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ABSTRACT

This paper addresses the question of temporal learning in
spatially distributed wireless sensor networks (WSN). We
propose to fuse WSNs with the Echo States Network learn-
ing concepts to infer the spatio-temporal dynamics of the
data collaboratively measured by sensors. We prove that a
WSN topology described by a bidirected graph is strongly
connected, which is a sufficient and necessary condition for
implementing in-network distributed learning. For strongly
connected networks we develop a systematic method to sat-
isfy the conditions resulting in echo states in sensor net-
works. The effectiveness of the learning approach is demon-
strated with several controlled model experiments.

1. INTRODUCTION

In recent years the advances in electronics and digital com-
munications have made wireless sensor networks (WSN) a
very promising tool for efficiently solving large-scale deci-
sion and information-processing tasks [1, 2]. WSNs allow
to collect and process spatially distributed and time-varying
data. Due to energy constraints and often limited commu-
nication capabilities, the operation of WSNs relies on dis-
tributed processing, when the operation of the whole net-
work is achieved through the synergy of individual sensors,
able to sense, compute, and communicate data.

The goal of sensor networks is to collect information
about the environment they are sensing and to infer prop-
erties or patterns governing the observed data and describ-
ing their information content. When the statistics or mod-
els of the observed phenomenon can be assumed as known,
the task of inference in WSNs boils down to the problem
of decentralized estimation or detection (see [3] and refer-
ences therein). However, when little or noa priori infor-
mation about the measured process is available, or when the
observed data is sparse, it is often more efficient to con-
struct the model from the data itself (see [4] and references
therein). The second scenario does not depend so much
on prior assumptions, but rather on learning-theoretic ap-
proaches, i.e., pattern recognition, nonparametric regression,
neural networks, etc. Current learning approaches in WSNs

address applications of classical “non-temporal” statistical
learning setups, when data acquired by each sensor is as-
sumed to be i.i.d. samples drawn from some fixed but un-
known distribution. However, to the best of our knowledge,
learning in WSNs for processes which have memory both
in time and in space has not been addressed in the literature.
The study of the latter forms the main focus of this work.

In this contribution we consider the problem of spatio-
temporal learning with sensor networks that is posed as fol-
lows: spatially distributed sensors acquire collectivelya set
of data samples{u[n], y[n]} ⊂ U × Y during the time in-
terval n = 0, . . .N − 1. Measurementsu[n] ∈ RL, and
y[n] ∈ RL represent the snapshots of some spatial scalar
field measured byL sensors at the timen. Our goal is the
inference of the unknown functional relationship

y[n] = g(. . . , y[n − k], . . . , u[n − l], . . .).

We will also assume thatg exists and that it has memory
both in time and space. This assumption is what makes
this inference a spatio-temporal learning task. To solve this
task we propose to extend a class of recurrent neural net-
works, known as Echo State Networks (ESN) [5], for spatio-
temporal learning applications in WSNs– an Echo State Wire-
less Sensor Network (ES-WSN). Learning in ESNs is achieved
by creating a network of interconnected neurons called a
reservoir. The output of the reservoir, created by exiting the
network with the inputu[n], produces a basis for transform-
ing network inputs into the so-called echo states. The latter
are then (usually) linearly combined to obtain the desired
network output. The estimation of the optimal combiner co-
efficients constitutes the corresponding ESN training stage.

In WSNs, especiallyad hoc WSNs [6], the network
topology is usually random and unknown prior to deploy-
ment. Sensors have to self-organize and self-configure to
form a network by establishing connections with their neigh-
bors. The topology of such networks is reminiscent of the
ESN’s reservoir, and, if the number of sensors is large, such
a reservoir creates a sufficiently rich basis for mapping the
input data into echo states. By equipping the sensors with
computational functionalities we can make sensors perform
neuron-like computation, which is essentially an application



of a static nonlinear map to the weighted sum of inputs and
states of other sensors. Note that this can be seen as the dis-
tributed compressed sensing which is currently an active re-
search area in the WSN community [7]. Quite naturally dis-
tributed sensor measurements can be used as training exam-
ples for learning. This task can be solved either centrally at
the fusion center ( i.e., at the data accumulation and process-
ing center), or distributively (in-network computations)by
finding an optimal regressor collaboratively. However, such
collaborative processing is only feasible when the topology
of the WSN satisfies specific constraints, which will be dis-
cussed later in the text.

In what follows we outline the main concepts of the pro-
posed ES-WSNs. In Section 2 we define the used terminol-
ogy and notations. Section 3 discusses how to satisfy the
conditions for the existence of echo states. There we also
propose a distributed initialization scheme. Finally, in Sec-
tion 4 we demonstrate the learning performance of ES-WSN
on model-generated synthetic data.

2. STRUCTURE OF ES-WSN

In the rest of the paper we will generally abstract from the
networking aspects and physical link properties of the net-
work, assuming that the sensors are able to exchange real-
valued messages. We will also assume that, for the purpose
of learning, the sensors are already organized into a net-
work, and each sensor “knows” its neighbors. Furthermore,
we will assume that the communication links between the
sensors are reciprocal, i.e., that data can flow in both ways
between any two connected sensors.

Let a WSN consist ofL sensorsSl, l = 0, . . . , L−1. In-
terconnections between the sensors induce a network topol-
ogy, which can be represented by a bidirected graph (shown
in Fig. 1), where the graph vertices represent sensors, and
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Fig. 1. A possible configuration of a sensor network and the
corresponding adjacency matrix.

its edges correspond to the existing communication links.
The graph topology is represented by an adjacency matrix
A, with elementsalk = 1, when sensorsSk andSl are con-
nected, andalk = 0 otherwise. As a neighborhoodNl of
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Fig. 2. A model of a sensor neuron.

the sensorSl we will denote the subset of all sensors in the
WSN that are connected toSl, i.e.,

Nl = {Sk| such that alk = 1, k = 0, . . . , L − 1}

Note that the neighborhoodNl can also include sensorSl as
well.

In order to combine WSNs and ESNs, we impose neuron-
like processing tasks on sensors (Fig. 2). As we see, in or-
der to produce a statexl[n] each sensorSl applies a static
nonlinear map to a weighted sum of the statesxl[n − 1] re-
ceived fromSk ∈ Nl, and a weighted measurementul[n].
Observe that such input transformation can also be seen as a
distributed (due to the recursive nature of the network) data
compression stage. Formally, the response of each sensor is
represented by the following state update equation

xl[n] = f(wT
ulul[n] + wT

l x[n − 1]) (1)

wherewul is the weighting coefficient for the input data
ul[n]. Coefficientswl = [wl0, . . . , wl(L−1)]

T are the weights
of the internal network connections, with elements defined
as

wlk =

{

0 alk = 0
w̃lk alk = 1,

k = 0, . . . , L − 1. (2)

Both w̃lk andwul are randomly generated at each sensor
during the network initialization. Typically in ESNs this is
done by drawing samples from a zero-mean Gaussian dis-
tribution.

The collective response of the network is governed by
the “measurement” equation

y[n] = W o

[

x[n]
u[n]

]

. (3)

Learning in ESNs consists in finding the optimal weight-
ing matrixW o that minimizes the distance between the de-
sired responsey[n] and the network output, while keeping
all other network weights fixed. Since the matrixW o enters
(3) linearly, the optimal solution can be found by solving a
system of linear equations. This clearly alleviates a signif-
icant computational burden from the resource-limited sen-
sors due to the existence of numerous efficient (as well as
distributed) techniques for solving linear systems of equa-
tions [8, 9].



Now let us consider some technical aspects arising when
extending the echo state principle onto wireless sensor net-
works.

3. LEARNING METHODS FOR ES-WSN

In order to ensure proper functioning of the ES-WSN it is
crucial to make sure that the internal network weightswl

satisfy the echo state property. In [5] Jaeger defines suffi-
cient and necessary conditions for the network to have echo
states assuming the activation functionf(·) in (1) is Lips-
chitz continuous. Letσmax(W ) denote the largest singular
value of the matrixW = [w0, . . . , wL−1]

T , and letµ(W )
denote its spectral radius. Then,σmax(W ) < 1 is a suffi-
cient, andµ(W ) < 1 is a necessary condition for the net-
work to have echo states (see [5] for the proof).

In classical ESNs both the sufficient and necessary con-
ditions can be easily satisfied by randomly generating en-
tries of the matrixW and then applying a global scaling
constantα such thatσmax(αW ) < 1. In the case of WSNs
such global scaling is impossible to implement without a
centralized processor, which is usually not available in WSNs.
Instead, we have to generate the weightswl locally, i.e., in-
dependently at each sensor, and then implement some in-
network processing to ensure thatσmax(W ) < 1. In what
follows we propose a simple distributed initialization pro-
cedure that achieves this goal.

3.1. Mathematical preliminaries

First, let as recall that due to the reciprocity of the links
between the sensors the adjacency matrix is symmetric, i.e,
A = AT . Let us now restate several properties from matrix
theory that we will exploit later in the text.

Definition 1. : A matrix A ∈ CL×L is said to be reducible
if there is anL × L permutation matrixP such that

P T AP =

[

A11 A12

0 A22

]

whereA11 andA22 are square matrices of order less than
L. A WSN whose topology is described by a reducible adja-
cency matrixA is called a reducible WSN.

The next two definitions illustrate why irreducibility is
an important property in WSNs, in particular in learning
applications.

Definition 2. A graph is said to be strongly connected if for
each pair of nodesSk, Sl, k 6= l, there is a directed path
consisting ofm directed lines that connectSk andSl

Lemma 1. If the graph adjacency matrixA is irreducible,
then the network is strongly connected [10].

In distributed learning applications the results of local
data processing, e.g., the local error gradient [11], have to
be made available to the whole network. Violation of the
strong connectivity leads to some sensors being cut off from
the rest of the network. It is easy to conclude that strong
connectivity is a sufficient and necessary condition that guar-
antees that the results of local computations can reach any
other sensor in the network. Thus, for the in-network learn-
ing the corresponding WSN topology must be strongly con-
nected.

Now, we are ready to formulate a proposition that is
crucial for ES-WSN initialization as well as for general in-
network learning in WSNs.

Proposion 1. For a WSN with reciprocal communication
links between the sensors the following is true:

1. The corresponding adjacency matrixA is either irre-
ducible, orP T AP is block-diagonal (i.e.,A12 = 0)
with irreducible submatricesAjj corresponding to
separate disjoint WSNs,

2. If for a reducible network the corresponding diagonal
submatricesW jj are independently initialized such
thatσmax(W jj) < 1, then the total spectral norm is
also bounded asσmax(W ) < 1

The proof of this result can be found in Appendix A.
From this result we can immediately draw an important con-
clusion:

Corollary 1.1. For a single irreducible WSN it is possible
to find a closed directed loopL through the network such
that starting at some sensorS0 we can form a directed path

L = S0 → Sk → . . .Sl → S0.

This result follows directly from the strong connectivity
of the WSN with reciprocal links. Note that the loopL is not
necessarily a Hamiltonian loop through the graph. As we
will show, forming a loop through the network is required
for the distributed ES-WSN initialization. Observe, that in
many other in-network learning algorithms, e.g., [11, 9, 12],
it is also required to form a network loop. Its existence was
usually assumed, but the conditions that guarantee this ex-
istence were not previously specified.

3.2. Distributed normalization of the internal connec-
tion matrix W

Let us now pose the initialization problem in ES-WSNs.
After having randomly and independently generated coef-
ficientswl at each sensor, our goal is to find distributively a
scaling constantα such thatσmax(αW ) < 1.

A simple way to satisfy this bound without the exact
computation of the largest singular value ofW is to use its



upper bound [13]

σ2
max(W ) ≤ max

l
γl (4)

where

γl =
∑

k

|wlk|ck, and ck =
∑

l

|wlk|.

Note that (4) is tighter than the well known Schur bound
[14] σ2

max(W ) ≤ ‖W‖1‖W‖∞. We will now show how
to computemaxl γl using only local communications, i.e.,
communications between the connected sensors only.

Let as assume that the adjacency matrix describing the
topology of the WSN is irreducible. Then, there exists a
loop L that visits all sensors at least once. Let as also as-
sume that this loop is known.

A closer look at (4) reveals that in order to compute
the boundβ = maxl{γl}, each sensorSl, in addition to
the lth row wT

l of W , also needs to know the correspond-
ing columnw′

l (see Fig. 3). The coefficientsw′

l deter-
mine how the outputxl[n] is weighted by the sensors inNl.
Clearly, in case of reciprocal communication links this will
require only local exchange of weights. This requires ex-
actly one loopL through the network, during which the sen-
sors sequentially transmit their weights to the corresponding
neighbors. At the end of the loop each sensorSl will know
thelth row andlth column from the matrixW .

k

l

0
w23

0 w32 w33 0 w35 · · ·
0

w53

...

w′

l

wT
l

SensorSl

Fig. 3. Structure of the internal connection weights at the
sensorSl.

The next step involves computingcl = ‖w′

l‖1 at each
sensor and distributing the results to the neighbors, which
again requires local transmissions only. Once done, each
sensor can computeγl =

∑

k |wlk|ck and compare his re-
sult to that received from the previous sensor in the loop.
The largest number is sent forward to the next sensor along
the path. Thus, after the loop is complete, the last sensor in
the loop knows the boundβ. During the final loop the bound
β is used to normalize the coefficientswl and is transmit-
ted further along the loop. Thus, four loops are necessary
to normalize the coefficients without direct computation of
σmax(W ). We summarize these steps in the Algorithm 1.

Table 1Computation ofmaxl

∑

k |wlk|ck

% — sharewlk between the neighbors —%
for eachSl ∈ L

for eachSk ∈ Nl

w′

kl = wlk

end
end
% — computingcl for each sensor —%
for eachSl ∈ L

for eachSk ∈ Nl

ckl = ||w′

l||1
end

end
% — computing the boundβ —%
β−1 = −∞
for eachSl ∈ L

γl =
∑

k |wlk|clk

βl = max{γl, βl−1}
end
% — normalizing the weightswl—%
for eachSl ∈ L

βl = βl−1

wl = αwl/βl, α < 1
end

3.3. Learning algorithm

Let us now discuss how to implement the actual learning
procedure. Sensors communicate a message (packet) by
broadcasting to all neighboring sensors, or to a single sen-
sor along the loop. Note that sensors in the network can also
operate as relays by simply passing the data further along to
the given loopL. Clearly, a single loop corresponds to one
time stepn in (1) and (3) for alll = 0, . . . , L − 1.

We will now consider learning strategies for two types
of WSNs: networks with a fusion center (FC), and networks
using collaborative in-network learning.

3.3.1. FC-based learning

In this regime learning is quite straight-forward – each sen-
sor transmits a message{l, xl[n], ul[n], yl[n]} to the FC.
This can be done either directly, when there is a direct con-
nection to the FC, or relayed through the network, which
would require an appropriate network protocol. Then the
task of the FC is to find the coefficientsW o in (3) by solv-
ing

Ŵ o = argmin
W o

∥

∥

∥

∥

y[n] − W o

[

x[n]
u[n]

]∥

∥

∥

∥

2

2

. (5)

If the data arrives at the fusion center sequentially (with the
period between data snapshots corresponding to the length
of a single loop), one can make use of the classical LMS or
RLS algorithms [15] to find the optimal weights. Clearly, it



is also possible to accumulate the data over time and then
solve (5) simultaneously for all time instances. In general
this approach will require at leastO(L2) loops in order to
estimateL2 coefficients of the matrixW o. Observe that
FC-based learning can still be used when the network is re-
ducible, i.e., consists of several disjoint WSNs, since learn-
ing takes place in the fusion center. However, the disjoint
networks can be connected through the FC with appropriate
network protocols.

3.3.2. Distributed in-network learning

In this regime the sensors have to solve (5) distributively.
The major difference to FC-based learning is that optimal
weights become available to all sensors as the network is
trained. This clearly allows each sensor to take actions that
are globally optimal (with respect to the WSN), and opens
a way to designing self-aware sensor networks.

The formal basis for such computations is readily pro-
vided by many distributed optimization algorithms [9, 8].
The optimal regressorW o is found by defining a loopy path
through the sensor network such that every sensor is visited
at least once. Along this path the sensors exchange mes-
sages consisting of a current estimate ofW o, and update it
using the local data{ul[n], xl[n], yl[n]} only. A single up-
date ofW o is achieved after the loop is complete and all
measurements have been incorporated in the update. Note
also that unlike the case of FC-based learning, in-network
based learning is only meaningful for irreducible networks.

4. SIMULATION RESULTS

Let us now consider a model example that illustrates learn-
ing in a sensor network. For simplicity let us assume that
the sensors are randomly scattered in a 2D plane. The ad-
jacency matrix of the network is sparse, with≈ 15% of
nonzero entries.

The synthetic data used to test the learning performance
of the network was generated using the following multivari-
ate ARMA model:

s[n] =

3
∑

q=1

tanh(Aqs[n − q]) + B0ǫ[n]. (6)

ParametersAq ∈ RL×L andB0 ∈ RL×L in (6) are ran-
domly generated matrices. These matrices are normalized
such that‖Aq‖ = 1.5, and‖B0‖ = 0.1. Signalss[n] =
[s1[n], . . . , sL[n]]T andǫ[n] = [ǫ1[n], . . . , ǫL[n]]T are input
and output signals, respectively. Signalǫ[n] is generated by
drawing i.i.d. samples from a multivariate zero-mean nor-
mal distribution with the covariance matrixI.

The internal network weightsW are drawn from the
standard zero-mean Gaussian distribution and normalized
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Fig. 4. a)Original and predicted signal waveform for
‖B0‖ = 0.1. b) Root-mean squared prediction error for
different norms of the matrix‖B0‖..

as proposed in Algorithm 1 such thatσmax(W ) = 0.95.
The input weightwul,l is drawn from a zero-mean Gaussian
distribution. During the training stage it is assumed that
each sensor ”measures” a pair of valuesul[n] = sl[n − 1],
andyl[n] = sl[n], i.e., the learning objective is a one-step-
ahead predictor.

After the training stage, which consists in solving (5)
using pseudo inverse, we generate the test data anew us-
ing (6) with a different random noise sequenceǫ[n], and
compare predictions of the trained network to the true out-
put s[n]. We assess the learning performance in terms of
the test RMSE, averaged over100 realizations ofs[n]. Re-
sults for different choices of‖B0‖ andL = 50 sensors are
shown in Fig. 4. As we see, after the initial transient, the
learning algorithm successfully predicts the observed signal
s[n]. Clearly, the learning performance deteriorates as the
variance of driving noise termB0ǫ[n] increases.

5. CONCLUSIONS

In this contribution we propose and discuss Echo State Wire-
less Sensor Networks for solving spatio-temporal learning
tasks. We use the topology of the WSN as an echo state
reservoir for representing the spatio-temporal dynamics of
the measured data using echo states. The learning problem
can then be solved by finding the optimal regression of echo
states onto the desired network targets measured by sensors.
This typically linear problem can be efficiently solved at a
fusion center or distributively by sensors. We showed that
for in-network learning it is essential to have a strongly con-
nected WSN. This allows to form a loop through the net-
work, which in turn is essential for propagating (and col-
lecting) the local information. Assuming the WSN is repre-
sented by a single graph, reciprocity of the wireless links
between the sensors is a sufficient condition for the net-
work to be strongly connected. For strongly connected net-
works we developed a novel distributed initialization algo-



rithm that ensures existence of echo states in WSNs. The
learning method was demonstrated on a synthetic nonlin-
ear AR model of the first order. The obtained results show
that the ES-WSN can successfully learn the spatio-temporal
dynamics of the observed data.

A. PROOF OF PROPOSITION 1

We first prove the part 1) of the proposition. If the matrix
A is reducible then there is anL×L permutation matrixP
such that

P T AP =

[

A11 A12

A21 A22

]

whereA21 = 0, andA11 and A22 are square matrices
of order less thanL. Under the condition of reciprocity
of the sensor links, the matrixP T AP must also be sym-
metric. Indeed, the permutation is equivalent to a simple
relabeling of sensors in the network, which does not de-
stroy the reciprocity property. ThusP T AP is also sym-
metric, which means thatAT

12 = A21 = 0. By induc-
tion the same argumentation can be applied to submatrices
A11 andA22 – they are either irreducible or block diag-
onal. As a consequence, for a network represented by a
single graph it is sufficient to have reciprocal communica-
tion links to ensure irreducibility. To prove part 2) of the
proposition let us assume thatA11 andA22 are irreducible,
i.e., the corresponding subnetworks are strongly connected.
Then, within each subnetwork we can form a closed loop
and apply the proposed normalization procedure, such that
σmax(W 11) = α1 < 1 andσmax(W 22) = α2 < 1. Then
it follows thatσmax(P

T WP ) = σmax(W ) and

σmax(W ) = max
(

σmax(W 11), σmax(W 22)
)

< 1, (7)

which proves the result.
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