
A Collision-Free MAC Protocol for
Sensor Networks using Bitwise “OR”

Matthias Ringwald, Kay Römer

Dept. of Computer Science
ETH Zurich, Switzerland

{mringwal,roemer}@inf.ethz.ch

1 Introduction

Many widely used Medium Access Control (MAC) protocols for sensor networks
are based on contention, where concurrent access to the communication chan-
nel by multiple sensor nodes leads to so-called collisions. Collisions are a source
of many undesirable properties of these MAC protocols such as reduced effec-
tive bandwidth, increased energy consumption and indeterministic data delivery.
Hence, collisions are commonly considered a “bad thing”, and MAC protocols
strive to avoid them wherever possible. In sensor networks, communication ac-
tivity is typically triggered by an event in the physical world. In dense networks,
such an event triggers communication activity at many collocated nodes almost
concurrently, such that a high probability of collisions must be expected.

In this paper, we adopt another, more positive view on collisions. In partic-
ular, we show that a set of synchronized nodes can concurrently transmit data,
such that a receiver within communication range of these nodes receives the bit-
wise “or” of these transmissions. Based on this communication model, we can
provide efficient parallel implementations of a number of basic operations that
form the foundation for BitMAC: a deterministic, collision-free, and robust MAC
protocol that is tailored to dense sensor networks, where nodes report sensory
data over multiple hops to a sink.

2 Basic Assumptions

In this section, we present our communication model and characterize the class
of applications, for which BitMAC has been designed.

Our work is based on the assumption, that a node receives the “or” of the
transmissions of all senders within communication range. In particular, if bit
transmissions are synchronized among a set of senders, a receiver will see the bit-
wise “or” of these transmissions. This behavior can actually be found in practice,
e.g., for radios that use On-Off-Keying (OOK), where ”1”/“0” bits are transmit-
ted by turning the radio transmitter on/off. BitMAC will use this communication
model only for a limited number of control operations. For the remainder (e.g.,
payload data transmission), other, perhaps more efficient modulation schemes
can be used if supported by the radio.



Furthermore, our work assumes that the radio supports a sufficient number
of communication channels, such that nodes within communication range can
switch to different channels to avoid interference.

BitMAC is designed for data-collection sensor networks, where many densely
deployed sensor nodes report sensory data to a sink across multiple hops. Data
communication is mostly uplink from the sensor nodes to the sink, although
the sink may issue control messages to the sensor nodes. One prominent ex-
ample of this application class are directed diffusion [2] and TinyDB [5]. Many
concrete applications (e.g., [1, 4, 6, 8]) show this behavior as well. Furthermore,
it is assumed that the network topology is mostly static. That is, after initial
deployment, node mobility and addition are rare events.

3 Protocol Overview

BitMAC is based on a spanning tree of the sensor network with the sink at the
root. In this tree, every internal node and its direct children form a star network.
That is, the tree consists of a number of interconnected stars. Within each star,
time-division multiplexing is used to avoid interference between the children
sending to the parent. Time slots are allocated on demand to nodes that actually
need to send. Using a distributed graph-coloring algorithm, neighboring stars are
assigned different channels as to avoid interference between them. Both the setup
phase and actual data transmission are deterministic and free of collisions.

In the following sections we will describe interesting parts of the protocol
with increasing level of complexity. We will begin with basic techniques for com-
munication among a set of child nodes and a parent node in a star network. We
will then discuss the part of the MAC protocol used to control a single star.
Finally, we will describe how these stars can be assembled to yield the complete
multi-hop MAC protocol.

(b)(a)

Fig. 1. (a) Star network with a single parent. (b) Multiple stars with shared children.

4 Integer Operations

Let us assume that all or a subset of children need to transmit k-bit unsigned
integer values to the parent as depicted in Figure 1(a), where the latter is inter-
ested in various aggregation operations (OR, AND, MIN, MAX) on the set of
values of the children.



Obviously, a bitwise “or” can be implemented by having the children syn-
chronously transmit their values bit by bit.

In order to compute MAX, the binary countdown protocol is used which
requires k communication rounds. In the i-th round, all children send the i-th
bit of their value (where i = 0 refers to the most significant bit), such that
the parent receives the bitwise “or”. The parent maintains a variable maxval
which is initialized to zero. When the parent receives a one, it sets the i-th bit
of maxval to one. The parent then sends back the received bit to the children.
Children stop participation in the algorithm if the received bit does not equal
the i-th bit of their value as this implies that a higher value of another child
exists. After k rounds, maxval will hold the maximum among the values of the
children. Note that children who sent the maximum will implicitly know, since
they did not stop participation. If the values are distinct among the children,
this operation implements an election.

In a parallel integer operation, parents of multiple stars that share one or
more children perform the same integer operation as depicted in Figure 1(b).
If all involved nodes are synchronized, all of the above integer operations can
be performed (synchronously) in parallel. For the OR and AND operations, our
communication model will ensure that all parents will obtain the correct result
for their respective children. For MAX, the parent will in general not obtain the
correct result. However, this operation implements an election, where any two
elected nodes do not share a common parent, if their values are distinct.

5 Star Network

Using the bitwise “or” operation, we present a MAC protocol for star networks,
which will be used as a building block for the multi-hop protocol presented in the
following section. Time-division multiplexing is used to avoid collisions and to
ensure a deterministic behavior of the protocol. In order to optimize bandwidth
utilization, time slots are allocated on demand to nodes that actually need to
send data.

Let us assume for the discussion that children have been assigned small,
unique integer IDs in the range 1...N . We will show in Section 6 how these can
be assigned. The protocol proceeds in rounds with the parent acting as a coor-
dinator. A round starts with the parent broadcasting a beacon message to the
children. Then children will transmit send requests to the parent. After receiving
these requests, the parent constructs a schedule and broadcasts it to the chil-
dren. During their time slots, children send their payload data to the parent.
The parent will then acknowledge successful receipt. If transmission failed, the
affected children will try a retransmission in the next round. For the send re-
quests and the acknowledgments, a bit vector of length N is used. As a further
optimization, the acknowledgment set can be concatenated with the beacon of
the following message as depicted in Figure 2.



Sched i

Preamble SOP

Preamble SOP Data

Data

1

1

Parent

Child 1

Child 2

Child 3

SOPPreamble ACK i−1

Fig. 2. Round i of the optimized MAC protocol for star networks.

6 Multi-Hop Network

We now show how to extend the protocol for star networks to a multi-hop net-
work. First, nodes with the same hop count to the sink form rings. This is
achieved by flooding of a beacon message that contains a hop counter. This op-
eration is only possible because all nodes on ring i synchronously transmit the
beacon to nodes in ring i + 1 utilizing the bitwise “or” of the channel.

Next, the connectivity graph as shown in Figure 3(a) has to be transformed
into a spanning tree by reducing the number of uplinks of each node to one by
assigning separate radio channels. We will show in the next section how these
are assigned. After the channel assignment, each internal node and its direct
children form a star that uses the protocol presented in the previous section.

(b)

1 2 3

(a)

i

i−1

i+1

B C
A D

Fig. 3. Distance from the sink (•) imposes a ring structure on the network. Network
links between nodes in the same ring are not shown.

7 Assigning Channels and IDs

In order to turn the hierarchical ring structure into a tree, each node must be
assigned to a single parent. A parent in ring i then must share a channel with
its children in ring i + 1, such that no other parent in ring i of the children uses
the same channel. More formally, this requires the assignment of small integers
(i.e., channel identifiers) to nodes in ring i, such that nodes who share a child in
ring i + 1 are assigned different numbers.



We assumed in Section 5 that children of a single parent are assigned small
unique integer numbers. With respect to the ring structure, this task can be
formulated as assigning small integers to nodes in ring i, such that nodes who
share a parent in ring i− 1 are assigned different numbers.

The above two problems can be combined into a two-hop graph coloring
problem: assign small integers (i.e., colors) to nodes in ring i, such that nodes
with the same number do not share a common neighbor in ring i − 1 or i + 1.
Note that common neighbors in ring i are not considered. In Figure 3(b), a valid
color assignment would be A = D = 1, B = 2, C = 3.

In order to solve this coloring problem, let us assume that a small number C
is known, such that the numbers 1...C (the color space) are sufficient to solve the
coloring problem. Simulation of random graphs in [7] has shown that choosing
C to be greater than two times the average node degree is sufficient with high
probability. In practice, C will be set to the number of available radio channels.

Under these assumptions, we can use a deterministic variant of the algorithm
presented in [3] to solve the above described two-hop graph coloring problem for
ring i. For this algorithm, each node in ring i maintains a set P (the palette) of
available colors, which initially contains 1...C. The algorithm proceeds in rounds.
In each round, every node in ring i selects an arbitrary color c from its palette P .
Some nodes may have selected conflicting colors. For each possible color, at most
one node in a two-hop neighborhood is allowed to keep its color. All other nodes
must reject the color and remove it from P . The process of selecting nodes that
keep their color is implemented by using the parallel MAX operation described
in Section 4 where at most one node is chosen from a two-hop neighborhood. As
a unique value, a 16-bit MAC address can be used.

The algorithm requires at most C rounds. It is important to note that this
algorithm can be performed by every fourth ring in parallel, hence, the whole
network can be colored in 4C rounds.

8 Further Issues

There are several further issues that cannot be described in detail in this ex-
tended abstract. Some are explored in the full paper [7], for example, time
synchronization, dealing with bit errors, and topology changes. In [7] we also
analyze setup time and energy efficiency of the protocol. Other issues will be
evaluated in future experiments such as robustness against interference and link
fluctuations.

9 Conclusion

We have presented BitMAC, a deterministic, collision-free, and robust protocol
for dense wireless sensor networks. BitMAC is based on an “or” channel, where
synchronized senders can transmit concurrently, such that a receiver hears the
bitwise “or” of the transmissions.



10 Acknowledgments

The work presented in this paper was supported (in part) by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322.

References

1. R. Beckwith, D. Teibel, and P. Bowen. Pervasive Computing and Proactive Agri-
culture. In Adjunct Proc. PERVASIVE 2004, Vienna, Austria, April 2004.

2. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks. In 6th Intl. Conference on
Mobile Computing and Networking (MobiCom 2000), Boston, USA, August 2000.

3. Öjvind Johannson. Simple Distributed ∆ + 1 Coloring of Graphs. Information
Processing Letters, 70:229–232, 1999.

4. C. Kappler and G. Riegel. A Real-World, Simple Wireless Sensor Network for Mon-
itoring Electrical Energy Consumption. In EWSN 2004, Berlin, Germany, January
2004.

5. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks. In OSDI 2002, Boston, USA,
December 2002.

6. R. Riem-Vis. Cold Chain Management using an Ultra Low Power Wireless Sensor
Network. In WAMES 2004, Boston, USA, June 2004.

7. M. Ringwald and K. Römer. BitMAC: A Deterministic, Collision-Free, and Robust
MAC Protocol for Sensor Networks. In EWSN 2005, Istanbul, Turkey, January
2005.

8. R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a Sensor
Network Expedition. In EWSN 2004, Berlin, Germany, January 2004.


