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Abstract. In recent years, different instruction set extensions for cryp-
tography have been proposed for integration into general-purpose RISC
processors. Both public-key and secret-key algorithms can profit tremen-
dously from a small set of custom instructions specifically designed to
accelerate performance-critical code sections. While the impact of in-
struction set extensions on performance and silicon area has been widely
investigated in the recent past, the resulting security aspects (i.e. resis-
tivity to side-channel attacks) of this particular design approach remain
an open research topic. In this paper we discuss and analyze different
techniques for increasing the side-channel resistance of AES software im-
plementations using instruction set extensions. Furthermore, we propose
a combination of hardware and software-related countermeasures and
investigate the resulting effects on performance, cost, and security. Our
experimental results show that a moderate degree of protection can be
achieved with a simple software countermeasure. Hardware countermea-
sures, such as the implementation of security-critical functional units
using a DPA-resistant logic style, lead to much higher resistance against
side-channel attacks at the cost of a moderate increase in silicon area
and power consumption.

Keywords: Advanced Encryption Standard, instruction set extensions,
embedded RISC processor, SPARC V8 architecture, power analysis, SCA
resistance.

1 Introduction

The advent of side-channel attacks some ten years ago has forced the crypto
community to completely reconsider the way cryptosystems are designed and
implemented [8,9]. While “traditional” cryptanalysis is primarily the domain
of mathematicians who try to solve the hard mathematical problem upon which
the security of a cryptosystem is based, the art of side-channel cryptanalysis
aims to break concrete implementations of cryptosystems by using information
(e.g. power consumption, timing, or electromagnetic emanation) leaking from a
device while performing cryptographic calculations. It has been demonstrated in
a number of publications that side-channel cryptanalysis is a highly effective yet
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relatively cheap tool to reveal sensitive data (e.g. secret keys) from unprotected
or insufficiently protected implementations of cryptosystems [9]. Therefore, it is
of little surprise that side-channel attacks have initiated a large body of research
on countermeasures. Today, a variety of effective countermeasures for public-key
cryptosystems, in particular elliptic curve cryptosystems, are known to provide
good protection against side-channel attacks (SCAs) at the expense of a mod-
erate increase in computation time. Secret-key cryptosystems like the Advanced
Encryption Standard (AES) [11] have also been the subject of intensive research
and numerous countermeasures for both hardware and software implementation
have been proposed. In real-world cryptographic applications, public-key algo-
rithms tend to be used rather infrequently (e.g. for key exchange) compared to
secret-key algorithms performing such tasks like bulk encryption. Therefore, a
severe degradation of performance in order to increase implementation security
is normally less acceptable for secret-key algorithms.

One of the most important side-channel attacks against secret-key cryptosys-
tems like the AES is differential power analysis (DPA) [8]. Countermeasures for
defending against DPA can be divided into two categories: hiding and masking
[9]. Both countermeasures try to reduce the correlation between the sensitive
data and the observable side-channel information. Hiding tries to minimize the
influence of the sensitive data, while masking randomizes the connection between
sensitive data and the observable physical value. Both hiding and masking can be
realized in hardware or in software; the former generally offers more possibilities
than the latter. Well-known examples for SCA countermeasures are masking at
the algorithmic level (e.g. [2]), randomization of operations (e.g. [9]), and the use
of secure logic styles (e.g. [17]). Software countermeasures trade performance for
security (i.e. entail a performance degradation), while hardware countermeasures
tend to increase silicon area and power consumption.

A new implementation option for secret-key cryptosystems, which has be-
come very popular in the last few years, is the use of instruction set extensions
integrated into general-purpose processors [13,14]. In this paper we investigate
possible countermeasures against side-channel attacks to secure such implemen-
tations. As instruction set extensions emphasize the hardware/software co-design
paradigm, we also investigate the problem of secure implementation by having
an integrated view of both hardware and software components.

This paper is organized as follows: In Section 2 we briefly review the in-
struction set extensions for AES which we will use for our evaluation. Section 3
analyzes side-channel leakage in the context of extended processors. Sections 4, 5
and 6 describe different solutions for increasing the security of cryptographically
enhanced processors. In Section 7 these approaches are compared with regard
to a number of implementation aspects. We draw conclusions in Section 8.

2 Instruction Set Extensions for Cryptography

The concept of instruction set extensions has been very successful in different
application domains like multimedia and signal processing. Therefore, it does
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Fig. 1. Instruction set extensions for AES as proposed in [14]

not come as a surprise that researchers have also explored the benefits of this
approach in the context of cryptography. The principle idea is to integrate a
small set of custom instructions into a general-purpose processor with the goal
to accelerate the processing of cryptographic workloads [13]. General-purpose
processors with cryptography extensions combine high flexibility (due to the
base instruction set) with high performance for cryptographic applications (due
to the custom instructions). Extensions for public-key cryptography, like the
ones outlined in [5], have focussed on a broad support of different cryptographic
algorithms by accelerating common basic operations, e.g. long integer modular
multiplication. On the other hand, extensions for secret-key algorithms have
often been limited to a single algorithm like AES [1,4,10,14].

The aspect of implementation security in the context of instruction set ex-
tensions has been largely left open; the only exception is the work described in
[15], which deals with pure software countermeasures for AES implementations
on 32-bit processors, both with and without the availability of instruction set
extensions. The authors concluded that custom instructions help to integrate
effective countermeasures, but also that the resulting impact on performance is
enormous. In the present work we have tried to improve the resistance against
side-channel attacks by modifying the implementation of the instruction set ex-
tensions and the base processor. The authors of [15] used a subset of the AES
extensions published in [14] for their considerations. In order to facilitate the
comparison of our results with those of [15], we based our work on the same set
of extensions. The HDL source code of the processor core and the extensions for
AES is available for download from the homepage of the ISEC project [7].

Figure 1 gives a graphical representation of the functional unit for the AES
instruction set extensions (ISE FU) proposed in [14]. The two 32-bit operands
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entering the functional unit are denoted with op1 and op2. The opcode of the
instruction configures the operation of the functional unit, yielding the 32-bit
value result. The functional unit is capable to perform the AES transformations
SubBytes, ShiftRows, and MixColumns, as well as their respective inverses. Us-
ing the custom instructions allows one to execute a 128-bit AES encryption in
196 clock cycles. For comparison, a standard software implementation without
instruction set extensions requires 1,637 cycles.

3 Side-Channel Attacks on Instruction Set Extensions

In general, side-channel attacks on a cryptographic device are possible when
intermediate values with a close relation to the key have an influence on an
externally observable physical value. If an attacker can measure this physical
value while the device performs operations with some unknown key, a portion
or even all of this key might be disclosed. Well-known examples of such physical
values are execution time, power consumption, and electromagnetic emanation
[9]. An especially powerful attack is differential power analysis (DPA), first pub-
lished by Kocher et al. [8], which employs statistical methods to extract sensitive
data even from very noisy measurements. Our work centers around methods to
increase resistance of an AES implementation against DPA.

Differential power analysis targets intermediate values which depend on a
small portion of the key and the plaintext or ciphertext. We denote such vul-
nerable intermediate results as critical data and manipulations of such values as
critical operations. For secret-key algorithms, critical data is commonly processed
at the beginning and at the end of the algorithm, where the intermediate results
are strongly related to the plaintext or ciphertext. In order to defend against
DPA, we first need to analyze the flow of critical data through the processor and
its potential impact on the overall power consumption.

Figure 2 depicts a typical datapath of a RISC processor augmented with
a custom functional unit. This example shows four pipeline stages: the decode
stage between the register file and the op1, op2 registers, the execute stage
between op1, op2 and the result register, the memory stage between result and
wr.result register, and the write stage between wr.result and the register file.
There are several feedback paths from different stages back into the decode and
execute stage. The memory stage is connected to the data cache. Also depicted
are inputs and outputs for the control flow (ex.PC, jmpl address, wr.PC ). The
functional unit for the instruction set extensions (ISE FU) is located in parallel
to the original ALU/Shifter unit.

In order to analyze the side-channel leakage of this datapath, we assume
that the reg1 bus carries critical data, which can be subjected to a side-channel
attack. The parts of the datapath marked by bold lines and gray shades process
or hold values that are related to the original value of reg1. It is important to
note that the critical data passes through both the ALU/Shifter as well as the
ISE FU, irrespective of the result selected by the following multiplexor. Also
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Fig. 2. Typical datapath of a processor with instruction set extensions

note that all feedback paths, the jmpl address, as well as the data cache input
carry critical values.

An analysis of AES software using the instruction set extensions has revealed
that almost all instructions processing critical data can be easily rearranged into
such an order so that no feedback path needs to be used (i.e. no forwarding
occurs). Moreover, critical data is not used for control transfer and is never
stored to memory. Therefore, our first step to improve implementation security
is to detach these paths from the ISE datapath. The resulting, slightly modified
datapath is shown in Figure 3.

Two important changes can be seen in this figure. Firstly, operands for the
functional units (op1 and op2 ) can be blocked from entering the ALU/Shifter
whenever the ISE FU is active. Moreover, additional multiplexors in the feedback
and output paths allow to prevent propagation of critical data. All multiplexors
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Fig. 3. Modified processor datapath to suppress propagation of critical values

which suppress the propagation of the critical value related to reg1 are marked
with dashed lines. Through this simple measure the portion of the datapath
carrying critical data and hence requiring side-channel analysis countermeasures
is reduced significantly in comparison to the datapath in Figure 2.

3.1 Proposed Countermeasures

Based on the analysis of the critical sections of a typical processor datapath, we
examine three different strategies to increase the resistance against side-channel
attacks in the next sections. These three solutions differ with respect to the ease
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of implementation, level of security, and impact on the critical path, area, and
power consumption, which we compare in Section 7.

4 Option 1: Complete Datapath in Secure Logic

The straightforward way to secure the processor containing the extended data-
path shown in Figure 3 is to implement all critical parts in a DPA-resistant logic
style. For example, the circuit could be built using Wave Dynamic Differential
Logic (WDDL), as proposed by Tiri and Verbauwhede in [17]. This solution is
applicable to secure all types of cryptographic instruction set extensions, pro-
vided that the critical values do not leave the secured datapath, e.g. are stored
to unprotected cache or memory.

Note that it is also necessary to include the register file in the secure im-
plementation. As modern embedded RISC processors can have a large number
of registers, securing the register file can become very costly in terms of silicon
area. For example, SPARC V8 processors feature a number of so-called register
windows with 24 individual and 8 shared 32-bit registers. To limit the overhead
in terms of area, it is possible to implement only a part of the registers in a
secure logic style, and restrict critical values to these registers.

5 Option 2: Random Precharging

Another measure to increase resistance against power analysis is to randomly
charge the datapath before (precharge) and after (postcharge) a critical value is
processed. This measure can be implemented solely by careful modification of the
cryptographic software, but delivers at best a moderate increase in security. A
similar countermeasure was proposed in [3] for hardware implementations.

Random precharging can be realized in software by prefixing and suffixing
each instruction that processes critical data with the same instruction using
random operand values. As the same instruction is used, the same paths will
be active and loaded with random values. We will show in this section that for
the critical instructions for AES, the result of the execute stage is a uniformly
distributed random value if both operands are also uniformly distributed. This
property is necessary to ensure that all vulnerable paths after the functional unit
are also charged with uniformly distributed random values.

The random charging of the datapath before and after critical instructions
can, of course, not completely prevent side-channel leakage. Nevertheless, the
switching activity for the critical values is randomized to a certain degree. When
the preceding value of a bit line is randomized, then the transition characteristics
with respect to a fixed second value will also be randomized. When the preceding
value of a critical value was fixed to 0 and becomes uniformly distributed, the
switching characteristics change accordingly:

– 0 → 0 transitions become 0 → 0 or 1 → 0 transitions
– 0 → 1 transitions become 0 → 1 or 1 → 1 transitions
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A similar situation occurs when a preceding value fixed to 1 gets randomized:

– 1 → 0 transitions become 1 → 0 or 0 → 0 transitions
– 1 → 1 transitions become 1 → 1 or 0 → 0 transitions

Without loss of generality, we can limit our analysis to the first case. We can
observe that a 0 for the second (i.e. the critical) value will result in a 0 → 0 or
1 → 0 transition with equal probability. If the critical value is 1, then a 0 → 1
or 1 → 1 transition can occur. An attacker who correctly predicts a 0 or 1 of the
critical value will have to distinguish the effects of 0 → 0 and 1 → 0 transitions
from 0 → 1 and 1 → 1 transitions. When no random precharging is employed, it
is sufficient to distinguish 0 → 0 from 0 → 1 transitions, which is generally much
easier. By the same argument, an attacker has to distinguish 0 → 0 and 0 → 1
transitions from 1 → 0 and 1 → 1 transitions for an instruction with random
operands occurring after the attacked instruction.

We will now examine the case for AES instruction set extensions in more
depth. As already noted in Section 2, we use the high-performance extensions
proposed in [14], namely the instruction families sbox4s/isbox4s/sbox4r and
mixcol4s/imixcol4s. The sbox4s instruction takes two bytes each from the
first and second operand and substitutes them according to the AES S-box. The
isbox4s instruction does the exactly same with the inverse S-box. The sbox4r
instruction substitutes the four bytes of the first operand, followed by a rotation
to the left of the result by one byte. For mixcol4s, an AES State column is
assembled from two bytes of each of the operands. This column is transformed
according to the AES MixColumns operation, yielding the corresponding output
column of the AES State. The imixcol4s instruction does exactly the same for
the AES InvMixColumns transformation.

These two families of instructions are almost sufficient to implement ma-
nipulations of critical data for the whole AES algorithm. The only additional
instruction required is the xor instruction.

One important point to show is that it suffices to execute a custom instruction
with two random operands to charge every node in the extended datapath to a
uniformly distributed random value. To this end we have to examine the result
for each extended instruction with random operands:

– sbox4s/isbox4s/sbox4r: The input to the ISE functional unit is assembled
and calculated from independent bytes of the two operands. The AES S-box
itself is a bijective mapping. Therefore, two uniformly distributed random
operands produce a uniformly distributed result.

– mixcol4s/imixcol4s: The input to the ISE FU is again assembled from
independent bytes of the operands. For each byte of the resulting output
column, the four bytes of the input column are linearly transformed (multi-
plied by a constant in GF(28)), and then added (xored) together. Both does
not change the uniform distribution of the input operands.

– xor: A bitwise exclusive or of two uniformly distributed operands, yields a
uniformly distributed result.
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5.1 Further Implementation Details

It is important to know which instructions process critical data with respect
to power analysis and therefore need to be precharged. Generally, these are all
instructions which process data that depends on the plaintext or ciphertext and a
small portion of one or more round keys. We consider the initial AddRoundKey,
all four transformations of the first round, and SubBytes of the second round
as potentially vulnerable. At the end of the AES algorithm, all transformations
of round nine and ten need to be protected. The intermediate values in the
middle rounds depend on five or more bytes of the cipher key, thus requiring
at least 240 hypotheses for a DPA attack. We consider this level of protection
to be sufficient for most applications. However, it is not difficult to extend the
protection to further rounds.

As we have already noted in Section 3, we want to avoid the use of feedback
paths for critical data whenever possible. In our example of the 4-stage data
pipeline, we can prevent the propagation of critical values via feedback paths by
inserting at least two unrelated instructions between the instruction generating
the critical value and the first instruction using it as an operand. In the case
of the examined AES instructions set extensions, this criterion can be fulfilled
with no or little performance loss, by rearranging the instructions in an assembly
implementation.

Another potential way to circumvent the protection of software random
precharging is to artificially generate traps at specific moments in time. If the
corresponding trap handler routine is executed between the random precharge
instruction and the actual instruction which manipulates critical data, then the
effect of random precharging can be undone. To prevent this, interrupts should
be disabled during the critical sections of the AES algorithm. These sections
typically require only a few dozen cycles, so this measure should not have a
detrimental impact on system responsiveness. Note that in principle it would be
sufficient to disable all interrupts which are under the user’s control (e.g. UART
and timer interrupts).

For the examined AES extensions and the previously outlined degree of pro-
tection, it is sufficient to protect 20 instructions at the beginning and 20 instruc-
tions at the end of the algorithm. With the postcharge of the last instruction
of each sequence and two random 32-bit operands per random charge we need
2∗(2∗(20+1)) = 84 random 32-bit words (i.e. 336 random bytes). Depending on
the implementation of the random number generator, they could be generated
on-the-fly or loaded from a pre-generated array of random values in memory.

6 Option 3: Protected Mask Unit

In this section we present a generic method for securing cryptographic instruc-
tion set extensions. The basic idea is to split the processor into an insecure and
a (relatively small) secure zone. Critical data in the insecure zone is always pro-
tected with a Boolean mask. The secure zone contains storage for the respective
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mask, a mask generator and the functional units for the extensions. The secure
zone is implemented in a secure logic style.
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Fig. 4. Secure zone of the processor

Figure 4 depicts the principal structure of the secure zone. The register ad-
dresses of the masked operands op1m and op2m select the corresponding masks
from the storage section. Then the operands are unmasked and processed by the
functional unit, yielding the result res. The generator produces a new random
mask and applies it to the result res before it leaves the secure zone. This new
mask is also saved in the mask storage for the register which receives resm.
Outside of the secure zone, the critical values remain masked and can therefore
be handled without restrictions, e.g. stored to cache and memory. The insecure
zone does not require any special architectural modifications or a more careful
implementation in comparison with the corresponding part of the unprotected
processor.

This countermeasure confines the processing of the unmasked critical values
almost exclusively to the secure zone, as these values retain their Boolean mask
in the insecure zone. An important exception from this rule is the exclusive-
or operation of a masked value (um) with an unmasked value (v), which does
not change the mask: um ⊕ v = u ⊕ m ⊕ v = (u ⊕ v) ⊕ m = (u ⊕ v)m. The
AddRoundKey operation of AES is an example where the State is the masked
value and the corresponding round key is the unmasked value. Note that the
round key is not dependent on the plaintext or ciphertext and is therefore not
directly vulnerable to a DPA attack. Template attacks which target the round
key have been shown to be infeasible on 32-bit processors (see [15] for further
details).
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In the case of the AES extensions, it is sufficient to include the functional
units for the sbox4s and mixcol4s instruction families in the secure zone. The
critical values can be confined to seven 32-bit registers during execution of the
AES algorithm, so the mask storage unit only needs to be able to store seven
32-bit masks. SubBytes, ShiftRows, and MixColumns would then be performed
unmasked in the secure zone, while AddRoundKey could be done using the
masked State in the insecure zone.

The registers whose masks are held in the mask storage could either be fixed
or dynamically changed with the help of a tiny content-addressable memory
(CAM), similar to a cache. A mechanism for masking plaintext and unmasking
ciphertext is also required, which could be done, for example, with a dedicated
instruction.

The cycle count for AES operations would remain almost the same for a
protection solution with a mask unit (requiring just a few additional cycles
for masking at the beginning and unmasking at the end). The architecture of
the ISE FU can also remain unchanged since the critical values are processed
unmasked. A drawback of the solution with the mask unit is that it introduces
a resource (namely the mask storage unit) which can only be used by a single
task. To share this unit between tasks, its content needs to be saved on a task
switch, preferably in memory. In this way, the masks would leave the secure
zone and open up a potential vulnerability against second-order DPA attacks,
as now both the masked value and the corresponding mask would appear in the
insecure zone. However, it might still be possible to save the contents of the
mask storage into the unprotected memory on a task switch, without impairing
the overall security. If an attacker cannot control or predict task switches, then
it would be very hard to observe leakage related to specific critical values. Such
functionality could be implemented both in the processor’s hardware or in the
operating system.

7 Security and Performance Analysis

In this section we compare the three proposed solutions with respect to a number
of implementation aspects, whereby we try to keep the scope as broad as possible.
However, for some metrics it is necessary to take certain design choices into
account. We have chosen to use WDDL [16,17] as an example of a secure logic
style. All figures for silicon area, critical path, and power consumption are given
for an implementation based on a 0.13 µm standard-cell library. The cycle count
refers to an AES-128 encryption using instruction set extensions.

7.1 Applicability and Implementation Complexity

Implementing the complete datapath in secure logic (option 1) can be applied
to any kind of instruction set extension. It requires a careful partitioning of the
processor into an insecure and a secure part as well as the implementation of the
latter in a secure logic style. The software only needs to be modified to restrict
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critical operations to the secure datapath. Random precharging (option 2) is
also generally applicable to cryptographic instruction set extensions. Being a
software countermeasure, it can be flexibly adapted to protect specific operations
which are deemed vulnerable. The hardware can be left unchanged. The solution
with a protected mask unit (option 3) is only applicable if almost all critical
operations can be limited to the secure zone. Its implementation is easier than
option 1, as the boundary between insecure and secure zone is simple and well-
defined. Changes to the software are not necessary, apart from explicit masking
and unmasking operations at the beginning and end of the crypto operation.

7.2 Security

We express security as the factor by which the number of power traces necessary
for mounting a successful DPA attack increases. For the solutions employing a
secure logic style (options 1 and 3), this factor solely depends on the security
of the chosen logic style. For a careful implementation of WDDL in an ASIC, an
empirical evaluation has shown this factor to be over 750 [16].

In order to assess the security of random precharging (option 2), we have com-
pared an unprotected and a protected AES software implementation. We have
prototyped the Leon2-CIS processor with AES extensions on an FPGA-board
designed for power measurements [12]. Then, we have performed a DPA attack
on both AES software implementations using 100,000 power traces. Although the
absolute results may differ from those of an ASIC implementation, the relative
comparison gives an indicator for the security improvement. Figures 5 and 6
show the result for the DPA attack on the unprotected and the protected AES
implementation, respectively.

Fig. 5. Result of DPA attack on unpro-
tected AES implementation

Fig. 6. Result of DPA attack on AES im-
plementation with random precharging

The empirical results indicate that the correlation coefficient ρ can be reduced
significantly from 0.284 to 0.055. Therefore, the maximum correlation is reduced
by a factor of 5.16, which corresponds to an increase of the number of required
power traces by a factor of over 26 [9].
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Table 1. Cycle count for AES-128 encryption

Implementation Cycle count Overhead

Baseline implementation [14] 196 0%
Complete datapath in secure logic 392 100%
Random precharging ∼ 400 ∼ 105%
Protected mask unit ∼ 230 ∼ 17%

7.3 Performance

Table 1 shows how the different solutions impact the performance of a single
AES-128 encryption. Using a secure logic style such as WDDL requires an extra
precharge cycle for every operation performed in the secure part. This concerns
every instruction when the complete datapath is in secure logic, and therefore
leads to a doubling of the cycle count. For the protected mask unit, we assume
that only the critical instructions—which constitute only a small fraction of the
total instructions—require an extra precharge cycle for the secure logic. Random
precharging in software leads to a higher overhead as it needs one precharge and
one postcharge instruction per critical instruction, and also extra instructions to
load or generate the random precharge values.

In summary, the cycle count for our protected implementations ranges ap-
proximately between 230 and 400 cycles for a single 128-bit AES encryption. An
unprotected implementation on a processor without instruction set extensions
requires about 1,637 cycles [14]. When compared to the overhead of the software
countermeasures introduced in [15], which ranges between a factor of ten and
100, our proposed solutions remain very fast.

7.4 Implementation Overhead

For the random precharging solution, the hardware—and therefore also silicon
area, critical path and power consumption—remain unchanged. For the other two
options, the employed secure logic style plays a crucial role in determining the
overhead for these factors. For standard-cell implementation using WDDL, the
area typically increases by a factor of about 3.2–3.6. The increase of the critical
path has been shown to range between 1.07–1.42 while the power consumption
increases by a factor of about 3.5 [17]. For this evaluation we will use a factor
of 3.5 for area, 1.2 for critical path, and 3.5 for power consumption. In our case,
only a fraction of the total processor needs to be implemented in the secure logic
style, which alleviates the total overhead factors.

We now try to give a rough estimation of this overhead for the Leon2-CIS
processor used in [14]. The extended integer unit was reported to have a size
of 16,370 gate equivalents (GEs) at a delay of 4 ns (UMC 0.13 µm technology).
About half of the integer unit will have to be implemented in the secure logic
style for option 1, requiring about 16, 370 ∗ (1/2) ∗ 2.5 ≈ 20, 500 GEs extra (note
that if the size increases by 3.5, the extra area is (3.5−1) = 2.5 times the original
area). Additionally, the register file also needs to be implemented securely. This



316 S. Tillich, J. Großschädl

Table 2. Estimation of overhead for silicon area and critical path

Implementation Silicon Area1 Critical Path

Complete datapath in secure logic +(20, 500 + 940R)GEs +0.8 ns
Random precharging none none
Protected mask unit +28, 000GEs +1.0 ns

will lead to a considerable increase in silicon area due to two reasons: firstly,
it will be necessary to change the register file implementation from a custom
memory block to flip-flops. Secondly, if WDDL flip-flops are used, the area for
a single flip-flop is increased by at least a factor of 4 [17]. The size of a 32-bit
CMOS register is about 235 GEs, and therefore a 32-bit WDDL register costs
about 940GEs. Depending on the number R of secured registers, we get an area
of about 940R GEs for the secure register file. For example, a complete register
window of a SPARC V8 processor consisting of 32 registers would cost about
30,000GEs for secure implementation. This illustrates that option 1 is very costly
in terms of silicon area. Taking our estimated overhead factor of 1.2, the critical
path will increase to 4.8 ns.

For the protected mask unit, the secure part of the circuit mainly consists
of three parts: the ISE functional unit (FU), the mask storage, and the mask
generator. The area of the ISE FU is about 3,000 GEs [14]. The mask storage
includes seven 32-bit registers, which requires about 1,700 GEs. For the mask
generator, we estimate the size of a radix-32 version of the key generator of the
Trivium stream cipher, based on the figures reported in [6]. Such a circuit would
require about 5,500 GEs and will be able to deliver 32 fresh pseudo-random bits
per cycle. Taking into account circa 1,000 GEs for additional circuitry (e.g. xor
gates, etc.), the total overhead would be (3, 000 + 1, 700 + 5, 500 + 1, 000) ∗
2.5 = 28, 000 GEs. The critical path through the ISE FU would also be slightly
increased by the xor stages and the decode logic in the mask storage unit (see
Figure 4), so that it can be estimated to about 5 ns when compared to option
1. Table 2 summarizes the overhead estimations. It should be noted that these
figures only give a rough idea of the magnitude of overhead.

7.5 Combination with Other Countermeasures

In [15], software countermeasures are proposed to secure AES implementations
using instruction set extensions. Since implementing the complete datapath in
secure logic (option 1) is an orthogonal solution, both countermeasures could be
directly combined to increase implementation security further. Options 2 and 3
can be combined with the measures of [15] to a certain degree (e.g. randomization
of operations), which also leads to a further increase in resistance against power
analysis attacks.

1 R denotes the number of secured 32-bit registers.
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8 Conclusions

In this paper we have investigated three different approaches for increasing the
DPA-resistance of AES software implementations executed on a 32-bit RISC
processor with cryptography extensions. The first approach is to implement all
security-critical parts of the processor datapath—including (parts of) the register
file and functional units—using a DPA-resistant logic style. While this approach
does not degrade performance, it comes at a high cost in terms of area since
a significant portion of the processor has to be implemented in DPA-resistant
logic. The security of this approach depends primarily on the security of the
used logic style.

The second approach is a software countermeasure, which uses random pre-
charging at the instruction level. A major advantage of this approach is that
it does not require any modifications of the processor hardware. However, the
achievable security gain is rather moderate. Furthermore, random precharging
also increases execution time, but thanks to the instruction set extensions the
performance of the protected implementation is still significantly higher than
that of an unprotected implementation on a conventional SPARC V8 processor
without cryptography extensions (400 cycles vs. 1,637 cycles [14]).

The third approach involves both hardware as well as software and uses a
secure mask unit. This approach splits the processor into a secure zone and an
insecure zone, whereby the secure zone—containing storage for the mask, a mask
generator, and the functional units for the extensions—is protected with a DPA-
resistant logic style. The hardware cost of this approach has been estimated to
be 28,000 GEs, which is significantly less than the hardware cost of the first
approach (even if assuming only a single protected register window). Similar
to the first approach, the exact security and additional area depends on the
properties of the used DPA-resistant logic style. The benefit of this approach is
that it has only a minimal impact on performance, and that it does not impose
any restrictions on the operations outside of the secure zone.

In summary, the side-channel countermeasures discussed in this paper enable
different tradeoffs between performance, hardware cost and security, which are
not achievable with pure software or pure hardware implementations.
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