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Abstract. In this article, we propose an improved cryptanalysis of the
double-branch hash function standard RIPEMD-160. Using a carefully de-
signed non-linear path search tool, we study the potential differential
paths that can be constructed from a difference in a single message word
and show that some of these message words can lead to very good differ-
ential path candidates. Leveraging the recent freedom degree utilization
technique from Landelle and Peyrin to merge two branch instances, we
eventually manage to obtain a semi-free-start collision attack for 42 steps
of the RIPEMD-160 compression function, while the previously best know
result reached 36 steps. In addition, we also describe a 36-step semi-free-
start collision attack which starts from the first step.

Keywords: RIPEMD-160, semi-free-start collision, compression function,
hash function

1 Introduction

Due to their widespread use in many applications and protocols, hash functions
are among the most important primitives in cryptography. A hash function H
is a function that takes an arbitrarily long message M as input and outputs a
fixed-length hash value of size n bits. Cryptographic hash functions have the
extra requirement that some security properties, such as collision resistance and
(second)-preimage resistance, must be fulfilled. More precisely, it should be im-
possible for an adversary to find a collision (two distinct messages that lead
to the same hash value) in less than 2"/2 hash computations, or a (second)-
preimage (a message hashing to a given challenge) in less than 2™ hash compu-
tations. Most standardized hash functions are based upon the Merkle-Damgard
paradigm [I3I3] and iterate a compression function h with fixed input size to
handle arbitrarily long messages. The compression function itself should ensure
equivalent security properties in order for the hash function to inherit from them.

The cryptographic community have seen very impressive advances in hash
functions cryptanalysis in the recent years [20/I8/T9I17], with weaknesses or even
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sometimes collisions exhibited for many standards such as MD4, MD5, SHA-0 and
SHA-1. These functions have in common their design strategy, based on the uti-
lization of additions, rotations, xors and boolean functions in an unbalanced
Feistel network. In order to diversify the panel of standardized hash functions
and make a backup plan available in case the last survivors of this MD-SHA fam-
ily gets broken as well, NIST organized a 4-year SHA-3 competition which led
to the selection of Keccak [I] as new standardized primitive. The move of the
industry towards SHA-3 will take a lot of time and even broken functions such
as MD5 or SHA-1 remain widely used. Among the MD-SHA family, only SHA-2
and RIPEMD-160 compression functions are still unbroken, although practical
collisions on the SHA-2 compression function have been improved from 24 to
38 steps recently [III12]. The compression function used in RIPEMD-128 was
recently shown not to be collision resistant [§].

RIPEMD can be considered as a subfamily of the MD-SHA-family as its first rep-
resentative, RIPEMD-0 [2], basically consists in two MD4-like [I5] functions com-
puted in parallel (but with different constant additions for the two branches),
with 48 steps in total. Even though RIPEMD-0 was recommended by the Euro-
pean RACE Integrity Primitives Evaluation (RIPE) consortium, its security was
put into question with the early work from Dobbertin [5] and the practical col-
lision attack from Wang et al. [I7]. Meanwhile, in 1996, Dobbertin, Bosselaers
and Preneel [6] proposed two strengthened versions of the original RIPEMD-O,
called RIPEMD-128 and RIPEMD-160, with 128/160-bit output and 64/80 steps
respectively. RIPEMD-0 main flaw was that its two computation branches were
too much similar and this issue was patched in RIPEMD-128 and RIPEMD-160
by using not only different constants, but also different rotation values, boolean
functions and message insertion schedules in the two branches. This two-branch
structure in RIPEMD family is a good method to reduce the ability of the attacker
to properly use the available freedom degrees and to find good differential paths
for the entire scheme. RIPEMD-160 is a worldwide ISO/IEC standards [7] that is
yet unbroken and is present in many implementations of security protocols.

As of today, the best results on RIPEMD-160 are a very costly 31-step preim-
age attack [I4], a practical 36-step semi-free-start collision attack [10] on the
compression function (not starting from the first step), and a distinguisher on
up to 51 steps of the compression function with a very high complexity [16].

Our contributions. In this article, we improve the best know results on
RIPEMD-160, proposing a semi-free-start collision attack on 42 steps of its com-
pression function and a semi-free-start collision attack on 36 steps starting from
the first step. Our differential paths were crafted thanks to a very efficient non-
linear path search tool (Section [3) and by inserting a difference only in a single
message word, in a hope for a sparse difference trail. We then explain in Sec-
tion 4| why we believe the 8" message input word (M5) is the best candidate
for that matter. Once the differential paths settled, we leverage in Section
the freedom degree utilization technique introduced by Landelle and Peyrin [g]
for RIPEMD-128 that merges two branch instances together in order to obtain a
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semi-free-start collision. It is to be noted that the step function of RIPEMD-160
makes it much more difficult to find a collision attack compared to RIPEMD-128.
This is mainly due to the fact that the diffusion is better, but also because
even though differences might be absorbed in the boolean function, they will
propagate anyway at least once through a free term (which was not the case in
RIPEMD-128). We give a description of RIPEMD-160 in Section [2| and summarize
our results in Section [6l

2 Description of RIPEMD-160

RIPEMD-160 [6] is a 160-bit hash function that uses the Merkle-Damgard con-
struction as domain extension algorithm: the hash function is built by iterating
a 160-bit compression function h that takes as input a 512-bit message block m;
and a 160-bit chaining variable cv;:

it1 = h(cv;,my)

where the message m to hash is padded beforehand to a multiple of 512 bitﬁ
and the first chaining variable is set to a predetermined initial value cvg = I'V.

We refer to [6] for a complete description of RIPEMD-160. In the rest of this
article, we denote by [Z]; the i-th bit of a word Z, starting the counting from 0.
H and H represent the modular addition and subtraction on 32 bits, and &, V,
A, the bitwise “exclusive or”, the bitwise “or”, and the bitwise “and” function
respectively.

2.1 RIPEMD-160 compression function

The RIPEMD-160 compression function is a wider version of RIPEMD-128, which
is in turn based on MD4, but with the particularity that it uses two parallel
instances of it. We differentiate these two computation branches by left and
right branch and we denote by X; (resp. Y;) the 32-bit word of left branch (resp.
right branch) that will be updated during step i of the compression function.
The compression function process is composed of 80 steps divided into 5 rounds
of 16 steps each in both branches.

Initialization. The 160-bit input chaining variable cv; is divided into 5 words
h; of 32 bits each, that will be used to initialize the left and right branch 160-bit
internal state:

Xog=(ho)™" X_3=(h)™! X o=(h3)”"" X.i=hy Xo=Mh
Y 4= (h0>>>>10 Y 3= (h4)>>>10 Y o= (h3)>>>10 Y_1 = hy Yo=h; .

3 The padding is the same as for MD4: a “1” is first appended to the message, then
x “0” bits (with z = 512 — (|m| + 1 + 64 (mod 512))) are added, and finally the
message length |m| coded on 64 bits is appended as well.
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The message expansion. The 512-bit input message block is divided into 16
words M; of 32 bits each. Each word M; will be used once in every round in a
permuted order (similarly to MD4 and RIPEMD-128) and for both branches. We
denote by W} (resp. W) the 32-bit expanded message word that will be used to
update the left branch (resp. right branch) during step i. We have for 0 < j <4
and 0 < k < 15:

W}.16+k = Mﬂj(k) and = Wiiyg,, = Mw;(k)

where 7r§- and 77 are permutations.

The step function. At every step i, the registers X;; and Y;;1 are updated
with functions le and f that depend on the round j in which 7 belongs:

X = (Xi—3)<<<10 az ((Xi—4)<<<10 =] QS;(Xi,Xi—l, (Xi—2)<<<10) =] Wzl e K§)<<<si7
Yy = (Yi—3)<<<10 =a] ((5/;_4)<<<10 = @;(Yi’ Yi 1, (Yi—2)<<<10) =z Wir B K;)<<<s:,

where K jl-, K7 are 32-bit constants defined for every round j and every branch,

st, sT are rotation constants defined for every step i and every branch, @é, P’ are

32-bit boolean functions defined for every round j and every branch.

The finalization. A finalization and a feed-forward is applied when all 80 steps
have been computed in both branches. The four 32-bit words h/ composing the
output chaining variable are finally obtained by:

6 — hl A X7g a] (Y78)<<<10 hll — hg B (X78)<<<10 H (Y77)<<<10
h/2 _ h3 =x (X77)<<<10 A (Y76)<<<10 hé _ hy B (X76)<<<10 3] YSO
hy = ho B Xgo H Y79

3 Non-linear path search

To find a non-linear differential path in RIPEMD-160, we use the techniques
developed by Mendel et al. [TIJT2]. This automated search algorithm can be
used to find both, differential characteristics and conforming message pairs (note
that we will use it only for the differential characteristics part in this article). We
briefly describe the tool in Section [3.1] and the new improvements and specific
configuration for RIPEMD-160 and our attack in Section [3.2

3.1 Automated search for differential characteristics

The basic idea of the search algorithm is to pick and guess previously unrestricted
bits. After each guess, the information due to these restrictions is propagated
to other bits. If an inconsistency occurs, the algorithm backtracks to an earlier
state of the search and tries to correct it. Similar to [IIJI2], we denote these
three parts of the search by decision (guessing), deduction (propagation), and
backtracking (correction). Then, the search algorithm proceeds as follows:
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Decision (Guessing)
1. Pick randomly (or according to some heuristic) an unrestricted decision
bit.
2. Impose new constraints on this decision bit.
Deduction (Propagation)
3. Propagate the new information to other variables and equations as de-
scribed in [ITIT2].
4. If an inconsistency is detected start backtracking, else continue with step
1.
Backtracking (Correction)
5. Try a different choice for the decision bit.
6. If all choices result in an inconsistency, mark the bit as critical.
7. Jump back until the critical bit can be resolved.
8. Continue with step 1.

During the search, we mainly use generalized conditions [4] to store, restrict
and propagate information. The decision of choosing which bits to guess depends
strongly on the specific attack, hash function and preferred resulting path. E.g.
if some parts of the non-linear path should be especially sparse, we guess the
corresponding state words first.

Similar to [I1IT2], new restrictions are propagated using brute-force propa-
gation within bitslices for each Boolean function and modular addition. In the
backtracking, we remember a small set of critical bits and repeatedly check if all
of them can be resolved. This way, we leave dead search branches faster. Addi-
tionally, we restart the search after a certain number of inconsistencies occur.

The main difficulty in finding a long differential characteristic lies in the fine-
tuning of the search algorithm. There are a lot of variations possible which can
decide whether the search eventually succeeds or fails. We describe the specific
improvements for RIPEMD-160 in the next section.

3.2 Improvements for RIPEMD-160

To efficiently find non-linear differential paths and message pairs for a larger
number of steps than in previous attacks [I0], we had to improve the search
in several ways. Especially finding a non-linear path for the XOR-round of
RIPEMD-160 was quite challenging.

In order to improve the propagation of information, we have combined the
bitslices of the two modular additions in each step of RIPEMD-160 into a single
bitslice. The two carries of the first and second modular addition are computed
and stored together within a generalized 3-bit condition, which is defined simi-
larly as the 2.5-bit condition of [9]. Without this combination, many contradic-
tions would be detected very late during the search, and therefore reduce the
overall performance.

To find sparser paths at the beginning or end of the non-linear path, we first
propagate the single bit condition in the message word backward and forward
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more or less linearly and by hand. Then, the automatic search tool is used to con-
nect the paths. Note that due to the additional modular addition in RIPEMD-160,
we can stay sparse longer in forward direction than in backward direction. This
can be observed when looking at our resulting differential paths in Appendix [A]
Once we have found a candidate for a differential path, we immediately con-
tinue the search for partial confirming message pairs, similar as in [IT/12]. We
first pick decision bits =’ which are constraint by linear two-bit conditions of the
form (X; ; = Xj; or X; ; # X} ;). This ensures that those bits which influence a
lot of other bits are guessed first. This way, inconsistent characteristics are found
faster and can also be corrected by the backtracking step of the path search.

4 Differential paths

The previous semi-free-start collision attacks on RIPEMD compression functions
usually start by spending the available freedom degrees in the first steps in each
branch, and then continue the computation in the forward direction, verifying
the rest of the differential path in each branch probabilistically. With this attack
strategy, the non-linear part of the differential paths for both branches should
be located in the early steps. Indeed, the non-linear parts are usually the most
costly part and therefore should be handle in priority by the attack with the
available freedom degrees.

Since the compression functions belonging to the RIPEMD family use a two-
branch parallel structure sharing the same initial chaining value, the left and
right branches can be regarded as somehow connected in the first steps. With
this observation, in [8] Landelle and Peyrin proposed a new method to find semi-
free-start collisions for RIPEMD-128. Their method allows the attacker to use the
message freedom degrees not necessarily in the early steps of each branch, and
therefore relax a bit the constraint that the most costly parts (the non-linear
chunks) must be located in the early steps as well. Consequently, the space of
possible differential paths is increased and likely to contain better candidates
since the probabilistic part in each branch is reduced.

Figure [1| shows the difference between the previous and the new strategies.
The attack process proposed in [8] is made of three steps. Firstly, the attacker
independently choose the internal states in both branches and start fixing some
message words in order to handle the two non-linear parts. Then, he uses some
of the remaining message words available to merge the two branches to the same
chaining variable by computing backward from the middle. Finally, the rest of
the differential path in both branches is verified probabilistically by computing
forward from the middle.

4.1 On the choice of the message word

As in [§], in order to find a sparse differential path for a semi-free-start collision
attack with the biggest number of steps, we chose to insert differences in only a
single message word. Then, for all the 16 message words, we have analyzed how
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Fig. 1. The previous (left-hand side) and new (right-hand side) approach for collision
search on double-branch compression functions introduced in [§].

many steps can be potentially attacked. The results are summarized in Table [I]
Note that the details of the attacks are not considered at this stage and the final
complexity will highly depend on the merging process and the quality of the
differential paths that can be found (both linear and non-linear parts). Yet, by
guessing for each message insertion where would be the best location for the two
non-linear parts, this preliminary analysis gives a rough estimation of how many
steps can be reached potentially. The overall attack being quite complex and
time consuming to settle, this will help us to focus directly on good candidates.

We found that message words M; and Mj4 both seem to be rather good
choices when trying to verify the following criteria:

1. the non-linear part in both branches should be short, in order to consume
less freedom degrees.

2. the early steps of the two non-linear parts should be rather close to each
other, which will help the merging.

3. the late steps of the non-linear parts should be as sparse as possible, since af-
ter the merging comes the probabilistic phase and ensuring a sparse incoming
difference mask would guarantee a rather high differential probability when
computing forward.

4. some message word difference injections allow the differences injected in very
late steps in the two branches to cancel each other through the final feed-
forward operation. If this trick is applicable, one can usually get 4 to 6 extra
steps for the collision attack with a relatively low cost.

Once M7 and M4 identified as good candidates, we tried to design the entire
differential path and establish the merging phase. During our search for the
linear part of the differential path, we found it much harder to find good ones
for RIPEMD-160 compared to RIPEMD-128. The reason is that the diffusion of
the step function of RIPEMD-160 is much better than RIPEMD-128 as it prevents
from fully and directly absorbing all the differences. For example, a step in
an IF round in RIPEMD-128 can be fully controlled by the attacker such that no
difference diffusion occurs. However, in RIPEMD-160, one extra free term appears
in the addition of the step function formula and this forces at least a diffusion
of a factor two (that cannot be absorbed by the IF function). As a consequence,
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Table 1. Rough estimation of the number of attackable steps for various choices of

message words differences injection (in parenthesis are given the steps window)

Message Word My M, Mo M3
Attackable Steps 51 (26-76) 46 (2-47) 52 (6-57) 48 (4-51)
Message Word My Ms Mg M-
Attackable Steps 42 (8-49) 50 (6-55) 39 (10-48) 56 (8-63)
Message Word Mg My Mo M
Attackable Steps 36 (12-47) 39 (10-48) 37 (14-50) 38 (12-49)
Message ‘Word M12 ]\/113 f\]14 J\llr,
Attackable Steps 38 (16-53) 34 (41-74) 58 (2-59) 43 (11-53)

we were not able to find differential paths as sparse as in [8] and the number of
attacked steps is also much lower.

4.2 Difficulty of calculating the probability

Another important difference between RIPEMD-128 and RIPEMD-160 is the step
differential probability calculation. While it is easy to calculate the differential
probability for each step of a given differential path of RIPEMD-128, it is not the
case for RIPEMD-160. The reason is that the step function in RIPEMD-160 is no
longer a S-function (a function for which the i-th output bit depends only on
the ¢ first lower bits of all input words), and therefore the accurate calculation
of the differential probability is very hard. Yet, one can write the step function
as two S-functions by introducing a temporary state that we denote @;. We use
the step function of the left branch as an example:

Qi = (Xima) =B (X, X1, (Xi_o)='") BW/B K],
Xiy1 = (X;3)=''8 Q.

Now the probability of the sub-steps can be calculated precisely. One possible
way to calculate the probability of the step function is to specify the conditions
on @; and obtain Pr[X; — Q;] - Pr[Q; — X,t1] as the step probability.

In fact, this estimation of the probability is not correct. First, there is no
freedom degree injected in the step @; — X;t1, which means it is not indepen-
dent from the step of X; — @Q;. Thus their probability can not be calculated as
a simple multiplication. Even if this estimation is accurate, it will only repre-
sent a lower bound of the real probability, since there could be a lot of possible
equivalent characteristics on @; and only one is taken in account here. We used
experiments to estimate the real probability and found that the probabilities
obtained using the first method is much lower than the real probability observed
when running the attack.
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We then tried to come up with another way to calculate the step differential
probability. We summed the probabilities of the two sub-steps for all possible
characteristics on @, i.e. we used Xq, (Pr[X; — Q;] - Pr(Q; — X;+1]) as differ-
ential probability for a step. The calculated probability turned out to be much
higher than the real one. This is explained by the fact that characteristics on
Q; in different steps will sometimes introduce conditions on X; and there could
be contradictions between some of the conditions. In the calculation, we did not
consider the compatibility between the @; in different steps. It is therefore not
surprising that the calculated probability is much higher.

In the following sections, all the probabilities given were obtained by ex-
periments while testing random samples. We leave the problem of theoretically
calculating the real step differential probability as an open problem.

4.3 48-step semi-free-start collision path

We eventually chose M7 as message word for the single difference insertion and
the shape of the differential path that we will use can be found in Figure
The non-linear parts are located between steps 16-41 and 19-36 for left the right
branch respectively. In steps 58-64, after a linear propagation of the difference
injected by M7, the differences in the output internal state are suitable to apply
the feed-forward trick that allows us to get a collision on the output of the
compression function (at the end of step 64). The complete differential path is
displayed in Figure [5|in Appendix.

Note that this differential path does not necessarily require to be followed
until step 64 to find a collision (thanks to the feed-forward trick). Indeed, by
stopping 6 steps before (step 58), the last difference insertions from M, will be
removed and no difference will be present in the internal states in both branches
(therefore leading directly to a collision, without even using the feed-forward
trick). We did a measurement and found that the collision probability for the
feed-forward trick (from step 58 to 64) is about 27113, However, our attacks
requiring already a lot of operations, we have to remove these extra 6 steps and
aim for a 42-step semi-free-start collision attack instead. Yet, one should keep
in mind that a rather small improvement with regards to the attack complexity
would probably lead to the direct obtaining of a 48-step semi-free-start collision
attack by putting back the 6 extra steps. The details of the attack will be given
in the next section.

4.4 36-step semi-free-start collision path from the first step

Besides the 48-step path, we also exhibit a semi-free-start collision path starting
from the first step, which also use message word M; to introduce differences.
Since the boolean function in the first round of the left branch is XOR, it is
quite hard to find a non-linear differential path. As a consequence, the path
we were able to find turns out to have three bits of differences in M instead
of a single one. The local collisions are located between the first two injections
of M7 in both branches, thus one can directly derive a 36-step collision path
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Fig. 2. The shape of our 48-step differential path for the semi-free-start collision attack
on the RIPEMD-160 compression function. The numbers represent the message words
inserted at each step and the red curves represent the rough amount of differences
in the internal state during each step. The arrows show where the bit differences are
injected with M7. The dashed lines represent the limits of the steps attacked.

starting from the very first step of RIPEMD-160. Figure |3 shows the shape of this
differential path and the detailed path is given in Figure [6] in Appendix.

'
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Fig. 3. The shape of our differential path for the 36-step semi-free-start collision attack
on the RIPEMD-160 from the first step. The numbers are the message words inserted
at each step and the red curves represent the rough amount differences in the internal
state during each step. The arrows show where the bit differences are injected with
M7. The dashed lines represent the limits of the steps attacked.

5 Merging the two branches

Once the differential path is set, we need not only to find conforming pairs for
both branches, but also to merge the two branches in order to make sure that
they will reach the same chaining variables on their input. Note that for a semi-
free-start collision, one only needs to ensure that the input chaining variables
for both branches are the same and the attacker can actually choose this value
freely. In contrary, for a hash collision, the attacker would have to merge both
branches to the same chaining variable, fixed to a certain predefined value.

5.1 Semi-free-start collision

As explained in previous sections, even though an interesting 48-step differential
path has been found (Figure |5), we will only look for a 42-step semi-free-start
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collision attack on RIPEMD-160, since the feed-forward collision trick would in-
crease the attack complexity beyond the birthday bound. Our algorithm to find
a semi-free-start collision is separated in three phases, which we quickly describe
here as a high-level view:

e Phase 1: fix some bits of the message words and the internal states in both
branches as preparation for the next phases of the attack. This will allow us
to fulfill in advance some conditions of the differential path.

e Phase 2: fix the internal state variables Xog, Xo7, Xog, Xog, X309 of the left
branch and Ya1, Yoo, Ya3, Yoy, Yo5 of the right branch. Then, iteratively fix
message words M11, M15, Mg, Mg, ]\4127 ]\4147 M107 M27 M5, Mg, MO and
Mg in this particular order, so as to fulfill the conditions located inside or
close to the non-linear parts. Once these internal state variables or message
words are successfully fixed, we call this candidate at the end of phase 2 a
starting point for the merging.

e Phase 3: use the remaining free message words M;, My, M; and M3 to
merge the internal states of both branches to the same input chaining value.
Since every value is fixed at this point, check if the rest of the differential
path is fulfilled as well (the uncontrolled part).

Phase 1: preparation. Before finding a starting point for the merging, we can
prepare the differential path by introducing certain conditions on the internal
states in both branches in order to increase the probability of the uncontrolled
part of the differential path.

The condition that we will force is that bits 16 to 25 of X35 must be equal
to 0n00n00000. The effect of this condition is that when a starting point will be
generated, we will be able to directly deduce the 8 lowest bits of X3 only by
fixing bits 16 to 25 of My. In order to explain this, note that calculating X357
during the step function in the forward direction gives:

X37 = X510 8 (X550 BB ONZ( X6, X35, X34) B Mg B KL, )<

Since ONZ(XgG,X35,X34) = (X36 V X73,5) ©® X34, bits 16 to 25 of X36 will have
no influence on the output of the boolean function ONZ if the corresponding X35
bits are set to zero (in a starting point, X32, X33, X34 and X35 are already fully
known). Then, we can choose My such that bit 16 of X559 8 (((X36 V X35) @
X34)&31f) B (Mo&3ff) B K3g equals zero, which will stop the carry coming
from the lower bits. As a result, the 8 lowest bits of X37 will not depend on X3g¢
anymore (and thus neither on M, when computing forward, since Xsg directly
depends on My) .

One example of our generated starting points is shown in Figure 4 in which
we applied our preparation trick. Before generating this starting point, we forced
the additional conditions on X35, and once the starting point found, fixing bits
16 to 25 of My to 01101000010 will make sure that the last 8 bits of X37 will
be equal to 11111010. Note that the 26-th bit of Mgy and 9-th bit of X3; are
deduced from the known conditions.
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probability (steps 35-58) of the left branch is increased.
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Step X; Step Y;

12

13

14

15 w! wy

16

17 I 01100111 01010111 01001110 11101100
18 10011001 01001100 00000011 10111000 01001111 11011100 00000100 11100000
19 ----—--- - 1 -1--—-— 10011110 00000100 10101111 00011011

20 00000011 00100101 10100111 00001111 1 11001011 10111100 00011101 1u111001

21 11001011 10101ul0 11111111 10001111

22 —mmmmmmm —mm 0 00111100 0----- 00 11110110 11100100 10110100 00010001 1 2 001unn01 00011101 Oiinuuuu 0110010u 01100000 11111110 10100110 01000000
23 01101110 00100100 11111101 10111000 01001111 11011100 00000100 11100000 00000un0 0110uuuil 01001010 1un01001 00000011 00100101 10100111 00001111
24 11010101 00011001 01001010 10110101 11101100 10100110 10100100 11100111 1 u11n1001 11111111 1000u010 11nn0010 11000000 00110011 00110000 01100000
256 11101n11 11110111 01100001 10110000 5 00u11000 n1010111 1111ul00 1110ninu 11110110 11100100 10110100 00010001
26 00110001 001001iun nnnnOOnu u1010001 ----- 011 01000010 -======= —==—==—— 6 01111001 11110111 00ininnn Onnnu0OO0 10001110 10111001 11000010 10010100
27 0n0Oniun 0u110100 00001111 10101010 01100000 11111110 10100110 01000000 10001uil 01uu01in 11110001 10100unn 11101100 10100110 10100100 11100111
28 10100010 101100nu 00n0Onuil uOun0110 01101100 10101011 01110010 00010011 1100u001 01n10100 01101101 11n000n1

29 01nuni01 110u1i0u 11010101 11uOnnul 11000000 00110011 00110000 01100000 00---0-- ---u--1- -u---u-- -------= —--—— 011 01000010 ---=-=== —==——--—
30 00001111 uu010n10 iuiinuin 000nnO00 01100111 01010111 01001110 11101100 00--n--- --n ---10--0

31 1n00110u Ouu11001 000011n0 0001n000 10001110 10111001 11000010 10010100 B e ittt L e 01101100 10101011 01110010 00010011
32 11011010 1010011u 01101uil0 00010111 01001111 11011100 00000100 11100000 3 32 -------- Rt 111 000----- 11110110 11100100 10110100 00010001
33 1n01101u 10u01101 11100110 11111001 00000011 00100101 10100111 00001111 01100000 11111110 10100110 01000000
34 11100110 10010010 01101000 u1100011 11000000 00110011 00110000 01100000

35 0111100n 00n00000 11110101 10110010 01001111 11011100 00000100 11100000
36 ------- e e B 011 01000010

37 —-mmmm- --n---1- —=----- 1 11111010 11110110 11100100 10110100 00010001 11000000 00110011 00110000 01100000
38 ----———- --0---00 00000--- --=----- 10001110 10111001 11000010 10010100

39 -mmmmmmm —mmmmmms mmmmmmmm oo —mmmmmem mmm—mem —mmmmmm —mmmmmem ] 39 mmmmmmmm mmmmmmom mmmmmmms —mmmeem e 011 01000010 --====== —===————
40 01101100 10101011 01110010 00010011 01100111 01010111 01001110 11101100
41 10001110 10111001 11000010 10010100
42 11101100 10100110 10100100 11100111
43 01101100 10101011 01110010 00010011
44 00000011 00100101 10100111 00001111
45 01100111 01010111 01001110 11101100

46 01100000 11111110 10100110 01000000

a7 11101100 10100110 10100100 11100111

48 10001110 10111001 11000010 10010100
49 mmmmmmmm mmmmmn e e s 011 01000010

50 01100111 01010111 01001110 11101100

51 00000011 00100101 10100111 00001111

52 01001111 11011100 00000100 11100000
563 10001110 10111001 11000010 10010100 01100111 01010111 01001110 11101100
54 11101100 10100110 10100100 11100111 11110110 11100100 10110100 00010001
55

56 01100000 11111110 10100110 01000000
57 01001111 11011100 00000100 11100000 11101100 10100110 10100100 11100111
58 --———- 1-- 01101100 10101011 01110010 00010011
59 11110110 11100100 10110100 00010001

60 11000000 00110011 00110000 01100000 14 60 ---=-==== —======= ———————= —————ooo oo 011 01000010 ---=-=== —=====-=
61 ——mmmmmm mmmmmem —ommo --01---- 01100000 11111110 10100110 01000000

62 u 00000011 00100101 10100111 00001111
63 01101100 10101011 01110010 00010011 2 63 =---===-== —======= ——————oo ——f 0---- 11000000 00110011 00110000 01100000
64

o

—

Mg. At this point the remaining free message words are Mg, Mo, Ms, Mis, My, M~

Fig. 4. Starting point for the 48-step differential path, on which the preparation trick
and My, which will be used during the merging phase.

was applied and the last 8 bits of X37 are fixed in advance by choosing several bits of
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Phase 2: finding a starting point. Given the differential path from Figure[5]
we can use the freedom degrees available in both left and right branches internal
states (320 bits) and in the message words (512 bits) to fulfill as much differential
conditions as possible. To make the attacker easier, we chose to fix first the five
consecutive internal states words that contain the most differential conditions
(XQG, X27, ng, ng, X30 in the left branch and ngl, }/22, 5/23, Y24, }/25 in the I’ight
branch). Then, we fix a few message words one by one in the given order and con-
tinue the computation of the internal states by computing forward and backward
in both branches (fI‘OIIl XQG, X27, ng, ng, X30 and Ygl, YQQ, Y23, )/24, }/25)

Fixing the first 5 chaining values (X6, X27, Xas, X29, X3¢ of the left branch
and Ya1, Yag, Ya3, Yoy, Yas of the right branch) is quite an easy task. Note that
the two branches can be fixed independently at this stage. We used algorithms
similar to the ones searching for a differential path: we just guess the unrestricted
bits - from lower step to higher step, lower bit to higher bit and check if any
inconsistency occurs. If both 0 and 1 selection of one bit lead to an inconsistency,
we apply the backtracking in the search tree by one level and guess the same bit
again. The guessing continues until all bits are fixed. If after a predefined number
of backtracking events (chosen according to the performance of the search) no
solutions are found, we can restart the whole search in order to avoid being
trapped in a bad subspace with no solution at all.

Concerning the fixing of the message words, we used a different approach.
Here, our search was applied word by word. Following this message words order-
il’lg Mlla M15, M& ]\437 Mlg, .2\4147 Ml(), J\427 M5, Mg, MO and Mg, we guess the
free bits, and some internal states values will directly be deduced by comput-
ing in both forward and backward directions from the already known internal
state values in both branches. Note that the two branches are not independent
anymore at this stage (since all message words are added several times in both
branches), so it is important to check often for any inconsistency that could be
detected. The backtracking and restarting options are also helpful here. We can
use an extra trick to get a performance improvement of the search by pre-fixing
the value of the word with the biggest number conditions in it (either message
word or internal state word), and then deduce the value from all the words
involved in this computation.

Our tool can find a starting point in a couple of minutes, with a program not
really optimized. We will discuss about the complexity to generate the starting
points in the next section.

Phase 3: merging both branches with M;, M,, M, and . A starting
point example is given in Figure E[ Our target is to use the remaining free
message words My, My, M; and to make sure that we have a perfect match
on the values of the five initial chaining words of both branches, i.e. X; =Y; for
1 € {12,13,14,15,16} (the indexes started at 12 because we are not attacking
from the first step here). The merging consists of four phases and in order to
ease the reading we marked the free message words with colors in each phase.
Once their values are fixed, we use black color for them.
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e Step 1: Use to ensure X1 = Yi6. As one can see, the value of X4 is
already fixed at this point. Now, observe the two backward step functions of
Y17 and Y162

Y<<<10 (Y = Y<<<10)>>>8 = IFZ(YQl, }/’20’ Y1§<1O) = Kr ]
Y<<<10 (Y g Y<<<10)>>>12 =] IFZ(}/QQ, Y197 Y1<8<<10) B KT g MO
Incorporating the equation X145 = Yj4, we can direcly calculate the value of
from the known ones:
— (X1<§<10 3] IFZ(}/QQ, Y197 Y1<8<<10) 3] Kgo =] M0)<<<12
BYs; B (Yoo B Y1028 B 1FZ(Yay, Yoo, Yo%) B K3,

e Step 2: Similarly, use M7 and M7 to ensure conditions X5 = Y15 and X4 =
Y14. Observing the step functions:

Xi$10 = (Xo0 B X510 BIFX(X 19, X158, X153 '0) B K{y B M,
=Y 0 = (Yoo BY 1) 7 B IFZ(Yao, Yis, Yi55'0) B K1 B M

X510 = (X139 B XS B IFX (X35, X7, X7510) B Kig B My
Y<<<10 (Y = Y<<<10)>>>15 B IFZ(Ylg, }/'177 Y1%<<10) = K’r ] M3

and introducing notations for the constants, the equations above are simpli-
fied to

ABM, =B8M;
(X10B(ABM))»*8D = (Y10B(BBM,))”P"BE

Let X = (Xlg == (AE']\[l))>>>8, C() =FHD and Cl = Ylg E'Xlg. The above
equations become one:

XHBCy = (C,BXEEH)>1 (1)

where Cy and C are constants. The problem of finding the value of M; and
M7 is equivalent to solving this equation. We find that this equation can be
solved with 2° computations: we can solve this equation for all 264 possible
values of Cy and C; and store the solutions (M7 and My) in a big look-up
table. Building and storing this table requires 273 time and 254 memory.

e Step 3: Use M, to ensure X713 = Y73. After step 2, Y73 is already fixed. Thus
we can use a simple calculation to get the value of My:

My = (X153 B XS0 B IFX(X 17, Xi6, X;7510) B Y33

e Step 4: The uncontrolled part of the merging. At this point, all freedom
degrees have been used and the last equation on the internal state X152 = Y7o
will be fulfilled with a probability of 2732
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Uncontrolled probability. After the merging, steps 36-58 of the left branch
and steps 29-58 of the right branch are still uncontrolled. Due to the difficulty of
calculating the probability, we used experiments to evaluate these probabilities.
Starting from a generated starting point, e.g. in Figure 4] we randomly choose
values of message words M5, My, My, Mg, M13, My, M7 and M,. Then we com-
pute forward to check if the differences are all canceled after the last injection
of M. Note that if there are conditions on message words My, My, M; and
M3, they should be fulfilled probabilistically and included in the probability
estimation, since the freedom degrees of these message words are used to match
the initial internal states values. For the other free message words Ms, Mg, M,
and Mg, we do not need to consider their conditions in the probability, because
we can freely choose their values to fulfill these conditions.

We measured the probability of both branches separately. After applying
the preparation trick, the uncontrolled probability of the left branch is 2783,
The uncontrolled probability of the right branch is 27366, Moreover, during the
merging phase, we could not control the value matching on the first IV word,
and this adds another factor of 2732

In total, the uncontrolled probability is 2732 . Since this
probability is too low and already close to the birthday bound for RIPEMD-160,
we are not able to afford the feed-forward tricks in steps 58-64.

,278.8 _2736.6 — 2777.4

Complexity evaluation. First we calculate the complexity to generate the
starting points. Since the uncontrolled probability is 27774, we need to generate
2774 starting points. However, we do not need to restart the generation from the
beginning. Indeed, every time we need a new starting point, we can randomize
Mg to get a new one. Once all possible choices of Mg have been used, we can
still use freedom degrees of My, My and Ms to generate all the required starting
points. Though there are many constraints on these four message words, luckily
the number of conditions on Mg is only two bits (one on X5 and one on X;7).
We can randomly choose value for X;g fulfilling the known conditions and check
if the one-bit condition on Xj7 is fulfilled. Thus, we can find a new starting point
from a known one with a complexity of 4 step functions, which is equivalent to
4/(42 % 2) ~ 2744 calls of the 42-step compression function of RIPEMD-160. For
the other message words, we do not need to go into the details of the complexity,
since the number of times we have to regenerate them is quite small and it is
not the bottleneck of our attack complexity. From the reasoning above, we can
conclude that the average complexity to generate a starting point is 27**. The
complexity of generating all the required starting points is then 273.

Now, we need to consider the complexity of the merging phase. In order to
evaluate this cost, we implemented the merging of the last four initial internal
states. The table lookup in second phase is estimated using a RAM access (since
the table will be very bog). In total, our implementation of the merging takes
about 145 cycles. The OPENSSL implementation of RIPEMD-160 compression
function on the same computer takes about 1040 cycles. Thus, 42 steps of the
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compression function takes about 1040 * 42/80 = 546 cycles. Then we can say
that our merging costs 145/546 ~ 2719 calls of the 42-step compression function.

Finally, we can calculate the complexity of the semi-free start collision attack
on 42-step RIPEMD-160: 273 4 2774=1.9 x5 975.5,

5.2 First step semi-free-start collision

This section discusses about the merging phase of the two branches to get a
semi-free-start collision attack on the the first 36 steps. The idea of the merging
is similar to the merging for the 42-step attack and we describe it briefly.

We start with generating a starting point. After that, the path in the left
branch has been satisfied until step 14, and the remaining uncontrolled probabil-
ity amounts to 2746, The path in the right branch has been fully satisfied. After
that, there are free bits left in message words My, Ms, My, M7, Mg and Miy.
Next, we show these free bits are enough to generate semi-free-start collisions,
and thus we only need to generate a single starting point.

The procedure of merging is detailed as below.

1. Set random values to My and the free bits of M7, and then compute until
X5 in the left branch.

2. Set M5 = M5 H 1 (initialize M5 as 0), and compute until X_; in the left
branch. If M35 becomes 0 again, goto Step 1.

3. Compute the values of My and My that make Yy = Xg and Y_; = X _;.

4. Compute X _5 and Y_o, and check if X_5 = Y_5 holds. In case of X _5 # Y_o,
goto Step 2.

5. Compute X_3, and then compute the value of M4 that makes Y_5 = X_3.
Check if the conditions on M4 are satisfied. If the conditions are not satis-
fied, goto step 1.

6. Compute X_4 and Y_4, and check if X_4 =Y_4 holds. In case of X_4 # Y_4,
goto Step 2.

Both X_5 = Y_, and X_, = Y_, are satisfied with a probability 2732, and
four bit conditions are set on Mj,. Thus we have to try 2% random values of
M7, Mg, and M5 to succeed in merging the two branches once. Recall that the
uncontrolled probability is 2746. So we need to merge the two branches 246
times. Thus, the total complexity of the attack is 268746 x 16/72 ~ 270-4,

6 Results

We give in Table[2la comparison of our attacks to previous results on RIPEMD-160.
Compared to the previous best semi-free-start collision attack on RIPEMD-160
(36 middle steps), we have increased the number of attackable steps by 6 and
proposed a 36-step semi-free-start collision attack that starts from the first step.
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Table 2. Summary of known and new preimage and collision attacks on RIPEMD-160
hash and compression function

Function  Size Target Attack Type #Steps Complexity Ref.
RIPEMD-160 160  comp. function preimage 31 2148 [14]
RIPEMD-160 160 hash function preimage 31 2158 [14]

| RIPEMD-160 160  comp. function  semi-free-start collision 36  low  [10] |
RIPEMD-160 160 comp. function semi-free-start collision 42 275:5 new
RIPEMD-160 160 comp. function semi-free-start collision 36 Q704 new
RIPEMD-160 160  comp. function non-randomness 48 low [10]
RIPEMD-160 160  comp. function non-randomness 51 2158 [16]

7 Conclusion

In this article, we have proposed an improved cryptanalysis of the hash function
RIPEMD-160, which is an ISO/IEC standard. We have found a 42-step semi-
free-start collision attack on RIPEMD-160 starting from the second step and a
36-step semi-free-start collision attack starting from the first step. Compared to
previous results, we have two improvements. First the number of attacked steps
is increased from 36 to 42, and secondly, for the same number of attacked steps,
we propose an attack that starts from the first step. Moreover, our semi-free-
start collision attacks give a positive answer to the open problem raised in [10],
in which the authors were not able to find any non-linear differential path in the
first step, due to the XOR function that makes the non-linear part search much
harder.

Our 42-step semi-free-start attack is obtained from a 48-step differential path.
Unfortunately, we couldn’t add these extra 6 steps to our attack without reaching
a complexity beyond the birthday bound (this extra part would be verified with
probability 2711-3). Future works might include improving the probabilistic part
even further. If one can improve this part by a factor of about 27, a 48-step semi-
free-start collision attack would then be obtained directly with our proposed
differential path. Another possible improvement would be that if one can find
a better non-linear differential path in the first round, it might be possible to
merge both branches at the same time to a given I'V and eventually obtain a
hash function collision.
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A The differential paths
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Fig. 5. The 48-step differential path
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Fig. 6. The 36-step differential path
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