MHz and 1.5 V core supply voltage). The values stem from a theoretical
evaluation with fully unrolled inner loops. We assumed that the average current
of the base instructions is as specified in Section 2 (see Table 1) and that ADD,
LOAD, and STORE execute in one clock cycle, while the MUL instruction requires
four clock cycles, which is actually the case on the SA-1100 when the operands
have a magnitude of 32 bits. The running times differ significantly, while the
average power consumption shows only slight variations. However, it must be
considered that the running time of the algorithms is quite long, and hence even
a current saving of a few milli-Amperes can make a difference in the energy
consumption. For instance, a 1024-bit schoolbook multiplication consumes an
energy of about 15.9 µJ (at 1.5 V), while the Comba multiplication requires
only 12.9 µJ. In other words, Comba’s method requires 3.0 µJ (i.e. 18.9%) less
energy than the schoolbook method. About 7.3% of this 3.0 µJ saving are due
6 The ARM architecture supports auto-increment/decrement addressing modes, and

hence the pointer management does not fall into account on ARM processors.



Energy-Efficient Software Implementation of Long Integer Arithmetic 85

Algorithm 3. Montgomery multiplication

Input: An s-digit modulus M = (ms−1, . . . , m1, m0), operands A = (as−1, . . . , a1, a0)
and B = (bs−1, . . . , b1, b0) with A, B < M , and the constant M ′ = −M−1 mod 2n.

Output: The Montgomery product Z = A ·B · 2−n mod M .
1: P ← A×B
2: Q← P ×M ′ mod 2n

3: Z ← (P + Q×M)/2n

4: if Z ≥M then Z ← Z −M end if

to the 3 mA lower current consumption, and the rest due to the shorter running
time. The results for 1536 and 2048-bit operands are similar. Comba’s method
reduces the energy not only because it requires fewer STORE instructions, but
also due to the fact that saved STORE instructions have an above-average current
consumption (see Table 1).

Our theoretical evaluation shows that the Karatsuba-Comba multiplication
is superior to all other methods with respect to running time and energy con-
sumption, even for a short operand length like 512 bits. Besides the theoretical
evaluation, we also implemented the algorithms and simulated them with Joule-
track [24], an instruction-level energy profiler for the StrongARM SA-1100. The
simulation results confirm that Karatsuba-Comba multiplication is faster and
more energy-efficient than the other methods described in this section.

4 Montgomery Multiplication

The Montgomery multiplication algorithm [17] is an efficient method for per-
forming modular multiplication with an odd modulus. Montgomery’s algorithm
replaces the trial division with simple shift operations, which are particularly
suitable for implementations on general-purpose processors.

Given two integers A and B, and the modulus M , the Montgomery multipli-
cation algorithm computes Z = MonMul(A,B) = A ·B ·R−1 mod M , whereby
A,B < M and R is a constant such that gcd(R,M) = 1. Even though the algo-
rithm works for any R which is relatively prime to M , it is more useful when
the so-called Montgomery residual factor R is a power of two, e.g. R = 2n where
n = dlog2(M)e. The Montgomery product A ·B · 2−n mod M of the two integers
A and B can be calculated as shown in Algorithm 3. First, the two operands are
multiplied together to obtain the product P . The following two multiplications
reduce the product modulo M , whereby only the lower part of the result of the
first multiplication is needed, and from the second multiplication only the higher
part. A final subtraction of M can be necessary to bring the result into the range
of [0,M − 1]. The constant M ′ depends only on the modulus M and hence it
can be pre-computed. In summary, a Montgomery multiplication is only slightly
more costly than two conventional multiplications of n-bit integers.

The Montgomery multiplication algorithm calculates the Montgomery prod-
uct A ·B · 2−n mod M instead of the actual residue A ·B mod M , i.e. the result



86 J. Großschädl et al.

Algorithm 4. Montgomery multiplication (Coarsely Integrated Operand Scanning)

Input: An s-digit modulus M = (ms−1, . . . , m1, m0), operands A = (as−1, . . . , a1, a0)
and B = (bs−1, . . . , b1, b0) with A, B < M , and the constant m′

0 = −m−1
0 mod 2w.

Output: The Montgomery product Z = A ·B · 2−n mod M .
1: Z ← 0
2: for i from 0 by 1 to s− 1 do
3: u← 0
4: for j from 0 by 1 to s− 1 do
5: (u, v)← aj × bi + zj + u
6: zj ← v
7: end for
8: (u, v)← zs + u
9: zs ← v

10: zs+1 ← u
11: q ← z0 ×m′

0 mod 2w

12: (u, v)← z0 + m0 × q
13: for j from 1 by 1 to s− 1 do
14: (u, v)← mj × q + zj + u
15: zj−1 ← v
16: end for
17: (u, v)← zs + u
18: zs−1 ← v
19: zs ← zs+1 + u
20: end for
21: if Z ≥M then Z ← Z −M end if

carries the factor 2−n. Therefore, Montgomery arithmetic requires a conversion
of operands and a re-conversion of the result in order to get rid of this factor
[16]. We will not further discuss the basics of Montgomery multiplication since
they are covered in a number of papers and textbooks, e.g. in [3,20,14,16].

4.1 Coarsely Integrated Operand Scanning (CIOS)

Koç et al. [14] describe a number of efficient software algorithms for calculating
the Montgomery product on general-purpose processors. One of these methods
is the so-called Coarsely Integrated Operand Scanning (CIOS) method, which
can be phrased as shown in Algorithm 4. The CIOS method may be viewed
as schoolbook multiplication with a “coarse” integration of the Montgomery
reduction, i.e. multiplication and reduction steps are performed in the same outer
loop, but different inner loops. Therefore, the CIOS method has the same inner-
loop operation as the schoolbook method, which makes it simple to implement in
both assembly and high-level programming languages. Koç et al. reported that
the CIOS method achieves better performance than the other methods described
in [14]. Therefore, we use the CIOS method as a “benchmark” for our energy
evaluation. Further details about the CIOS method can be found in [14].



Energy-Efficient Software Implementation of Long Integer Arithmetic 87

Algorithm 5. Montgomery reduction (product scanning form) [20]

Input: An s-digit modulus M = (ms−1, . . . , m1, m0), operand P = (p2s−1, . . . , p1, p0)
with P < 2M − 1, and the constant m′

0 = −m−1
0 mod 2w.

Output: The Montgomery residue Z = P · 2−n mod M .
1: (t, u, v)← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i− 1 do
4: (t, u, v)← (t, u, v) + zj ×mi−j

5: end for
6: (t, u, v)← (t, u, v) + pi

7: zi ← v ×m′
0 mod 2w

8: (t, u, v)← (t, u, v) + zi ×m0

9: v ← u, u← t, t← 0
10: end for
11: for i from s by 1 to 2s− 2 do
12: for j from i− s + 1 by 1 to s− 1 do
13: (t, u, v)← (t, u, v) + zj ×mi−j

14: end for
15: (t, u, v)← (t, u, v) + pi

16: zi−s ← v
17: v ← u, u← t, t← 0
18: end for
19: (t, u, v)← (t, u, v) + p2s−1

20: zs−1 ← v, zs ← u
21: if Z ≥M then Z ← Z −M end if

4.2 Karatsuba-Comba-Montgomery (KCM) Multiplication

The Karatsuba-Comba-Montgomery (KCM) method combines Karatsuba and
Comba-like multiplication techniques with Montgomery reduction [22]. Contrary
to CIOS, the KCM method completely separates the multiplication of A by
B and the reduction of the product modulo M . The KCM method employs
Karatsuba-Comba multiplication for the former [21], while the latter is realized
with a product scanning technique as shown in Algorithm 5 [20]. This algorithm
accomplishes the Montgomery reduction in a similar way as Algorithm 3. The
first outer loop (lines 2-10) of Algorithm 5 calculates the s digits of the product
Q = P ·M ′ mod 2n and stores them in (zs−1, . . . , z1, z0). Thereafter, the second
loop (lines 11-20) produces the Montgomery residue Z = (P + Q ·M)/2n. More
details about Algorithm 5 and the KCM method can be found in [20].

4.3 Analysis of the Algorithms

Each of the two inner loops of the CIOS method is iterated s2 times and hence
s2 MUL instructions are carried out. In addition, s single-precision multiplications
are performed in the outer loop, which results in a total of 2s2 + s MUL instruc-
tions. Only s2 of these 2s2 + s MUL instructions actually contribute to the multi-
plication of A ·B, while the remaining s2 + s MUL instructions contribute to the



88 J. Großschädl et al.

Table 4. Comparison of base instructions for Montgomery multiplication algorithms

Algorithm # MUL # ADD # LOAD # STORE

CIOS Multiplication 2s2+s 4s2+4s+2 4s2+7s+2 2s2+4s+1

CIOS Squaring 3
2
s2+ 5

2
s 4s2+7s+2 3s2+6s+2 3

2
s2+ 11

2
s+1

KCM Multiplication 7
4
s2+ s 13

4
s2+8s+4 7

2
s2+11s+3 10s+1

KCM Squaring 11
8

s2+ 7
4
s 17

8
s2+ 77

44
s−5 11

4
s2+ 25

2
s+3 10s+1

Table 5. Running time (in µs) and average current consumption IAVG (in Ampere)

512 bit 1024 bit 1536 bit 2048 bit
Algorithm

Time IAVG Time IAVG Time IAVG Time IAVG

CIOS Multiplication 23.9µ 0.196 92.5µ 0.196 206µ 0.196 364µ 0.196

CIOS Squaring 20.3µ 0.195 76.5µ 0.195 169µ 0.195 297µ 0.195

KCM Multiplication 19.7µ 0.193 73.5µ 0.192 163µ 0.192 284µ 0.192

KCM Squaring 15.3µ 0.194 56.4µ 0.193 123µ 0.193 216µ 0.193

calculation of the Montgomery reduction. Also the reduction technique shown
in Algorithm 5 performs s2 + s MUL instructions. However, the KCM method
uses Algorithm 5 in combination with the Karatsuba-Comba method for the
calculation of the product, and hence the overall number of MUL instructions
is much smaller than in the CIOS method. Furthermore, the KCM method re-
quires only a linear number of STORE instructions, since both Algorithm 5 and
the Karatsuba-Comba method implement a product-scanning technique. The
number of base instructions are summarized in Table 4.

Table 5 shows the running time and the average current consumption of the
CIOS and the KCM method. These values have been obtained through a theoret-
ical evaluation with the base instructions MUL, ADD, LOAD, and STORE as described
in Section 3.4. The KCM method is faster and has a lower average current con-
sumption than the CIOS method, mainly because it requires fewer MUL and
STORE instructions. However, while the current values vary only by 4 mA, the
running times differ significantly. For instance, a 1024-bit CIOS multiplication
has a running time of 92.5 µs, but the KCM method requires only 73.5 µs, which
means that the latter is 19.0 µs (20.5%) faster. The corresponding energy values
differ by 6.0 µJ or 22.1% (27.2 µJ versus 21.2 µJ). About 8% of this saving
of 6.0 µJ is due to the lower average current of the KCM base instructions. The
same percentage holds for 1536 and 2048-bit operands.

In summary, more than 90% of the KCM method’s energy advantage stems
from the shorter execution time, while the remaining part is due to the lower
power consumption. Consequently, there is a close relation between the perfor-
mance and energy consumption of Montgomery multiplication algorithms. We
have also simulated the algorithms with JouleTrack, and the simulation results
confirm the superiority of the KCM method, even for 512-bit operands.



Energy-Efficient Software Implementation of Long Integer Arithmetic 89

5 Conclusions

The contribution of this paper is twofold. We aimed at determining how to
implement basic arithmetic algorithms for public-key cryptography with the goal
to minimize the energy consumption. Several different algorithms have been
considered. The higher goal, however, was to pave the way for a systematic
approach to the evaluation of energy costs of arithmetic algorithms.

We performed a theoretical analysis with the help of base instructions (mul-
tiplication, addition, load, and store), and combined it with the actual energy
consumption of these instructions on a specific architecture. Our results show
that a combination of Karatsuba and Comba multiplication with Montgomery
reduction (the KCM method) leads to the best energy efficiency. For example,
a 1024-bit modular multiplication according to the CIOS method requires an
energy of 27.2 µJ on the StrongARM SA-1100. The KCM method, on the other
hand, needs only 21.2 µJ, which corresponds to an energy saving of more than
22%. This energy saving results from the fact that the KCM method requires
fewer energy-intensive instructions like multiply and store instructions.

The power consumption of actual implementations of the considered algo-
rithms was simulated using JouleTrack. We found the relative performance and
energy figures from the simulation in perfect agreement with our theoretical
model. Hence, by analyzing the energy cost of the base instructions, it is pos-
sible to obtain most of the information needed to evaluate the energy-efficiency
of different algorithms for long integer arithmetic.

Acknowledgements. The information in this document reflects only the au-
thor’s views, is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the informa-
tion at its sole risk and liability.

References

1. ARM Limited. ARM Architecture Reference Manual. ARM Doc No. DDI-0100,
Issue H, Oct. 2003.

2. P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Jour-
nal, 29(4):526–538, Dec. 1990.

3. S. R. Dussé and B. S. Kaliski. A cryptographic library for the Motorola DSP56000.
In Advances in Cryptology — EUROCRYPT ’90, vol. 473 of Lecture Notes in
Computer Science, pp. 230–244. Springer Verlag, 1991.

4. J. R. Goodman. Energy Scalable Reconfigurable Cryptographic Hardware for
Portable Applications. Ph.D. Thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 2000.

5. T. Granlund. GNU MP: The GNU Multiple Precision Arithmetic Library. Manual,
available for download at http://swox.com/gmp/gmp-man-4.1.4.pdf, Sept. 2004.

6. C. T. Hager, S. F. Midkiff, J.-M. Park, and T. L. Martin. Performance and energy
efficiency of block ciphers in personal digital assistants. In Proceedings of the
3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom 2005), pp. 127–136. IEEE Computer Society Press, 2005.

http://swox.com/gmp/gmp-man-4.1.4.pdf


90 J. Großschädl et al.

7. A. Hodjat and I. M. Verbauwhede. The energy cost of secrets in ad-hoc networks.
In Proceedings of the 5th IEEE CAS Workshop on Wireless Communications and
Networking. IEEE, 2002.

8. Intel Corporation. StrongARM SA-110 microprocessor instruction timing. Appli-
cation note, order number 278194-001, Sept. 1998.

9. Intel Corporation. IntelR© StrongARMR© SA-1100 microprocessor for embedded
applications. Brief datasheet, order number 278092-005, June 1999.

10. Intel Corporation. IntelR© StrongARMR© SA-1100 microprocessor. Specification
update, order number 278105-025, Feb. 2000.

11. A. A. Karatsuba and Y. P. Ofman. Multiplication of multidigit numbers on au-
tomata. Doklady Akademii Nauk SSSR, 145(2):293–294, 1962.

12. R. Karri and P. Mishra. Optimizing the energy consumed by secure wireless ses-
sions – Wireless Transport Layer Security case study. Mobile Networks and Appli-
cations, 8(2):177–185, Apr. 2003.

13. D. E. Knuth. Seminumerical Algorithms, vol. 2 of The Art of Computer Program-
ming. Addison-Wesley, 3rd edition, 1998.

14. Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

15. H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh. Techniques for low
energy software. In Proceedings of the 2nd International Symposium on Low Power
Electronics and Design (ISLPED ’97), pp. 72–75. ACM Press, 1997.

16. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

17. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, Apr. 1985.

18. N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. Analyzing the energy
consumption of security protocols. In Proceedings of the 8th International Sym-
posium on Low Power Electronics and Design (ISLPED 2003), pp. 30–35. ACM
Press, 2003.

19. K. Roy and M. C. Johnson. Software design for low power. In Low Power Design in
Deep Submicron Electronics, vol. 337 of NATO Advanced Science Institutes Series,
chapter 6.3, pp. 433–460. Kluwer Academic Publishers, 1997.

20. M. P. Scott. Fast machine code for modular multiplication. Manuscript, available
for download at ftp://ftp.computing.dcu.ie/pub/crypto/fast mod mult2.ps,
Jan. 1995.

21. M. P. Scott. Comparison of methods for modular exponentiation on 32-bit Intel
80x86 processors. Informal draft, available for download at ftp://ftp.computing.
dcu.ie/pub/crypto/timings.ps, June 1996.

22. Shamus Software Ltd. M.I.R.A.C.L. Users Manual. Available for download at
ftp://ftp.computing.dcu.ie/pub/crypto/manual.doc, Nov. 2004.

23. T. Šimunić. Energy Efficient System Design and Utilization. Ph.D. Thesis, Stan-
ford University, Stanford, CA, USA, Feb. 2001.

24. A. Sinha and A. P. Chandrakasan. JouleTrack - A web based tool for soft-
ware energy profiling. In Proceedings of the 38th Design Automation Conference
(DAC 2001), pp. 220–225. ACM Press, 2001.

25. V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: A first
step towards software power minimization. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2(4):437–445, Dec. 1994.

26. V. Tiwari, S. Malik, A. Wolfe, and T.-C. Lee. Instruction level power analysis and
optimization of software. Journal of VLSI Signal Processing, 13(2–3):223–238,
Aug. 1996.

ftp://ftp.computing.dcu.ie/pub/crypto/fast_mod_mult2.ps
ftp://ftp.computing.dcu.ie/pub/crypto/timings.ps
ftp://ftp.computing.dcu.ie/pub/crypto/timings.ps
ftp://ftp.computing.dcu.ie/pub/crypto/manual.doc

	Introduction
	Energy Characteristics of the StrongARM SA-1100
	SA-1100 Instruction Timing
	SA-1100 Power Consumption

	Multiple-Precision Multiplication
	Schoolbook Method
	Comba's Method
	Karatsuba's Method
	Analysis of the Algorithms

	Montgomery Multiplication
	Coarsely Integrated Operand Scanning (CIOS)
	Karatsuba-Comba-Montgomery (KCM) Multiplication
	Analysis of the Algorithms

	Conclusions

