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Abstract—In this paper, we present a Bayesian feature-based
simultaneous localization and mapping (SLAM) algorithm that
exploits multipath components (MPCs) in radio-signals. The
proposed belief propagation (BP)-based algorithm enables the
estimation of the position, velocity, and orientation of the mobile
agent equipped with an antenna array by utilizing the delays
and the angle-of-arrivals (AoAs) of the MPCs. The proposed
algorithm also exploits the statistics of the complex amplitudes of
MPC parameters, i.e. amplitude information (AI), to calculate the
detection probabilities of the features. It is therefore suitable for
unknown and time-varying detection probabilities. For improved
initialization of new virtual anchor (VA) positions, the states of
unobserved potential VAs are modeled as a random finite set and
propagated in time by means of a “zero-measurement” proba-
bility hypothesis density filter. We analyze the proposed BP-AI-
based SLAM algorithm using synthetic and real measurements
enabling robust localization in a challenging environment.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is impor-

tant in many fields including robotics [1], autonomous driving

[2], [3], location-aware communication [4], and robust indoor

localization [5], [6]. Specifically, robustness, i.e. achieving a

low probability of localization outage, is still a challenging

task in environments with strong multipath propagation [7]–

[9]. Therefore, new systems supporting multipath channels

either take advantage of it by exploiting multipath compo-

nents (MPCs) for localization [5], [6], [10], exploiting co-

operation among agents [11]–[14], and/or exploiting robust

signal processing against multipath propagation and clutter

measurements in general [15], [16].

In [17], we extended a belief propagation (BP) algorithm

for feature-based SLAM [6], [18] to incorporate the statistics

of the MPC amplitudes [19]. The algorithm jointly performs

probabilistic data association (DA) and sequential Bayesian

estimation of the state of a mobile agent and the states of

“potential features” (PFs) characterizing the environment [6],

[15], [20]. The PFs are augmented by a binary existence

variable, associated with a probability of existence and with

normalized amplitudes which are related to the signal-to-

interference-plus-noise-ratios (SINRs). The SINRs are the

power ratios of the deterministic MPCs and the interfering

AWGN plus dense multipath (DM) and thus a measure of the

impact of multipath. With the normalized amplitudes adaptive

detection probabilities are calculated [7], [21].

The proposed algorithm enables the estimation of the posi-

tion, velocity, and orientation of the mobile agent equipped
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Fig. 1. Exemplary environment in a room corner . The mobile agent at
unknown position pn is equipped with an array, indicated by green dots. The

PAs at positions a
(1)
1 and a

(2)
1 are marked by a blue box and red bullet,

respectively. The red circles and blue squares outside the room indicate some
VAs associated with the two PAs.

with an antenna array by utilizing the delays, the angle-

of-arrivals (AoAs) and the amplitudes of the MPCs. The

estimated MPC delays/AoAs are associated with delays/AoAs

modeled by the geometric relations between the agent and

physical anchors (PAs) or virtual anchors (VAs) [21]; the

VAs are mirror images of the PAs, as illustrated in Fig. 1.

Associated MPCs thus correspond to PAs or VAs, collectively

denoted as “features”. As presented in [6], the proposed

algorithm distinguishes between legacy PFs, which correspond

to features that already generated measurements in the past,

and new PFs, which correspond to features that generate

measurements for the first time. The parameters required to

initialize new PFs are modeled in this work explicitly by

means of an undetected feature state and are inferred using

a “zero-measurement” probability hypothesis density (PHD)

filter, which was introduced in the context of multi-target

tracking (MTT) in [20], [22]–[24]. This works extends [6],

[17] in the following aspect:

• It extends the likelihood function to the AoA of MPCs,

enabling the estimation of the agents’ orientation.

• It introduces the “zero-measurement” PHD filter to the

algorithm presented in [17] and adapts it to the augmented

PF states, containing the normalized amplitudes.

II. SIGNAL MODEL

The agent is equipped with an H-element antenna array. At

every discrete time step n, the element locations are denoted

by p
(h)
n , h ∈ {1, . . . , H}, the agent position pn refers to the

center of gravity of the array. We also define d(h) = ‖p
(h)
n −

pn‖ and ψ(h) = ∠(p
(h)
n − pn) − ψn, the distance from the

reference location pn and the orientation, respectively, of the

h-th element. The array orientation ψn is unknown.



At every time n, anchor j ∈ {1, . . . , J} transmits a

baseband signal s(t) centered at carrier frequency fc. The

signal at antenna element h is then given as

s
(j,h)
RX,n(t) =

L(j)
n
∑

l=1

α
(j,h)
l,n s

(

t−τ
(j,h)
l,n

)

+ ν(j,h)n (t)+w(j,h)
n (t). (1)

The first term on the right-hand side (RHS) describes

L
(j)
n specular MPCs with complex amplitudes α

(j,h)
l,n =

α
(j)
l,n exp

(

i2πfc
d(h)

c cos
(

ϕ
(j)
l,n − ψn − ψ(h)

))

and delays

τ
(j,h)
l,n = τ

(j)
l,n − d(h)

c cos(ϕ
(j)
l,n − ψn − ψ(h)) with τ

(j)
l,n =

∥

∥pn−

a
(j)
l

∥

∥/c (c as speed of light) and AoA ϕ
(j)
l,n = ∠(a

(j)
l − pn)−

ψn related to the distance and angle between the agent’s

position pn ∈ R
2 and the PA/VA positions a

(j)
l ∈ R

2,

respectively. The second term on the RHS of (1), ν
(j,h)
n (t),

represents the DM, which interferes with the position-related,

specular MPCs. The last term on the RHS of (1), w
(j,h)
n (t),

is AWGN with power spectral density N0. The square root of

the SINR of the l-th MPC, i.e., u
(j)
l,n =

√

SINR
(j)
l,n, is termed

normalized amplitude, where SINR
(j)
l,n is given according to

[21, Eq. (40)].

Channel estimation: A sparse Bayesian multipath channel

estimator is used to estimate at each time n and for each

PA a set of M
(j)
n MPC distances d̂

(j)
m,n = cτ̂

(j)
m,n and AoAs

ϕ̂
(j)
m,n and the corresponding complex amplitudes α̂

(j)
m,n, where

m ∈ M
(j)
n = {1, . . . ,M

(j)
n } [25]. To infer the variances

σ̂
(j)2
α,m,n of the amplitudes, we use the antenna array at

the agent. The measured normalized amplitude is given as

û
(j)
m,n = |α̂

(j)
m,n|/σ̂

(j)
α,m,n. The MPC parameters are combined

into the measurement vector z
(j)
n = [z

(j)T
1,n , . . . , z

(j)T

M
(j)
n ,n

]T, i.e.,

z
(j)
m,n = [d̂

(j)
m,n, ϕ̂

(j)
m,n, û

(j)
m,n]T. The vectors z

(j)
n are used as

noisy “measurements” by the SLAM algorithm.

III. SYSTEM MODEL

The state of the mobile agent at time n is defined as

xn , [pT
n vT

n ψn]
T, where vn = [vl,n vr,n]

T is the agent’s

velocity with vl,n and vr,n as longitudinal and rotational

velocity. We use a near-constant turn model [1, Chapter 5] and

assume that the array is rigidly coupled with the movement

direction. Note that since we do not use an array at the

PA, which would enables also the estimation of the angle-

of-departure, we need to utilize a second PA to be able to

estimate the orientation in the absolute coordinate system

defined by the PAs [8]. For each PA j, there are K
(j)
n PFs.

Thus, the PFs will be indexed by the tuple (j, k), where

j ∈ {1, . . . , J} and k ∈ K
(j)
n , {1, . . . ,K

(j)
n }. Whereas

the number of PAs J is known, the number of PFs K
(j)
n is

unknown and random. The existence of the (j, k)-th PF as

an actual feature is indicated by the binary existence variable

r
(j)
k,n ∈ {0, 1}, where r

(j)
k,n = 0 (r

(j)
k,n = 1) means that the PF

does not exist (exists) at time n. The state of PF (j, k) is the

PF’s position a
(j)
k,n , and the augmented state of a PF (j, k) is

defined as y
(j)
k,n ,

[

y
(j)T

k,n r
(j)
k,n

]T
with y

(j)
k,n =

[

a
(j)T

k,n u
(j)
k,n

]T
,

which includes the normalized amplitude u
(j)
k,n [6], [17], [20].

We also define the stacked vectors y
(j)
n ,

[

y
(j)T
1,n · · · y

(j)T

K
(j)
n ,n

]T

and yn,
[

y
(1)T
n · · · y

(J)T
n

]T
. It will be convenient to formally

consider PF states also for the nonexisting PFs (case r
(j)
k,n= 0);

however, the values of these states are obviously irrelevant.

Therefore, all probability density functions (pdfs) defined for

an augmented state, f
(

y
(j)
k,n

)

= f
(

y
(j)
k,n , r

(j)
k,n

)

, are such that

for r
(j)
k,n= 0, f

(

y
(j)
k,n , 0

)

= f
(j)
k,nfD

(

y
(j)
k,n

)

, where fD

(

y
(j)
k,n

)

is

an arbitrary “dummy pdf” and f
(j)
k,n ≥ 0 can be interpreted as

the probability of nonexistence of the PF [6], [17], [20].

At any time n, each PF is either a legacy PF, which was al-

ready established in the past, or a new PF, which is established

for the first time. The augmented states of legacy PFs and new

PFs for PA j will be denoted by ỹ
(j)
k,n ,

[

ã
(j)T

k,n ũ
(j)
k,n r̃

(j)
k,n

]T
,

k ∈ K
(j)
n−1 and y̆

(j)
m,n ,

[

ă
(j)T
m,n ŭ

(j)
m,n r̆

(j)
m,n

]T
, m ∈ M

(j)
n ,

respectively. Thus, the number of new PFs equals the number

of measurements, M
(j)
n . The set and number of legacy PFs

are updated according to K
(j)
n = K

(j)
n−1 ∪ M

(j)
n and K

(j)
n =

K
(j)
n−1+M

(j)
n , where the first relation is understood to include

a suitable reindexing of the elements of M
(j)
n . (The number of

PFs does not actually grow by M
(j)
n because the set of PFs is

pruned [6].) We also define the following state-related vectors:

For the legacy PFs for PA j, ã
(j)
n ,

[

ã
(j)T
1,n · · · ã

(j)T

K
(j)
n−1,n

]T
,

r̃
(j)
n ,

[

r̃
(j)
1,n · · · r̃

(j)

K
(j)
n−1,n

]T
, and ỹ

(j)
n ,

[

ỹ
(j)T

1,n · · · ỹ
(j)T

K
(j)
n−1,n

]T
.

For the new PFs for PA j, the vectors ă
(j)
n , r̆

(j)
n , and y̆

(j)
n

with length M
(j)
n are defined similarly. For the combination of

legacy PFs and new PFs for PA j, y
(j)
n ,

[

ỹ
(j)T
n y̆

(j)T
n

]T
. Note

that the vector entries (subvectors) of y
(j)
n are given by y

(j)
k,n

for k ∈ K
(j)
n . For all the legacy PFs, ỹn,

[

ỹ
(1)T
n · · · ỹ

(J)T
n

]T
,

and for all the new PFs, y̆n,
[

y̆
(1)T
n · · · y̆

(J)T
n

]T
.

A. Association Vectors

For each PA, measurements z
(j)
m,n, are subject to a DA

uncertainty. It is not known which measurement z
(j)
m,n is

associated with which PF k, or if a measurement z
(j)
m,n did not

originate from any PF (false alarm) or if a PF did not give rise

to any measurement (missed detection). The probability that a

PF is “detected”, in the sense that it generates a measurement

z
(j)
m,n in the MPC parameter estimation stage, is denoted by

Pd(xn,y
(j)
k,n) , Pd(u

(j)
k,n), being defined by its normalized

amplitude u
(j)
k,n. The distribution of false alarm measurements

fFA(z
(j)
m,n) is assumed to be known and is defined in (III-D).

The associations between measurements z
(j)
m,n and the PFs at

time n can be described by the K-dimensional feature-oriented

DA vector c
(j)
n = [c

(j)
1,n · · · c

(j)
K,n]

T, with entries c
(j)
k,n = m ∈

M
(j)
n , if PF k generates z

(j)
m,n and 0, if PF k does not gen-

erate any z
(j)
m,n. In addition, we consider the Mn-dimensional

measurement-oriented DA vector b
(j)
n = [b

(j)
1,n · · · b

(j)
Mn,n

]T with

entries b
(j)
m,n = k ∈ K

(j)
n , if z

(j)
m,n is generated by PF k and 0

is not generated by any PF [20], [23].



B. State Evolution

The agent state xn and the augmented states of the legacy

PFs, ỹ
(j)
k,n, are assumed to evolve independently according to

Markovian state dynamics, i.e.,

f
(

xn, ỹn|xn−1,yn−1

)

= f(xn|xn−1)

×
J
∏

j=1

K
(j)
n−1
∏

k=1

f
(

ỹ
(j)
k,n

∣

∣y
(j)
k,n−1

)

, (2)

where f(xn|xn−1)and f(ỹ
(j)
k,n|y

(j)
k,n−1) are the state-transition

pdfs of the agent and of legacy PF (j, k), respectively. Note

that ỹ
(j)
k,n depends on both ỹ

(j)
k,n−1 and y̆

(j)
m,n−1. If PF (j, k)

existed at time n − 1, i.e., r
(j)
k,n−1 = 1, it either dies, i.e.,

r̃
(j)
k,n = 0, or survives, i.e., r̃

(j)
k,n = 1; in the latter case,

it becomes/remains a legacy PF at time n. The probability

of survival is denoted by Ps. If the PF survives, its new

state ỹ(j)

k,n
is distributed according to the state-transition pdf

f
(

ỹ(j)

k,n

∣

∣y
(j)
k,n−1

)

(for details cf. [6]).

C. Prior Distribution of Feature- and Measurement-oriented

Association Variables

The number of false alarms is assumed Poisson distributed

with mean µ
(j)
FA [26]. The false alarm probability PFA is

discussed in Section III-D. Similarly, the number of newly

detected features is assumed Poisson distributed with mean

µ
(j)
n,n; the calculation of µ

(j)
n,n will be discussed in Section IV.

The joint conditional prior probability mass function of c
(j)
n

and b
(j)
n , r̆

(j)
n , and the number of measurements/new PFs,

M
(j)
n , given the legacy PF’s states ũ

(j)
n , [ũ

(j)T
1,n · · · ũ

(j)T

k,n ]T

and r̃
(j)
n , can be expressed as [6], [17], [20]

p(c(j)n , b(j)n , r̆(j)
n ,M (j)

n |u(j)
n , r̃(j)

n )

∝ ψ
(

c(j)n , b(j)n
)





M(j)
n
∏

m=1

h1
(

r̆(j)m,n, b
(j)
m,n;K

(j)
n

)





×





K(j)
∏

k=1

g1
(

ũ
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n;M

(j)
n

)



 . (3)

The exclusion indicator function

ψ
(

c(j)n , b(j)n
)

,

K(j)
n
∏

k=1

M(j)
n
∏

m=1

ψ
(

c
(j)
k,n , b

(j)
m,n

)

, (4)

where ψ
(

c
(j)
k,n , b

(j)
m,n

)

is defined to be 0 if either c
(j)
k,n = m

and b
(j)
m,n 6= k or b

(j)
m,n= k and c

(j)
k,n 6=m, and 1 otherwise. The

indicator function enforces that the kth PF can generate at most

one measurement, or vice versa, a measurement originates

from at most one PF. The factors h1
(

r̆
(j)
m,n, b

(j)
m,n;K

(j)
n

)

and

g1
(

ũ
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n;M

(j)
n

)

are respectively given by

h1
(

1, b(j)m,n;K
(j)
n

)

,











0 , b
(j)
m,n∈K

(j)
n

µ
(j)
n,n

µ
(j)
FA

, b
(j)
m,n= 0

(5)

and h1
(

0, b
(j)
m,n;K

(j)
n

)

, fD

(

ă
(j)
m,n

)

and

g1
(

ũ
(j)
k,n, 1, c

(j)
k,n;M

(j)
n

)

= Pd

(

u
(j)
k,n

)

/µ
(j)
FA , if c

(j)
k,n ∈ M

(j)
n

and 1−Pd

(

u
(j)
k,n

)

, if c
(j)
k,n = 0, and g1

(

ũ
(j)
k,n, 0, c

(j)
k,n;M

(j)
n

)

,

1
(

c
(j)
k,n

)

, where the indicator function is 1(c) = 1 if c = 0
and 0 otherwise.

The states of newly detected features are assumed to be a

priori independent and identically distributed (iid) according

to some pdf fn,n

(

y(j)
m,n

)

, whose calculation will be discussed

in Section IV. The prior pdf of the states of new PFs for PA

j, y̆(j)

n
, conditioned on r̆

(j)
n and M

(j)
n is then obtained as

f
(

y̆
(j)

n

∣

∣r̆(j)
n ,M (j)

n

)

=

(

∏

m∈N
r̆
(j)
n

fn,n

(

y̆
(j)

m,n

)

)

∏

m′∈N̄
r̆
(j)
n

fD

(

y̆
(j)

m′,n

)

,

where N̄
r̆
(j)
n

,M
(j)
n

∖

N
r̆
(j)
n

and N
r̆
(j)
n

,
{

m ∈M
(j)
n : r̆

(j)
m,n=

1
}

. Note that before the measurements are obtained, M
(j)
n

and, thus, the length of the vectors ă
(j)
n and r̆

(j)
n is random.

In Section IV, a way to introduce prior information on new

PFs will be discussed.

D. Likelihood Function

Let us consider f
(

z
(j)
n

∣

∣xn, ỹ
(j)
n , y̆

(j)
n , c

(j)
n ,M

(j)
n

)

as a likeli-

hood function, i.e., a function of xn, ỹ
(j)
n , y̆

(j)
n , c

(j)
n , and M

(j)
n ,

for observed z
(j)
n . If z

(j)
n is observed and therefore fixed, also

M
(j)
n is fixed, and we can write [6], [20]

f
(

z(j)
n

∣

∣xn, ỹ
(j)
n , y̆(j)

n , c(j)n ,M (j)
n

)

∝
∏

m∈N
r̆
(j)
n

f
(

z
(j)
m,n

∣

∣xn, y̆
(j)

m,n

)

fFA

(

z
(j)
m,n

)

×

(K(j)
n
∏

k=1

g2
(

xn, ỹ
(j)

k,n
, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

)

. (6)

Here, the factors g2
(

xn, ỹ
(j)

k,n
, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

are defined as

g2
(

xn, ỹ
(j)

k,n
, 1, c

(j)
k,n; z

(j)
n

)

,











f
(

z
(j)
m,n

∣

∣xn, ỹ
(j)

k,n

)

fFA

(

z
(j)
m,n

)
, c

(j)
k,n=m

1 , c
(j)
k,n= 0

and g2
(

xn, ỹ
(j)

k,n
, 0, c

(j)
k,n; z

(j)
n

)

, 1. We assume that

the conditional pdfs of MPC measurements factorize as

f(z
(j)
m,n|xn,y

(j)
k,n) = f(d̂

(j)
m,n, ϕ̂

(j)
m,n|xn,y

(j)
k,n)f(û

(j)
m,n|u

(j)
k,n),

and the false alarm measurements as fFA(z
(j)
m,n) = fFA(d̂

(j)
m,n)

fFA(ϕ̂
(j)
m,n)fFA(û

(j)
m,n). The pdf f(d̂

(j)
m,n, ϕ̂

(j)
m,n|xn,y

(j)
k,n) of the

MPC distance d
(j)
m,n and angle ϕ

(j)
m,n conditioned on the agent

state xn and the feature state y
(j)
k,n factors to the pdfs

f(d̂(j)m,n|xn,y
(j)
k,n

) = C1e
−

(

d̂
(j)
m,n−‖pn−a

(j)
k,n

‖

)2

2σ̂
(j) 2
d,m,n (7)

f(ϕ̂(j)
m,n|xn,y

(j)
k,n

) = C2e
−

(

ϕ̂
(j)
m,n−(∠(a

(j)
k,n

−pn)−ψn)

)2

2σ̂
(j) 2
ϕ,m,n , (8)

where C1 = (2πσ̂
(j)2
d,m,n)

− 1
2 and C2 = (2πσ̂

(j)2
ϕ,m,n)−

1
2

with variances σ̂
(j)2
d,m,n = c2/(8π2β2û

(j)2
m,n) and σ̂

(j)2
ϕ,m,n =



c2/
(

8π2f2
c û

(j)2
m,nD2

(

ϕ̂
(j)
m,n

))

with β2 as the mean square band-

width of the transmit pulse s(t) and D2
(

ϕ̂
(j)
m,n

)

as squared ar-

ray aperture [21]. The respective false alarm pdfs are assumed

to be uniform in the respective domains, i.e., fFA(d̂
(j)
m,n) =

1/dmax and fFA(ϕ̂
(j)
m,n) = 1/(2π).

The pdf of the normalized amplitude û
(j)
m,n conditioned on

the PF’s amplitude state u
(j)
k,n is given by a unit-variance Rician

distribution [26, Ch. 1.6.6], i.e.,

f(ûm,n|uk,n)=
ûm,ne

(−(û2
m,n+u

2
k,n)/2)I0

(

ûm,nuk,n)

Pd(uk,n)
, (9)

where I0(·) is the 0th order modified first-kind Bessel function.

The detection probability related to the Rician model is given

as Pd(uk,n) = Q1(uk,n,
√

2 ln(1/PFA)), where Q1(·, ·) is the

Marcum Q-function [26, Ch. 1.6.6]. The false alarm pdf of

the normalized amplitude ûm,n is given by a unit-variance

Rayleigh distribution [26, Ch. 1.6.6], i.e., fFA(ûm,n) =
ûm,n exp(−û2m,n/2)/PFA. Hence, the false alarm probability

is given as PFA = exp(−u2th/2) with threshold uth.

E. Joint Posterior pdf

Using Bayes’ rule and independence assumptions related to

the state-transition pdfs (see Section III-B), the prior pdfs (see

Section III-C), and the likelihood model (see Section III-D),

the joint posterior pdf of x1:n (x1:n , [xT
1 · · ·x

T
n]

T), y1:n,

c1:n, and b1:n given z1:n for all time steps n′ = 1, . . . , n

f(x1:n,y1:n, c1:n, b1:n,m1:n|z1:n) (10)

∝ f(x1)

(

J
∏

j′=1

M
(j′)
1
∏

m′=1

h
(

x1, ă
(j′)
m′,1, r̆

(j′)
m′,1, b

(j′)
m′,1; z

(j′)
1

)

)

×
n
∏

n′=2

f(xn′ |xn′−1)

J
∏

j=1

ψ
(

c
(j)
n′ , b

(j)
n′

)

×

(M
(j)

n′
∏

m=1

h
(

xn′ , y̆(j)

m,n′
, r̆

(j)
m,n′ , b

(j)
m,n′; z

(j)
n′

)

)

×

K
(j)

n′−1
∏

k=1

f
(

ỹ
(j)
k,n′

∣

∣y
(j)
k,n′−1

)

g
(

xn′ , ỹ(j)

k,n′ , r̃
(j)
k,n′ , c

(j)
k,n′ ; z

(j)
n′

)

,

where g
(

•, •, •, •; z
(j)
n

)

= g1
(

•, •, •;M
(j)
n

)

g2
(

•, •, •, •; z
(j)
n

)

and

h
(

•, •, •, •; z
(j)
n

)

= h1
(

•, •;K
(j)
n

)

h2
(

•, •, •, •; z
(j)
n

)

and

h2
(

xn, y̆
(j)

n
, 1, b(j)m,n; z

(j)
n

)

,















0 , b
(j)
m,n∈K

(j)
n

fn,n

(

y̆
(j)

m,n

)

f
(

z
(j)
m,n

∣

∣xn, y̆
(j)

m,n

)

fFA

(

z
(j)
m,n

)
, b

(j)
m,n= 0

(11)

and h2
(

xn, y̆
(j)

m,n
, 0, b

(j)
m,n; z

(j)
n

)

, fD

(

ă
(j)
m,n

)

. This factoriza-

tion of the joint posterior pdf is represented by the factor

graph shown in Fig. 2 [27], where subgraphs corresponding

to individual PAs are indicated by boxes with light magenta

background color. All the factor nodes, variable nodes, and

messages related to the agent state are represented in red
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Fig. 2. Factor graph (adapted from [6]) representing the factorization of the
joint posterior pdf in (10). Details about the messages can be found in [6].

boldface style, those related to the legacy PF states are

represented by the blue parts contained in dashed boxes, those

related to the new PF states are represented by the magenta

parts contained in dotted boxes, and those related to loopy BP

DA are represented by the green parts contained in dashed-

dotted boxes. Details about the messages can be found in [6].

F. Minimum Mean-Square Error (MMSE) Estimation

Our goal is to estimate the agent state xn and the positions

ak,n and the amplitudes uk,n of the PFs from past and

present measurements, i.e., from the total measurement vector

z1:n. In the Bayesian framework, estimation of the states

are based on their respective posterior pdfs. We develop an

approximate calculation of the minimum mean-square error

(MMSE) estimates of the agent state xn, the positions ak,n
and the amplitudes uk,n of the PFs based on the marginal

posterior pdfs:

x̂MMSE
n ,

∫

xnf(xn|z1:n)dxn , (12)

â
(j)MMSE

k,n ,

∫

a
(j)
k,n f

(

y(j)
k,n

∣

∣r
(j)
k,n = 1, z1:n

)

dy(j)
k,n

, (13)

û
(j)MMSE

k,n ,

∫

u
(j)
k,n f

(

y(j)
k,n

∣

∣r
(j)
k,n = 1, z1:n

)

dy(j)
k,n
, (14)

where f
(

y
(j)
k,n

∣

∣r
(j)
k,n = 1, z1:n

)

= f
(

y
(j)
k,n, r

(j)
k,n = 1

∣

∣z1:n
)

/p
(

r
(j)
k,n = 1

∣

∣z1:n
)

, and p
(

r
(j)
k,n = 1

∣

∣z1:n
)

=
∫

f
(

y
(j)
k,n, r

(j)
k,n =

1
∣

∣z1:n
)

dy
(j)
k,n. The state of the k-th PF is only estimated if it is

considered as detected at time n, i.e., p
(

r
(j)
k,n = 1

∣

∣z1:n
)

> Pdet

with detection probability threshold Pdet.

G. BP Message Passing Algorithm

The pdfs f(xn|z1:n) and f
(

y
(j)
k,n, r

(j)
k,n|z1:n) in (12), (13),

and (14) are marginal pdfs of the joint posterior pdf in (10).

Since direct marginalization is infeasible, the marginal pdfs

are approximated by means of an efficient BP sum-product

message passing algorithm [27] to the factor graph in Fig. 2.

All messages shown in Fig. 2 and the according BP algorithm

are described in [6, Section V-B]. The following scheduling is

introduced for calculating the messages: (i) Message passing

is only done forward in time, (ii) iterative message passing is



executed for DA [23] and, (iii) iterative message passing is

only executed once to consider the loops involving the agent

state and the features. More details can be found in [6].

Once all messages are available (BP algorithm cf. [6,

Section V-B]), the beliefs approximating the desired marginal

posterior pdfs are obtained. The belief for the agent state

is given, up to a normalization factor, by q(xn) ∝

α(xn)
∏J
j=1

∏

k∈K
(j)
n−1

γ
(j)
k (xn). This belief (after normaliza-

tion) provides an approximation of the marginal posterior

pdf f(xn|z1:n), and it is used instead of f(xn|z1:n) in

(12). Furthermore, the beliefs q̃
(

ỹ(j)

k,n
, r̃

(j)
k,n

)

for the augmented

states of the legacy PFs, ỹ(j)

k,n
, are calculated as q̃

(

ỹ(j)

k,n
, 1
)

∝

αk
(

ỹ(j)

k,n
, 1
)

γ
(

ỹ(j)

k,n
, 1
)

and q̃
(

ỹ(j)

k,n
, 0
)

∝α
(j)
k,nγ

(j)
k,n. The beliefs

q̆
(

y̆
(j)

m,n
, r̆

(j)
m,n

)

for the augmented states of the new PFs, y̆
(j)
m,n

are q̆
(

y̆
(j)

m,n
, 1
)

∝φ
(

y̆
(j)

m,n
, 1
)

and q̆
(

y̆
(j)

m,n
, 0
)

∝φ
(j)
m,n . In par-

ticular, q̃
(

ỹ(j)

k,n
, 1
)

and q̆
(

y̆
(j)

m,n
, 1
)

approximate the marginal

posterior pdf f
(

y
(j)
k′,n, r

(j)
k′,n=1

∣

∣z1:n
)

, where k′∈ K
(j)
n−1∪M

(j)
n

(assuming an appropriate index mapping between k and m
on the one hand and k′ on the other), and they are used

in (12)–(14). A computationally feasible approximate calcu-

lation of the various messages and beliefs can be based on

the sequential Monte Carlo (particle-based) implementation

approach introduced in [6], [12], [20].

IV. STATE PROPAGATION FOR UNDETECTED FEATURES

In parallel to, and in support of, the BP-based detection

and estimation algorithm, we use a “zero-measurement” PHD

filter in order to propagate information about features that po-

tentially exist but did not generate any measurement yet. Such

features will be termed undetected features in what follows.

A similar strategy was previously introduced in the context of

MTT [22], [23]. This propagation of information about unde-

tected features enables the calculation of the intensity function

of newly detected features, λn
n

(

y(j)
·,n

)

= µ
(j)
n,nfn,n

(

y(j)
·,n

)

, for all

PAs j at time n, where y(j)
·,n

denotes a generic single-feature

state. Note that λn
n

(

y̆
(j)

m,n

)

occurs in h
(

xn, y̆
(j)

m,n
, 1, 0; z

(j)
n

)

in

(11). An extension of this Section and a review of the concept

of a Poisson random finite set (RFS), which underlies the PHD

filter, can be found in [6].

The original PHD filter [28] propagates the intensity func-

tions of both the detected and undetected features. In [22],

[23], a PHD filter is introduced that propagates only the

intensity function of the undetected features. In this filter,

which we will term a zero-measurement PHD filter, the

propagated RFS remains within the class of Poisson RFSs

without any approximation. In the proposed SLAM algorithm,

the zero-measurement PHD filter complements the BP-based

algorithm in Section III-G because it propagates information

about undetected features whereas the BP-based algorithm

propagates information about detected features. We assume

that at the initial time n=1, the state of the undetected features

for PA j is a Poisson RFS with intensity function λu
n

(

y(j)
·,1

)

. If

no prior information on the spatial distribution of VAs and PAs

is incorporated, λu
n

(

y(j)
·,1

)

is constant on the region of interest

(ROI), with the integral of λu
n

(

y(j)
·,1

)

over the ROI chosen equal

to the expected number of features in the ROI. Using a zero-

measurement PHD filter, state propagation for the undetected

features amounts to propagating the intensity function of the

Poisson RFS (i.e., λu
n

(

y(j)
·,n−1

)

→ λu
n

(

y(j)
·,n

)

).

1) Prediction Step: In the prediction step, which is identical

to that of the original PHD filter [28], the preceding intensity

function λu
n−1

(

y(j)
·,n−1

)

is converted into a “predicted intensity

function” λu
n|n−1

(

y(j)
·,n

)

according to

λu
n|n−1

(

y(j)
·,n

)

= Ps

∫

f
(

y(j)
·,n

∣

∣y(j)
·,n−1

)

λu
n−1

(

y(j)
·,n−1

)

dy(j)
·,n−1

+ λb
(

y(j)
·,n

)

, (15)

where f
(

y(j)
·,n

∣

∣y(j)
·,n−1

)

is the state-transition pdf of the un-

detected feature state. Furthermore, λb
(

y(j)
·,n

)

is the intensity

function of a Poisson RFS that models the birth of new

features. From λu
n|n−1

(

y(j)
·,n

)

, the pdf fn,n

(

y(j)
·,n

)

for newly

detected features for PA j is obtained as [22]

fn,n

(

y(j)
·,n

)

=
P

(j)
d

(

u
(j)
·,n

)

λu
n|n−1

(

y(j)
·,n

)

∫

P
(j)
d

(

u
(j)′
·,n

)

λu
n|n−1

(

y(j)′
·,n

)

dy(j)′
·,n

, (16)

where P
(j)
d

(

u
(j)
·,n

)

is the detection probability of the undetected

feature state for PA j. Furthermore, the mean number of

newly detected features is given by µ
(j)
n,n =

∫ ∫

P
(j)
d

(

u
(j)
·,n

)

×λu
n|n−1

(

y(j)
·,n

)

α(xn)dy
(j)
·,n

dxn (α(xn) is provided by the

BP algorithm cf. [6, Section V-B]). As mentioned earlier,

fn,n

(

y(j)
·,n

)

and µ
(j)
n,n are needed in (5) and (11).

2) Update Step: In the update step, the predicted intensity

function λu
n|n−1

(

y(j)
·,n

)

is converted into the new (updated)

intensity function λu
n

(

y(j)
·,n

)

according to [22], [23]

λu
n

(

y(j)
·,n

)

=
(

1−P
(j)
d

(

u
(j)
·,n

))

λu
n|n−1

(

y(j)
·,n

)

. (17)

We note that this update relation is identical to that of the

original PHD filter [28] for the case where no measure-

ments are available. The intensity function λu
n

(

y(j)
·,n

)

repre-

sents essentially “negative information” in the sense that for

λb
(

y(j)
·,n

)

= 0, λu
n

(

y(j)
·,n

)

is high in those parts of the ROI

that have not been explored by the mobile agent yet, and for

λb
(

y(j)
·,n

)

> 0, it is high in those parts of the ROI that have not

been explored for some time. The expressions (15) and (17) are

calculated by using a sequential Monte Carlo implementation,

similarly to [29].

V. PERFORMANCE EVALUATION

a) Synthetic Data: We apply the algorithm to syntheti-

cally generated data, modeling a seminar room at Graz Uni-

versity of Technology [6, Fig. 1]. The true MPC parameters,

distance, AoA, and amplitude are calculated for the set of

PAs and VAs as in [6, Fig. 1], with 6 and 5 features for

PA 1 and PA 2 respectively (including the PA positions). The

amplitudes follow the free-space pathloss and are attentuated
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Fig. 3. MOSPA error on the PF positions for PA 1 (a) and PA 2 (b). (c):
RMSE of the agent position (solid) and orientation (dashed). MOSPA error on
the detection probabilities of the PFs (d) for PA 1 (solid) and PA 2 (dashed),
respectively.

by 3 dB for reflected MPCs. The DM is simulated with

a delay power spectrum according to [30] with signal-to-

interference-ratio SIR = 10 log10(
∑

l |αl|
2/Ω) = 7 dB where

Ω is the total DM power. Furthermore, the signal-to-noise-ratio

SNR = 10 log10(
∑

l |αl|
2/N0) = 30 dB. To synthesize the

delay and angular variances given in Sec. III-D, the following

signal is used: a root-raised-cosine filter with symbol period

Tp = 0.8 ns and roll-off factor of 0.6 at fc = 7GHz, leading

to an absolute bandwidth of 2GHz. Furthermore, a quadratic

3×3 array with an inter-element spacing of 1 cm is simulated.

In each simulation run we generated with detection probability

Pd(u
(j)
l,n) = Q1(u

(j)
l,n, 2 ln(1/PFA)) the noisy measurements

according to (7), (8), and (9) using the true MPC parameters.

The PFA is calculated for a threshold of uth = 1.95 (cf.

Sec. III-D). In addition to the true noisy measurements we

generate a mean number of µ
(j)
FA = 1 false alarm measurements

after thresholding for both PA 1 and PA 2 according to the

pdfs given in Sec. III-D with dmax = 30m.

The birth intensity function λb
(

y(j)
·,n

)

is uniform on the ROI,

which is a circular disk of radius 30m around the center of

the floor plan [6, Fig. 1]. Thus, λb
(

y(j)
·,n

)

= µb/(2π (30m)2).

Similarly, the initial undetected feature intensity is uniform on

the ROI, i.e., λu
1

(

y(j)
·,1

)

= µ
(j)
n,1/(2π (30m)2). We compare the

zero-measurement PHD filter to the case were the number

of undetected and therefore undetected feature intensity is

constant along time λu
1

(

y(j)
·,1

)

=0.1/(2π (30m)2).
The following other parameters are used: the number of

particles is 30.000, Ps = 0.999, µb = 10−4, µn,1 = 6,

the detection probability threshold Pdet = 0.5, the pruning

threshold Pprun=10−3 (cf. [6, Sec. V-A]), the Pd(û
MMSE
k,n ) is

determined by the MMSE estimate of the amplitudes uk,n. The

state-transition pdf of the amplitudes f(uk,n|uk,n−1) is chosen

as Gaussian distribution with variance σu,k,n=0.05ûMMSE
k,n /s.

The agents’ state-transition pdf is defined by a linear, near

constant-turn motion model [1, Chapter 5] with ∆T = 1 s,

longitudinal velocity noise σv,l = 0.01m/s, and rotational

velocity noise σv,r = 0.52 rad/s. The particles for the initial

agent state are drawn from a 4-D uniform distribution with

center x1 = [pT
1 0 0]T and with the position uniform within

[−5, 5]m, and longitudinal and rotational velocity uniform

within [−0.03, 0.03]m/s and [−0.52, 0.52] rad/s, respectively.

We perform 100 simulation runs.

The mean optimal subpattern assignment (MOSPA) error

[31] on the PF positions, including PAs and VAs, is shown

in Fig. 3a and Fig. 3b for PA 1 and PA 2, respectively. As

can clearly be seen, the MOSPA error on the PF positions

are worse, if AI is not utilized in the algorithm (const. Pd),

since the algorithm cannot detect “weak” features with a low

detection probability. Fig. 3d shows the MOSPA error for the

adaptive detection probability for PA 1 and PA 2 in solid and

dashed lines respectively. If the initialization parameters of

new PFs are constant, i.e. the undetected feature intensity is

constant, and set to a larger value than the birth intensity,

clutter measurements are detected more often and thus the

MOSPA error of the PF positions and Pd are increased (More

experimental investigations can be found in [24].). The agents’

root mean square position error RMSE(pe) is depicted in

Fig. 3d with solid lines (left y axis) and is below 2 cm for

the entire trajectory. The RMSE of the agents’ orientation

error RMSE(ψe) is represented by dash-dotted lines in Fig. 3d

(right y axis) and is below 2 ◦. Both, the RMSE on the

position and the orientation do not strongly depend on the

employed algorithm. Interestingly, the agent state errors are

larger although the MOSPA error is smaller. This counter-

intuitive fact is explained by the much larger variance of the

posterior pdfs of “weak” features, which are simply discarded

by the algorithm using a constant detection probability.

b) Measured Data: Finally, we apply the algorithm to

data measured in a seminar room at Graz University of Tech-

nology [6]. The data is measured with a correlative channel

sounder with 7GHz bandwidth centered at 6.95GHz. Then,

the bandwidth is reduced to 2GHz with the previously intro-

duced signal and AWGN is added such that SNR = 35 dB. To

estimate the MPC parameters, we utilize the previously intro-

duced (Sec. II) sparse Bayesian multipath channel estimator

[25].1 Compared to the synthetic setup, we changed the mean

1As the utilized virtual antenna array was not well calibrated (positioned by
hand), we employ a Rayleigh model (strongly fluctuating target with dominant
scattering center) for (9) instead of the Rician model [26, Ch. 1.6.7 and 4.6.2].
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number of birth to µb =10−3 and the mean number of false

alarm measurements to µ
(j)
FA = 3 .

Fig. 4a and Fig. 4b show the RMSEs of the agents’

position and orientation obtained for the trajectory over time,

respectively. The agent’s position and orientation RMSEs over

time are mostly below 4 cm and 10 ◦, respectively.

VI. CONCLUSIONS

We have extended a radio-signal-based SLAM algorithm

with probabilistic DA that uses amplitude information of

MPCs to exploit also the estimated AoAs of the MPCs ac-

quired from an antenna array at the mobile agent. Furthermore,

we propose a “zero-measurement” PHD filter for initializing

new PFs and compare its performance to constant initialization

parameters of new PFs over time. The use of AoA information

allows to estimate the agent orientation jointly with the agent

position with high accuracy. The PHD filter improves the

initialization of new features into the state space.
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