Meta-Debugging Pervasive Computers

Alexander Bernauer
Institute for Pervasive Computing
ETH Zirich, Switzerland
bernauer@inf.ethz.ch

ABSTRACT

As computers get more complex, the task of programming
them gets more complex as well. This is especially true for
the “Pervasive Computer”, which is a massively distributed
system consisting of unreliable embedded devices that com-
municate with each other over lousy wireless links. A com-
mon approach to address the programming problem is to
offer programming abstractions that hide certain aspects of
the complexity from the programmer. While several such
abstractions and mappings thereof to low-level target lan-
guages have been proposed, there is a glaring lack of de-
bugging support. It is typically impossible to debug at the
conceptual level offered by the programming abstractions,
instead one has to resort to debugging the generated target
code. In this position paper we argue that programming ab-
stractions should be designed in a way that allows debugging
at the same conceptual level as programming. We further
present requirements for such debugging tools, a taxonomy
of programming abstractions and discuss debugging chal-
lenges, existing solutions, and potential approaches in each
class.

1. INTRODUCTION

Computer systems tend to get more complex over time. The
pervasive computer, for example, consists of many resource-
constrained embedded devices that form wireless ad hoc net-
works to cooperatively solve a task. Programming these sys-
tems is difficult.

One common way of addressing this difficulty is to raise
the level of abstraction in order to relieve the programmer
from lower-level details. Hereby the basic idea is to pro-
vide proper programming abstractions by means of a formal
meta-language to a software developer in a given application
domain.

The benefits of programming abstractions are frequently
cited. More abstraction means less code which in turn means
fewer possibilities for bugs, be it typos, copy-and-paste er-

Kay Rémer
Institute of Computer Engineering
University of Libeck, Germany
roemer@inf.ethz.ch

rors, inconsistencies, or logical errors. Furthermore, by ex-
plicitly representing the concepts of the problem domain in
the programming language, a program is easier to create and
understand for domain experts. On the long way from an
idea in somebodies mind to an executable representation of
the same, some steps have to be performed manually and
some can be automated. The overall goal of programming
abstractions is to reduce the manual part as much as possi-
ble.

For the scope of this article, we will adopt the term pro-
gramming abstraction that is embodied in a meta-language.
A program is an instance of a language and forms a solu-
tion for a problem in the domain of that language [3]. A
programming abstraction is implemented by mapping it to
lower-level abstractions which are themselves embodied as
a program in a target language and so on until a program
can be directly interpreted or executed by a virtual or phys-
ical machine. We focus on programming abstractions in the
field of pervasive computing, in particular for applications
of wireless sensor networks (WSN).

In this field, several programming abstractions do already
exist. For most existing programming abstractions though,
debugging cannot be performed at the conceptual level of
the programming abstraction, but has to be performed at
the level of the target language to which the programming
abstraction is mapped [11]. This is a major difficulty, as
the developer suddenly has to become aware of the target
language, and has to understand its semantics and the se-
mantics of the mapping to the target language.

In this position paper we discuss the problem of debugging
abstract programs and we postulate that researches should
address the question how such programs can be debugged at
the conceptual level of the programming abstraction, thus
hiding the very existence of the target language, its seman-
tics, and the mapping — much like most C programmers are
unaware of the syntax and semantics of the assembly target
language.

Besides the C programming language and its tool chains,
there are various different technologies which raise the level
of abstraction in order to mitigate the growing complexity
of computer systems. For example, the software engineering
community has devised Model Driven Development. Oth-
ers have proposed Language Oriented Programming [3] or
Intentional Programming [10]. Additionally, internal and



external Domain Specific Languages (DSL) are hot topics
in the design of programming languages. While some de-
bugging concepts from those technologies could potentially
be applied to the pervasive computing context, pervasive
computers differ from other systems in their distributive-
ness, scale, heterogeneity, resource and energy constraints,
as well as their deep embedding into the real world. Hence,
we believe that research is required to devise not only tools,
but the fundamental concepts of how to debug pervasive
computers.

In the remainder of this paper, we present requirements for
debugging and a coarse taxonomy of programming abstrac-
tions. For each class in the taxonomy, we discuss the chal-
lenges involved in debugging, what kind of debugging sup-
port is required, and how severe the lack of the latter is.

2. REQUIREMENTS AND TAXONOMY

While it would be desirable to build systems that are correct
by design or at least to perform a complete static verifica-
tion of the program code, this is only partially possible for
pervasive computers because it would require a complete for-
mal model of the real world. Unlike other computer systems,
pervasive computers closely interact with the real world, not
only by means of sensing and controlling physical processes,
but also through undesirable interactions due to environ-
mental influences. For example, environmental temperature
has a strong influence on the frequency and start-up time
of crystal oscillators, on received radio signal strength, and
on the (dis)charging characteristics of batteries and is thus
sometimes causing unpredictable partial node and commu-
nication failures. Hence, debugging pervasive computers is
a necessity. By debugging we mean finding and removing
the causes of incorrect application behavior by examining
its runtime.

In particular, we consider two common types of bugs. Firstly,
logical errors in the application code and, secondly, incorrect
assumptions in the application code about the semantics of
the target language and system to which the application
code is mapped. In existing systems, incorrect assumptions
concerning the reliability and the timing of message delivery
for example are a common cause for failures.

In principle it is possible - and this is what we are aiming
at - to find the above two types of bugs at the conceptual
level of the programming abstraction, i.e., without exposing
to the user the target language, its implementation, and the
mapping of application code to the target language.

Debugging techniques for pervasive computers have to meet
a number of constraints. Firstly, it must be possible to de-
bug large heterogeneous networks of pervasive computers.
Secondly, resource and energy constraints of pervasive com-
puters require that resource and energy consumption of de-
bugging techniques is minimized - otherwise we run the risk
of severe probe effects, where the debugger significantly al-
ters the program execution, resulting in (dis)appearance of
bug symptoms.

To better understand the problem of debugging abstract pro-
grams, we will discuss debugging characteristics of different
classes of programming languages for pervasive computers.

For this taxonomy, we see two major dimensions: imperative
vs. declarative languages and languages for node-centric vs.
distributed applications. Actually, those two orthogonal di-
mensions form a subset of current and common taxonomies
for WSN programming models [11] and we consider them
crucial for debugging.

With imperative languages “the intended application pro-
cessing is expressed through statements that explicitly indi-
cate how to change the program state” [11] while with declar-
ative languages “the application goal is described without
specifying how it is accomplished” [11]. This difference is
important because with imperative languages the mapping
between source code and target code tends to be one to one.
But by raising the level of abstraction towards declarative
languages the mapping becomes more complex and even am-
biguous, thus making it hard to perform the back-mapping
which is required for debugging.

The second dimension of our taxonomy addresses the prob-
lem of shared state which is changed concurrently. As op-
posed to node-centric programs, with distributed programs
well-known concepts such as breakpoints need to be recon-
sidered to make them applicable for distributed applications.

In the following sections we discuss the four classes of pro-
gramming abstractions which are formed by those two di-
mensions. While we focus on programming abstractions for
pervasive computers, we also look at related application do-
mains that raise similar problems as an inspiration of how
one might tackle the problem for pervasive computing.

3. IMPERATIVE META-LANGUAGES

In the WSN community the most famous example of an
imperative meta-language is probably TinyOS [6]. The pro-
gramming language of TinyOS is nesC, which is a DSL for
the domain of event-based and component-based applica-
tions. The nesC compiler translates nesC code into C code
which is then compiled by a platform compiler for an em-
bedded platform such as avr-gec'.

Imperative programming languages are a list of commands
and command abstractions which tell the executing machine
what it is supposed to do. So the most natural way of de-
bugging is to observe the sequential execution of these com-
mands by means of a source-level debugger. Programmers
are familiar with this concept because most tool chains pro-
vide such as debugger. In fact, a C programmer would very
likely refuse to use a tool chain which does not offer a de-
bugger that allows to set breakpoints in the source code and
to monitor variables during execution. This is because by
the lack of a source-level debugger he is forced to trace ex-
ecution on the assembler level, find the flaw there and infer
the location of the bug in the C code. Not only must he
know the complete target language but also the details of
the transformation performed by the compiler in order to
be able to undo it.

In the case of TinyOS this means that a developer must use
the debugger of the C tool chain and step through the gen-
erated C code. As a consequence she must be familiar with

"http://gce.gnu.org/



the implementation-specific naming scheme for the gener-
ated C symbols [4] and must know how the wiring of nesC
components is mapped to C code in order to map back the
location of a bug in the generated C code to the correspond-
ing location in the nesC code.

To support source level debugging, C compilers add debug-
ging information to the assembly output, indicating which
line in the C source code has been mapped to which lines in
the assembly code. A source-code debugger can use this in-
formation to map the execution state of a binary program to
lines in the source code and to names of variables. As C itself
is a programming abstraction, this technique can be adopted
to support debugging of imperative meta-languages.

In fact this has been done for the YETI Eclipse plugin [1]
which is the first source-level debugger for the nesC pro-
gramming language. It uses the Eclipse C/C++ Develop-
ment Tooling (CDT)? to communicate with an underlying
instance of the GNU Debugger (GDB)® and automatically
performs the inverse mapping of the nesC compiler. This is
possible because the nesC compiler records which part of the
generated C file originates from which part of the various
nesC input files by exploiting C preprocessor instructions.
To the best of our knowledge, the YETI project is gladly
embraced by the TinyOS community because it enables the
developer to completely ignore the fact that nesC programs
are in fact mapped to C.

Along the lines of YETI, we suggest that programming ab-
stractions should always be designed such that they are
amenable to source-level debugging. Probably the most no-
torious imperative programming abstraction without debug-
ging support are C++ templates. Compiler error messages
caused by bugs in C++ template code are so verbose and
hard to read that projects like stlfilt* try to provide a re-
verse mapping by means of compiler-specific heuristics. An
additional problem with C++ templates is that they are
also used to implement declarative languages as opposed to
imperative ones, as discussed in the subsequent section.

4. DECLARATIVE META-LANGUAGES

Declarative languages specify a goal, but not how this goal
can be achieved. Therefore, a program written in a declar-
ative languages is often called a model. Parser generators
are a well known example of tools which process declarative
input in order to generate executable implementations of
the parser. In the case of Boost.Spirit®, the intended parser
is declared by means of instantiations of C++ templates.
Other projects like ANTLRS use a dedicated meta-language
instead. Another common case of declarative meta-languages
are persistence and database abstractions as in the case of
the Hibernate Framework * or RubyOnRails®.

In general, debugging becomes harder in the case of declar-

’http://www.eclipse.org/cdt/
Shttp://www.gnu.org/software/gdb/
‘http://www.bdsoft.com/tools/st1filt . html
Shttp://boostspirit.com/home/
Shttp://www.antlr.org/
"https://www.hibernate.org/
8http://rubyonrails.org/

ative languages. First, because they tend to be more ab-
stract and second, because the transformation to an imper-
ative target language is not a simple one-to-one mapping
any more. As declarative languages are not based on the
sequential execution of commands, debugging concepts such
as single-stepping and breakpoints are not applicable.

Instead debugging can be supported by providing different
views on the model so that the programmer can perform
a visual inspection. Visual inspection is only applicable to
small models, but fortunately raising the abstraction often
leads to reducing the size of the code. Intentional Software®
applies this approach and claims to have received positive
feedback from their costumers[17], which in their case are
usually domain experts without IT background.

An alternative general concept for debugging models is to
simulate or execute example cases. KODOS!, for example,
offers such an approach for debugging regular expressions.
Given a regular expression and an example string, the appli-
cation highlights the parts of the string which match and dis-
plays the contents of the matching groups. So KODOS ba-
sically supports and automates trail-and-error cycles which
otherwise would have to be performed manually.

In the worst case without debugging support, the program-
mer is forced to read or debug the generated code. As the
gap between the programming abstraction and the target
language is typically rather high, the disadvantages of this
approach as described in Sect. 3 are even more severe.

S. IMPERATIVE AND DISTRIBUTED

The pervasive computer is a massively distributed system
with unreliable components. As programming such distri-
buted systems is difficult, imperative programming languages
have been devised that abstract from certain distribution as-
pects. One example for such a language is Kairos[5], which
allows computations involving different nodes without ex-
plicit network communication. This is very convenient but
yet it is completely unclear how to debug Kairos programs.
Traditional single-node source-level debuggers cannot be ap-
plied here, as single stepping or breakpointing one node may
violate timing assumptions in the remaining network which
can itself lead to failures. Clairvoyant [18] addresses this is-
sues by adding WSN specific features to the GDB, i.e. global
stop and continue commands. The downside still remains,
though, which is that interactive debugging sessions on de-
ployed networks deplete the batteries due to heavy usage of
the energy consuming radios thus reducing the overall net-
work lifetime.

A promising imperative meta-language for WSNs is Macro-
Lab [7] which is a vector-based meta language and frame-
work inspired by Matlab. MacroLab programs are composed
of computations on vectors containing data on nodes such as
sensor values, internal state, and parameters for actuators.
Hereby the communication of the vectors among the nodes
is hidden from the programmer. Though, the most impor-
tant fact is that there is a debugger (MDB) [16] for Macro-
Lab. MDB is a post-mortem debugger which synchronizes

%http://intentsoft.com/
Ohttp://kodos . sourceforge.net/



and analyzes log files written by the individual nodes. It
supports common debugging concepts such as breakpoints
and stepping for both temporally and logically synchronous
views. Because MDB does not operate at runtime, it can
and does support time travel and rendering effects of hypo-
thetical changes. Furthermore there is a deployment mode
in which no logging is done but the timing of the debugging
mode is preserved thus avoiding probe effects.

Apart from MacroLab and MDB, few approaches exist to
assist in debugging networks of pervasive computers at the
conceptual level of the programming language. One such
approach is to annotate the program with distributed asser-
tions [14] that formulate hypothesis about distributed vari-
ables which are checked by a a runtime system. When placed
carefully in the code, failed assertions can help debug. How-
ever, this is largely decoupled from the programming ab-
stractions offered by the meta language. As in this example,
today one typically has to resort to distributed debugging
techniques that are independent of the actual programming
abstractions. Dustminer [8], for example, applies data min-
ing techniques to event traces obtained from nodes to find
bug symptoms. Other tools [12, 2, 13, 15] can detect certain
predefined problems such as node reboots, routing loops, or
network partitions. But there is no easy way to relate these
symptoms to possible causes in the program.

6. DECLARATIVE AND DISTRIBUTED

Languages in this class offer declarative programming of a
distributed system as a whole. One well-known example
in the context of WSNs is TinyDB [9] which provides a
database abstraction. The outputs of distributed sensors
form a virtual database table, over which the user can issue
SQL queries. Hereby the user is largely unaware of the fact
that he is actually programming a distributed system.

With respect to debugging, the difficulties of declarative and
distributed languages multiply in this class of our taxonomy.
It is already unclear which debugging concepts should be ap-
plied to declarative queries, let alone the adoption of such
concepts to a distributed setting. To the best of our knowl-
edge no solution exists to support debugging in this class.

7. CONCLUSION

We postulate that programming abstractions should be de-
signed in a way that allows debugging at the same concep-
tual level as programming. The goal should be that devel-
opers can work on the abstract level without having to think
about lower-level implementation issues. In the case of de-
bugging pervasive applications, though, this goal is hardly
achieved as there are only a few good examples such as YETI
or MDB.

We believe that the reason for this is that augmenting pro-
gramming abstractions with debugging capabilities is not
merely an engineering issue. Research is required to de-
vise fundamental debugging concepts for declarative and dis-
tributed languages. Known source-level debugging concepts
such as single-stepping or breakpoints are neither applicable
to declarative languages nor to distributed settings. Once
we have devised such concepts, we can investigate the impli-
cations on the design of debuggable programming abstrac-
tions.

8. ACKNOWLEDGEMENT

The work presented in this paper was partially supported by
the Swiss National Science Foundation under grant number
5005-67322 (NCCR MICS), and by the European Commis-
sion under contract number FP7-2007-2-224053 (CONET).

9. REFERENCES

[1] N. Burri, R. Flury, S. Nellen, B. Sigg, P. Sommer, and
R. Wattenhofer. Yeti: an eclipse plug-in for tinyos 2.1.
In SenSys ’09.

[2] B.-R. Chen, G. Peterson, G. Mainland, and M. Welsh.
Livenet: Using passive monitoring to reconstruct
sensor network dynamics. In DCOSS "08.

[3] S. Dmitriev. Language oriented programming: The
next programming paradigm. JetBrains OnBoard
Online Magazine, 2004.

[4] D. Gay, P. Levis, D. Culler, and E. Brewer. nesC 1.2
Language Reference Manual, 2005.

[5] R. Gummadi, N. Kothari, R. Govindan, and
T. Millstein. Kairos: a macro-programming system for
wireless sensor networks. In SOSP ’05.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. SIGPLAN Not., 35(11):93-104, 2000.

[7] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer,
and K. Whitehouse. Macrolab: a vector-based
macroprogramming framework for cyber-physical
systems. In SenSys “08.

[8] M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and
J. Han. Dustminer: troubleshooting interactive
complexity bugs in sensor networks. In SenSys ’08.

[9] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
Tinydb: an acquisitional query processing system for
sensor networks. ACM Trans. Database Syst.,
30(1):122-173, 2005.

[10] H. K. C. Magnus Christerson (Intentional Software).
Intentional software. In QCon London, 2008.

[11] L. Motolla and P. Picco. Programming wireless sensor
networks: Fundamental concepts and state of the art.
ACM Computing Surveys, 2010. To be published.

[12] N. Ramanathan, K. Chang, R. Kapur, L. Girod,

E. Kohler, and D. Estrin. Sympathy for the sensor
network debugger. In SenSys ’05.

[13] M. Ringwald, K. Romer, and A. Vitaletti. Snif: Sensor
network inspection framework. Technical Report 535,
Dept. of Computer Science, ETH Zurich, 2006.

[14] K. Romer and M. Ringwald. Increasing the visibility
of sensor networks with passive distributed assertions.
In REALWSN ’08.

[15] S. Rost. Memento: A health monitoring system for
wireless sensor networks. In In SECON 2006, 2006.

[16] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and
K. Whitehouse. Macrodebugging: global views of
distributed program execution. In SenSys 09, 2009.

[17] M. Vélter. Intentional Software with Shane Clifford.
software engineering radio, 151. available at:
http://www.se-radio.net/.

[18] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: a comprehensive source-level debugger
for wireless sensor networks. In SenSys '07.



