
Boosting AES Performance on a Tiny Processor
Core

Stefan Tillich and Christoph Herbst

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
{Stefan.Tillich,Christoph.Herbst}@iaik.tugraz.at

Abstract. Notwithstanding the tremendous increase in performance of
desktop computers, more and more computational work is performed on
small embedded microprocessors. Particularly, tiny 8-bit microcontrollers
are being employed in many different application settings ranging from
cars over everyday appliances like doorlock systems or room climate con-
trols to complex distributed setups like wireless sensor networks. In order
to provide security for these applications, cryptographic algorithms need
to be implemented on these microcontrollers. While efficient implemen-
tation is a general optimization goal, tiny embedded systems normally
have further demands for low energy consumption, small code size, low
RAM usage and possibly also short latency. In this work we propose a
small enhancement for 8-bit Advanced Virtual RISC (AVR) cores, which
improves the situation for all of these demands for implementations of
the Advanced Encryption Standard. Particularly, a single 128-bit block
can be encrypted or decrypted in under 1,300 clock cycles. Compared to a
fast software implementation, this constitutes an increase of performance
by a factor of up to 3.6. The hardware cost for the proposed extensions
is limited to about 1.1 kGates.

Keywords: Advanced Encryption Standard, instruction set extensions,
8-bit microcontroller, AVR architecture, hardware-software codesign.

1 Introduction

In recent years, small 8-bit microcontrollers have experienced an increase in
popularity due their suitability for exciting new applications in the embedded
systems field. A good example is the advent of wireless sensor networks, which
require data processing with low energy overhead. In general, the application of
such small microcontrollers is conditioned by constraints in energy budget and/or
device cost. A common problem encountered by system designers is the relatively
low speed and limited memory of 8-bit microcontrollers. Modern architectures
like AVR have alleviated the problem to a certain extent, but careful software
implementation remains nevertheless a topic of importance.

Providing security to embedded applications demands the use of strong cryp-
tographic algorithms. In this field, symmetric cryptographic primitives can pro-
vide users with confidentiality and integrity of data as well as authentication

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 170–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

mailto:Stefan.Tillich@iaik.tugraz.at?cc=Christoph.Herbst@iaik.tugraz.at
http://www.springerlink.com/content/t4pl16w651423677

Boosting AES Performance on a Tiny Processor Core 171

services. An important and increasingly popular symmetric algorithm is the Ad-
vanced Encryption Standard (AES) algorithm [16], which has been standardized
by NIST in 2001 to replace the aging Data Encryption Standard.

Processing of cryptographic algorithms is normally a rather heavy burden
on 8-bit microcontrollers and it is generally desirable to keep the overhead for
cryptography as low as possible. In the present work we propose to enhance
an 8-bit AVR core with some custom instructions (instruction set extensions)
in order to speed up AES encryption and decryption. The rest of this paper
is organized as follows. In Section 2 we give an overview of previous and re-
lated work on instruction set extensions for cryptography. Section 3 provides
an overview of the general AVR microcontroller architecture. We present the
AES extensions in Section 4. Subsequently, we deal with general implementation
issues related to both hardware and software in Section 5. We describe details of
our hardware implementation, give performance estimations, and compare the
results to related work in Section 6. Conclusions are drawn in Section 7.

2 Previous Work on Instruction Set Extensions

Nahum et al. were the first to suggest to base RISC processor design on the
need for supporting a large set of cryptographic software implementations [15].
Jean-François Dhem showed in his Ph.D. thesis the first concrete enhancements
for a processor architecture (ARM7M) in the form of long integer modulo support
for public-key algorithms [8]. First publications regarding concrete instruction
set extensions for secret-key primitives started to appear around 2000 [4,12,19]. A
bulk of research has been done in the following years, dealing with cryptography
enhancements of general-purpose processors for both public-key and secret-key
algorithms. Topics ranged from automatic design space exploration (e.g., [17])
over efficient implementation (e.g., [13]) to resistance against side-channel at-
tacks (e.g., [22]). Closely related to the field of instruction set extensions is the
work on dedicated cryptographic processors like the CryptoManiac [25] and the
Cryptonite [3], which are both VLIW architectures.

While earlier work for the secret-key domain tended to focus on a broad
support of algorithms, more recent work concentrated on single cryptographic
primitives. Due to its increasing importance after standardization, the AES
algorithm has received particular attention. Nadehara et al. suggested to map the
so-called round lookup (T lookup) of AES into a dedicated functional unit [14].
Bertoni et al. and Tillich et al. suggested independently to allow for a finer
granularity of operations, separating the S-box lookup from the ShiftRows and
MixColumns transformation [2,21].

So far, almost all architectural extensions for cryptography have been pro-
posed for processors of a word size of 32 bits or more. An exception is the work
of Eberle et al. which describes support for ECC over binary extension fields
GF(2m) for the AVR architecture [9]. A custom 8-bit microcontroller for AES
has been presented by Chia et al. in [6], with a focus on minimizing code size
rather than performance.

172 S. Tillich, C. Herbst

3 Overview of AES and AVR

3.1 Short Description of AES

The AES algorithm is a subset of the block cipher Rijndael. The NIST standard
fixes the block size to 128 bit and provides three different key sizes: 128, 192,
and 256 bit. The 128-bit block is arranged into a logical 4×4-byte matrix, which
is commonly denoted as the AES State. This State is transformed in a number
of identical rounds, each of which consists of the four transformations SubBytes,
ShiftRows, MixColumns, and AddRoundKey. An exception is the last round,
where the MixColumns transformation is omitted. In each round, a different
round key derived from the cipher key is used. SubBytes substitutes individual
bytes of the State using a single S-box table, consisting of 256 8-bit entries.
ShiftRows rotates the rows of the State, while MixColumns operates on complete
State columns, interpreting them as polynomials over GF(28). AddRoundKey
combines the State and the current round key by means of bitwise exclusive
or (XOR). For AES decryption, the inverse transformations InvSubBytes, Inv-
ShiftRows, InvMixColumns, and AddRoundKey (which is its own inverse) are
applied to the ciphertext block in reverse order. For more details on Rijndael
and AES, please refer to [7,16].

On 32-bit processors most of the AES round transformations (SubBytes,
ShiftRows, and MixColumns) can be implemented by table lookup, using one
or more round lookup (T lookup) tables with 256 32-bit entries. This approach
can be scaled down to 8-bit implementations like those of Rinne et al. which we
have used for performance comparison [18]

3.2 Description of the AVR Architecture

The Advanced Virtual RISC (AVR) by Atmel is an 8-bit Harvard architecture
microcontroller. This means, that the data and program memory are separated.
The program memory is implemented as an in-system programmable FLASH
memory whose size can vary from 1 kByte to 256 kBytes depending on the
model. The available RAM and internal in-system programmable EEPROM also
depends on the model. RAM size can vary from 32 bytes to 8 kBytes, whereas the
EEPROM size which is a non-volatile memory mainly used to store parameters
ranges from 0 kBytes to 4 kBytes.

The AVR instruction set consists of approximately 110 different instructions.
Most instructions are encoded with 16 bit and operate on the 32 general-purpose
registers of the architecture. Six of these registers can also act as three inde-
pendent 16-bit pointers for memory access. Most of the instructions require
only a single clock cycle to execute. Only a few instructions take two to four
clock cycles to finish. The instructions are directly executed from the FLASH
memory. Some of the controllers not only support in-system programming but
also self-programming is supported. That enables the controllers to reload source
code during runtime and supports the flexibility of applications implemented on
AVR microcontrollers.

Boosting AES Performance on a Tiny Processor Core 173

To address the requirements of low-power designs, the supply voltage for the
AVR family ranges from 1.8V to 5.5V. The controllers are equipped with a
sleep controller which supports various modes and the operation frequency can
be controlled by software to support power save modes. The AVR family is built
to support clock frequencies up to 20 MHz.

The AVR microcontrollers are explicitly designed to be programmed in C.
There are various free software development kits available like avr-gcc for com-
piling C code and AVR Studio including a simulator. The availability of free
development tools supports the widespread use of the AVR controllers in various
embedded applications like sensor nodes.

4 Our Proposed AES Extensions

All AES extensions proposed so far in the literature try to make full use of the
32-bit datapath of the underlying processor [2,14,21]. Therefore, none of these
solutions can be scaled down to an 8-bit architecture in a straight-forward way.
As we will show in this section, it is however possible to reuse some of the
important concepts of these 32-bit approaches to arrive at a worthwhile solution
for small microcontrollers.

4.1 Support for AES Encryption

We propose three instructions to speed up AES encryption, whereby two instruc-
tions are intended to speed up the AES round transformations, while the third
instruction is conceived for use in the final round and also in the key expansion.
The instruction formats fully adhere to the AVR architecture and therefore allow
for easy integration. All instructions use similar hardware components and a
small and flexible functional unit can be easily designed to reach the maximal
speed of current state-of-the-art AVR cores (which ranges at the time of writing
at around 20MHz).

Our basic concept is to use the capability of typical AVR microcontrollers to
retrieve two register values per clock cycle [1]. With appropriate selection of the
register operands, all four AES round transformations can be executed for two
State bytes with only a few instructions. In the best case, a complete round for
an AES State column (contained in registers) can be processed and stored back
to the original registers in only 15 clock cycles.

The functionality of the two instruction variants AESENC(1) and AESENC(2)
is depicted in Figure 1. Note that the symbols

⊕
and

⊗
denote addition

(conforming to bitwise XOR) and multiplication in the Galois field GF(28),
respectively. These instructions have the same format as the integer multipli-
cation instruction MUL of the basic AVR architecture. First, the values from
the two specified registers Rd and Rr are substituted according to the AES
(forward) S-box. Depending on the instruction variant, the substituted bytes
are multiplied with specific constants from the field GF(28) (we use the notation
{x} to discern such constants from integers). Two of the multiplication results

174 S. Tillich, C. Herbst

are then combined with the values from the registers R0 and R1 by means of an
XOR operation. The resulting values are stored to the registers R0 and R1.

AES

S-box

Rd Rr

AES

S-box

{2}

{3}

R0 R1

{1}

{1}

{2}

{1}

{1}

{3}

AESENC(x)

Fig. 1. AES extensions for a “normal” encryption round

The intended use of the AESENC(x) instructions (where x ∈ {1, 2}) is to
perform all transformations of a single AES round on two bytes of a State column
with merely two invocations. The GF(28) constants have been chosen carefully
from the AES MixColumns matrix. Each invocation of AESENC(x) conforms
to the processing of a quadrant of that matrix. Due to the symmetry of the
MixColumns matrix, there are only two distinct quadrants. Therefore, the two
variants of AESENC(x) instruction are sufficient to transform the complete AES
State.

The AESENC(x) instructions can be used to produce two State bytes at the
end of a round from the according four State bytes at the start of the round and
the corresponding two bytes of the round key. In order to do this, the two bytes
of the round key are loaded into R1 and R0 and then AESENC(1) and AESENC(2)
are invoked with the according State bytes to produce a half of the resulting
State column. The feedback from R1 and R0 into the final XOR stage (cf. Figure
2) has a dual functionality: On the first invocation of AESENC(x), the round
key bytes are added to the intermediate result. On the second invocation, this
intermediate result is combined with the contribution from the other State bytes
in the final XOR stage.

Boosting AES Performance on a Tiny Processor Core 175

Our approach is similar to the ones of [14] and [2] in that it tries to pack as
many operations as possible into a single instruction. It has been shown in [21]
that slight modifications can lead to a considerable increase in implementation
flexibility. Therefore, we also propose a lightweight variant of the AESENC(x)
instruction, which can be used in the final round of AES encryption as well as
in the key expansion. The functionality of this instruction, which we denote by
AESSBOX is shown in Figure 2.

AES

S-box

Rd Rr

Rd

Fig. 2. AES extension for the final round

The AESSBOX instruction adheres to the “two-input, one-output” format,
which is common to most of the arithmetic and logic instructions of the AVR
architecture, e.g., integer addition ADD and bitwise exclusive or EOR. One of the
two input registers (namely Rd) is also the target register of the instruction, while
the second input register (Rr) can be chosen freely. For our proposed AESSBOX
instruction, the value from register Rd is substituted according to the AES S-box
and XORed to the value from register Rr.

4.2 Support for AES Decryption

Most common modes of operations of block ciphers are defined with the sole use
of the according encryption function, e.g., the CTR mode for confidentiality and
the CBC-MAC variants for authentication. However, in some situations the de-
cryption function of the block cipher might be of use, e.g., when CBC encryption
mode is preferred over CTR mode. For this case we also propose instruction set
support for AES decryption, additionally motivated by the following reasons:

– Decryption support can be seamlessly integrated with encryption support
with little extra hardware cost.

– With these extensions, decryption speed can be made equal to that of en-
cryption, opening up additional options for more flexible protocol implemen-
tations.

176 S. Tillich, C. Herbst

Similarly to encryption, decryption support consists of the two instruction
variants AESDEC(1) and AESDEC(2), conforming to the two distinct quadrants
of the InvMixColumn constant matrix. Another necessary change is the use of
the inverse S-box.

Decryption support incurs a slight complication of the implementation in
regard to the AddRoundKey transformation. For AESENC(x) instructions, the
final XOR stage (cf. Figure 2) performs both AddRoundKey and a combination
of intermediate values to yield the State bytes at the end of the round. The
AESDEC(x) instructions require AddRoundKey at a different stage (after the
inverse S-boxes), due to the slightly changed order of inverse round transfor-
mations in AES decryption [16]. One possible solution is to introduce a con-
ditional XOR stage after the inverse S-boxes (for AddRoundKey) and another
conditional XOR stage at the end (for combination of intermediate results).
The AESDEC(1) instruction can then make use of the first stage and bypass
the second stage, whereas AESDEC(2) can do the opposite. By sticking to a fixed
order of AESDEC(1) and AESDEC(2) instructions, decryption can be implemented
correctly. The functionality of the AESDEC(x) instruction variants is depicted in
Figure 3.

For the last round, we propose an instruction AESINVSBOX similar to AESSBOX
for encryption. The only difference is the use of the inverse S-box in the case of
decryption.

4.3 Performance Enhancement and Implementation Flexibility

Our proposed extensions are designed to improve performance using three main
strategies. Firstly, the instructions support AES transformations which are not
very well catered for by the microcontroller’s native instruction set (especially
MixColumns and InvMixColumns). Secondly, two State bytes are transformed
simultaneously, which effectively “widens” the 8-bit datapath. And finally, sev-
eral transformations can be executed by a single instruction invocation.

Compared to typical AES coprocessors, our instruction set extensions allow a
more flexible application. The custom instructions support all three key sizes of
128, 192, and 256 bit. All modes of operations can be realized seamlessly, as the
AES State can be retained in the register file. In contrast, a coprocessor might
require to transfer blocks to and from the processor whenever the chosen mode
requires operations which are not supported by the coprocessor. The resulting
overhead can be detrimental to the overall performance. Another advantage
of our extensions is that they support fast implementations of all variants of
Rijndael, which is a superset of AES and which specifies independent block
sizes and key sizes between 128 and 256 bit in 32-bit increments. A potential
application of Rijndael is as building block for a cryptographic hash function:
By setting Rijndael’s block and key size equal, it can be applied in a hashing
mode of operation to build a hash function with a hash size equal to the block
size.

Boosting AES Performance on a Tiny Processor Core 177

AES

inverse

S-box

Rd Rr

AES

inverse

S-box

{E}

{B}

R0 R1

{D}

{9}

{E}

{9}

{D}

{B}

AESDEC(x)

Fig. 3. AES extensions for a “normal” decryption round

5 Implementation Issues

We now give details on possible hardware implementation options for our pro-
posed extensions and different ways to optimize AES software implementations
through utilization of those extensions.

5.1 Hardware Implementation of the Proposed Extensions

In this section we outline important implementation issues for the functional
units as well as integration issues for the AVR architecture. We will thereby
refer to a unified implementation, which is able to provide support for both

178 S. Tillich, C. Herbst

AES encryption as well as AES decryption as described in Sections 4.1 and 4.2,
respectively.

One important aspect is the support for both the AES S-box and its in-
verse. In the literature, there have been several proposals for S-box hardware
implementations targeting low area, high speed or low power consumption. A
comparison of the state-of-the-art regarding their implementation characteris-
tics in standard-cell technology has been published in [20]. An implementation
offering a mix of small size and relatively good speed is the design of David
Canright [5].

The functional part for MixColumns and InvMixColumns demands multipli-
cation with constants in GF(28) under a fixed reduction polynomial [16]. These
multiplications are rather easy to implement, as the characteristic two of the
finite field allows for addition without carry. This is a very desirable property
which makes GF(2m) multipliers generally much faster than their integer coun-
terparts.

Several implementation options are available to realize the GF(28) constant
multipliers required by our proposed extensions. The smallest solution would
be to integrate fixed multipliers similar to those used by Wolkerstorfer in [24].
Wolkerstorfer’s approach reuses the results for MixColumns to perform InvMix-
Columns, thus keeping the overall size of the multipliers small. In another ap-
proach, Elbirt proposed to realize the multipliers in a flexible fashion, so that not
only AES, but also other implementations in need of fast GF(2m) multiplication
with a constant could experience an increase in performance [10]. Naturally, this
flexibility has to be bought with an increased demand in hardware. Moreover,
the multipliers of Elbirt’s solution have to be configured for the specific constants
and the reduction polynomial at hand, before they can be used.

The highest degree of flexibility is offered by fully-fledged GF(28) multipliers
which can vary both multiplier and multiplicand at runtime without configura-
tion overhead. Eberle et al. have proposed to integrate an (8× 8)-bit multiplier
and multiply-accumulate unit for binary polynomials in an AVR microcontroller
to accelerate Elliptic Curve Cryptography (ECC) over binary extension fields [9].
Similar synergies for instruction set support for AES and ECC have already been
demonstrated in the case of 32-bit architectures [23]. Although this variant would
be the most costly option in terms of hardware, the increased flexibility and
potential support of both symmetric and asymmetric cryptography could make
the integration of such multipliers a worthwhile solution for 8-bit architectures.

5.2 AES Software Implementation Using the Proposed Extensions

In order to check the benefits of the proposed extensions and to have a base
for performance estimations, we have implemented AES-128 encryption and
decryption in AVR assembly. We have tried to make the best use of the vast
amount of 32 general-purpose registers offered by the architecture in order to
keep costly memory accesses at an absolute minimum. In our implementation,
the 16-byte AES State is kept in 16 registers at all times and an on-the-fly
key expansion is used to preserve key agility. Three of the four 32-bit words of

Boosting AES Performance on a Tiny Processor Core 179

the current round key are also kept in 12 additional registers and only a single
round key word has to be held in memory. From the remaining four registers, two
(namely R0 and R1) are used to receive the result of AESENC(x) or AESDEC(x)
instructions and the other two registers are necessary to hold temporary values
during round transformation.

A round function is called to perform the four round transformations on
the State and to generate the subsequent round key. The transformations are
performed in-place on the 16 registers holding the State, i.e. all State columns are
written back to the same four registers from which they were originally loaded.
The ShiftRows function is not performed explicitly on this “register State”, but
it is only taken into account by appropriate selection of registers in the round
function. As a consequence, a specific State column is contained in a different
set of registers after each invocation of the round function. Consequently, we
require several different round functions which load the State bytes from the
correct registers in conformance to the current layout of the State. Luckily, the
layout of the State reverts back to its original form after four invocations of
ShiftRows. This property is illustrated in Figure 4, where the four State columns
are marked in different colors. Hence, it is sufficient to have four variants of the
round function.

1x

ShiftRows

2x

ShiftRows

3x

ShiftRows

4x

ShiftRows

Fig. 4. Change of AES State layout through ShiftRows for in-place storage

The assembly code performing all four round transformations on a single
State column is shown in Figure 5. The update of the first round key word is
shown in Figure 6.

The main function is responsible for saving the 32 registers onto the stack at
entry. Moreover, the function has to load the AES State and cipher key into the
corresponding registers. After nine calls to the appropriate round functions, the
final round is performed directly by the main function. At the end, the ciphertext
is stored to memory and the registers are restored from stack prior to return.

6 Performance Analysis

This section gives figures on implementation cost of the proposed instruction set
extensions, the performance of our optimized AES implementation and its cost
in terms on program memory and working memory.

180 S. Tillich, C. Herbst

; State column in R6, R11, R16, R5

; Round key word in R22-R25

; New State column is written over old column

; Calculate upper half of new column

MOVW R0, R22 ; Move two round key bytes into R0-R1

AESENC(1) R6, R11 ; ShiftRows, SubBytes, MixColumns & AddRoundKey

AESENC(2) R16, R5 ; ShiftRows, SubBytes, MixColumns

MOVW R30, R0 ; Save half column in temporary registers R30-R31

; Calculate lower half of new column

MOVW R0, R24 ; Move the other two round key bytes into R0-R1

AESENC(2) R6, R11 ; ShiftRows, SubBytes, MixColumns & AddRoundKey

AESENC(1) R16, R5 ; ShiftRows, SubBytes, MixColumns

; Store new column over old column

MOV R6, R30

MOV R11, R31

MOV R16, R0

MOV R5, R1

Fig. 5. Round transformations for a single State column

6.1 Hardware Cost

In order to determine the hardware cost for the proposed extensions, we have
implemented a functional unit capable of supporting all six custom instructions
for AES encryption and decryption. For the AES S-boxes we used the approach
of Canright [5]. We included a pipeline stage in the functional unit to adapt it to
the read-write capabilities of the register file of existing AVR microcontrollers [1].

Our functional unit is depicted in Figure 7. The different sections conforming
to different AES transformations are highlighted. The dashed line represents
configuration information which determines the functionality in dependence on
the actual instruction. The S-boxes are used in forward direction for the instruc-
tions for encryption (AESENC(x) and AESSBOX) and in inverse direction for the
instructions for decryption (AESDEC(x) and AESINVSBOX). The multiplexors in
the AddRoundKey section select the left input for AESENC(x) and AESDEC(2)
instructions and the right input for the AESDEC(1) instruction. The multiplexors
in the (Inv)MixColumns section also always select the same input. Starting from
the top input, the according instructions are AESENC(1), AESENC(2), AESDEC(1),
and AESDEC(2). The result for AESENC(x) and AESDEC(x) instructions is deliv-
ered into R0 and R1, while the result for AESSBOX and AESINVSBOX instructions
appears at the output for Rd.

The GF(28) multipliers of the functional units have been hardwired for the
constants used in MixColumns and InvMixColumns. Thereby, the two multipliers
for a byte have been implemented jointly. A byte b is multiplied with the powers
of two, yielding four intermediate results (b, {2}b, {4}b, and {8}b). Depending

Boosting AES Performance on a Tiny Processor Core 181

; First word of old round key in R18-R21

; Last word of old round key in R26-R29

; Rcon located in R30

; New first round key word written over old word

EOR R18, R30 ; Add Rcon

AESSBOX R18, R27 ; RotWord, SubWord, Add to old byte

AESSBOX R19, R28 ; RotWord, SubWord, Add to old byte

AESSBOX R20, R29 ; RotWord, SubWord, Add to old byte

AESSBOX R21, R26 ; RotWord, SubWord, Add to old byte

Fig. 6. Update of the first round key word

on the instruction, these intermediate results are added to yield the required
multiplication results. Figure 8 shows the implementation for the first byte (i.e.
the upper two multipliers transforming the byte from Rd in Figure 7).

We have implemented our functional unit using a 0.35 µm CMOS standard
cell library from austriamicrosystems. The synthesized circuit had a size of 1,109
gates with a critical path of 18.3 ns (about 55 MHz). Note that we have optimized
the synthesis result towards minimal area, just setting a maximal critical path
of 50 ns to match the 20 MHz maximal clock frequency of state-of-the-art AVR
microcontrollers. The speed of the circuit could easily be increased by trading
off area efficiency.

The smallest AES coprocessor reported in literature so far is by Feldhofer et
al. with a size of about 3,400 gates [11]. Our proposed extensions have only a
third of this size.

6.2 Performance

Based on our optimized assembly implementation, we have estimated the number
of clock cycles for a single AES-128 encryption and decryption (including the
complete on-the-fly key expansion). Thanks to the simple and deterministic
structure of AVR microcontrollers, this estimation can be done with a high
level of accuracy. For all our custom instructions we have assumed a cycle count
of 2, which we deem to be realistic for implementation. Executing a single round
function (either for encryption or decryption) requires 106 clock cycles. With
the overhead from the main function, the cycle count for encryption of a 128-bit
block amounts to 1,262 (including the loading of the plaintext from memory and
the storing of the ciphertext back to memory). Thanks to the symmetry of the
extensions, AES decryption can be equally fast in 1,263 cycles.

We compare our performance to that of an assembly-optimized software
implementation of AES for the AVR architecture reported in [18]. It requires
3,766 cycles for encryption and 4,558 cycles for decryption, where the overhead
for decryption mainly stems from the more complicated InvMixColumns trans-
formation. The speedup factors for our implementation are therefore about 3
and 3.6, respectively.

182 S. Tillich, C. Herbst

Rd Rr

AES

(inv.)

S-box

{2}

R0 R1

{1}

AESENC(x)

AESDEC(x)

AESSBOX

AESINVSBOX

{E}

{D}

{3}

{1}

{B}

{9}

{1}

{3}

{9}

{B}

{2}

{1}

{E}

{D}

AES

(inv.)

S-box

Rd

(I
n
v
)S

u
b
B

y
te

s
/

K
e
y
 e

x
p
a
n
s
io

n

A
d
d
R

o
u
n
d
K

e
y

(A
E

S
D

E
C

(1
))

A
d
d
R

o
u
n
d
K

e
y
/

A
d
d
 c

o
n
tr

ib
u
ti
o
n

(I
n
v
)M

ix
C

o
lu

m
n
s

Fig. 7. Implementation of the functional unit for supporting the AES extensions

The coprocessor of Feldhofer et al. has a performance roughly equivalent to
our extensions with a cycle count of 1,032 for encryption and 1,165 for decryption
of a single block [11].

6.3 Code Size and RAM Requirements

Our assembly implementation of encryption and decryption requires 1,708 bytes
of code memory. This size can be further reduced with an explicit ShiftRows

Boosting AES Performance on a Tiny Processor Core 183

 {2}

dec var var

{1}b{2}b

dec var

 {2} {2}

b

{4}b{8}b

dec: 0 if AESENC(x), 1 if AESDEC(x)

var: 0 if x = 1, 1 if x = 2

AESENC(1) {2}b {1}b

AESENC(2) {1}b {3}b

AESDEC(1) {E}b {9}b

AESDEC(2) {D}b {B}b

Fig. 8. Implementation of the finite field constant multipliers for the first byte

at the end of each round function (20 additional MOV instructions requiring
20 cycles). In this case, a single round function for encryption and decryption
would suffice, which brings the overall code size down to 840 bytes. However,
the number of cycles per encryption and decryption would increase by 180.

In terms of RAM, our implementation requires only four bytes of extra
memory in addition to the use of the general-purpose registers. Note that we
are not considering the memory from which we load the plaintext at the start
of encryption and where we store the ciphertext to at the end.

6.4 Summary of Comparison

Table 1 summarizes our performance figures with those of the optimized soft-
ware implementation from [18], the custom AES microcontroller from [6] and
Feldhofer et al.’s tiny AES coprocessor [11]. We have included both of our im-
plementation variants for maximal speed (fast) and minimal code size (compact),
cf. Section 6.3. The cycle count refers to AES-128 encryption or decryption of
a single 16-byte block. The code size refers to an implementation which can
support both encryption and decryption.

Our proposed solution is considerably faster and requires less code size than
the pure-software approach. Nevertheless, the flexibility of the software solution

184 S. Tillich, C. Herbst

Table 1. AES performance characteristics in comparison to related work

Implementation Encryption Decryption Code size Hardware cost
Cycles Cycles Bytes Gate equivalents

AVR software [18] 3,766 4,558 3,410 none
AES coprocessor [11] 1,032 1,165 n/a 3,400

AES microcontroller [6] 2,695 a 2,944 a 918 b n/a
This work (fast) 1,259 1,259 c 1,708 1,109
This work (compact) 1,442 1,443 c 840 1,109

a Excluding cost for precomputed key schedule (2,167 cycles).
b Total size for encryption, decryption and key expansion.
c Last round key supplied to decryption function.

is fully retained. Compared to the coprocessor approach, our solution offers sim-
ilar performance at much smaller hardware overhead. The AES microcontroller
has a similar code size as our compact implementation, but is significantly slower.

7 Conclusions

In this work we have presented a set of small and simple AES instruction set
extensions for the 8-bit AVR architecture. We have demonstrated the benefits
of these extensions with an optimized AES encryption implementation, which
is about three times faster than an optimized assembly implementation using
native AVR instructions. Speedup for decryption is even higher, amounting to
a factor of about 3.6. As an additional benefit, code size is small and RAM
requirements are very low. The hardware cost of our extensions ranges around
1.1 kGates. Compared to the smallest AES coprocessor reported so far, our
extensions deliver similar performance at only a third of the hardware cost. All
in all, our extensions provide a very good tradeoff between hardware overhead,
performance gain and implementation flexibility and position themselves at a
favorable section of the design space.

Acknowledgements. The research described in this paper has been supported
by the Austrian Science Fund (FWF) under grant number P18321-N15 (“Investi-
gation of Side-Channel Attacks”) and by the European Commission under grant
number FP6-IST-033563 (Project SMEPP). The information in this document
reflects only the authors’ views, is provided as is and no guarantee or warranty
is given that the information is fit for any particular purpose. The user thereof
uses the information at its sole risk and liability.

References

1. Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-System
Programmable Flash. Available online at http://www.atmel.com/dyn/resources/
prod_documents/doc2467.pdf, August 2007.

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

Boosting AES Performance on a Tiny Processor Core 185

2. G. Bertoni, L. Breveglieri, F. Roberto, and F. Regazzoni. Speeding Up AES
By Extending a 32-Bit Processor Instruction Set. In Proceedings of the 17th
IEEE International Conference on Application-specific Systems, Architectures and
Processors (ASAP 2006), pages 275–282. IEEE Computer Society, September 2006.

3. R. Buchty. Cryptonite — A Programmable Crypto Processor Architecture for
High-Bandwidth Applications. Ph.d. thesis, Technische Universität München, LRR,
September 2002. Available online at http://tumb1.biblio.tu-muenchen.de/

publ/diss/in/2002/buchty.pdf.
4. J. Burke, J. McDonald, and T. Austin. Architectural Support for Fast Symmetric-

Key Cryptography. In ASPLOS-IX Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA, USA, November 12-15, 2000, pages 178–189, New York, NY,
USA, 2000. ACM Press.

5. D. Canright. A Very Compact S-Box for AES. In J. R. Rao and B. Sunar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2005, 7th International
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume
3659 of Lecture Notes in Computer Science, pages 441–455. Springer, 2005.

6. C.-C. Chia and S.-S. Wang. Efficient Design of an Embedded Microcontroller
for Advanced Encryption Standard. In Proceedings of the 2005 Workshop on
Consumer Electronics and Signal Processing (WCEsp 2005), 2005. Available online
at http://www.mee.chu.edu.tw/labweb/WCEsp2005/96.pdf.

7. J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and
Cryptography. Springer, 2002. ISBN 3-540-42580-2.

8. J.-F. Dhem. Design of an efficient public-key cryptographic library for RISC-based
smart cards. PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium, May 1998.

9. H. Eberle, A. Wander, N. Gura, S. Chang-Shantz, and V. Gupta. Architectural
Extensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microprocessors.
In Proceedings of the 16th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP 2005), pages 343–349. IEEE Com-
puter Society, July 2005.

10. A. J. Elbirt. Fast and Efficient Implementation of AES via Instruction Set
Extensions. In Proceedings of the 21st International Conference on Advanced
Information Networking and Applications Workshops (AINAW 2007), volume 1,
pages 396–403. IEEE Computer Society, May 2007.

11. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain
of Sand. IEE Proceedings on Information Security, 152(1):13–20, October 2005.

12. R. E. Gonzalez. Xtensa: A Configurable and Extensible Processor. IEEE Micro,
20(2):60–70, March/April 2000.

13. J. P. McGregor and R. B. Lee. Architectural Enhancements for Fast Subword
Permutations with Repetitions in Cryptographic Applications. In Proceedings of
the International Conference on Computer Design (ICCD 2001), pages 453–461.
IEEE, September 2001.

14. K. Nadehara, M. Ikekawa, and I. Kuroda. Extended Instructions for the AES
Cryptography and their Efficient Implementation. In IEEE Workshop on Signal
Processing Systems (SIPS’04), pages 152–157, Austin, Texas, USA, October 2004.
IEEE Press.

15. E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel. Towards High Performance
Cryptographic Software. In Third IEEE Workshop on the Architecture and
Implementation of High Performance Communication Subsystems, 1995 (HPCS
’95), pages 69–72. IEEE, August 1995.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/buchty.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/buchty.pdf
http://www.mee.chu.edu.tw/labweb/WCEsp2005/96.pdf

186 S. Tillich, C. Herbst

16. National Institute of Standards and Technology (NIST). FIPS-197: Advanced
Encryption Standard, November 2001. Available online at http://www.itl.nist.
gov/fipspubs/.

17. S. Ravi, A. Raghunathan, N. Potlapally, and M. Sankaradass. System design
methodologies for a wireless security processing platform. In DAC ’02: Proceedings
of the 39th Conference on Design Automation, pages 777–782, New York, NY, USA,
2002. ACM Press.

18. S. Rinne, T. Eisenbarth, and C. Paar. Performance Analysis of Contemporary
Light-Weight Block Ciphers on 8-bit Microcontrollers. Available online at http://
www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/

conferences/lw_speed2007.pdf, June 2007.
19. Z. Shi and R. B. Lee. Bit Permutation Instructions for Accelerating Software

Cryptography. In Proceedings of the 11th IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP 2000), pages
138–148. IEEE, 2000.

20. S. Tillich, M. Feldhofer, and J. Großschädl. Area, Delay, and Power Characteristics
of Standard-Cell Implementations of the AES S-Box. In S. Vassiliadis, S. Wong,
and T. Hämäläinen, editors, 6th International Workshop on Embedded Computer
Systems: Architectures, Modeling, and Simulation, SAMOS 2006, Samos, Greece,
July 17-20, 2006, Proceedings, volume 4017 of Lecture Notes in Computer Science,
pages 457–466. Springer, July 2006.

21. S. Tillich and J. Großschädl. Instruction Set Extensions for Efficient AES
Implementation on 32-bit Processors. In L. Goubin and M. Matsui, editors,
Cryptographic Hardware and Embedded Systems – CHES 2006, 8th International
Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings, volume 4249 of
Lecture Notes in Computer Science, pages 270–284. Springer, 2006.

22. S. Tillich and J. Großschädl. Power-Analysis Resistant AES Implementation
with Instruction Set Extensions. In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of
Lecture Notes in Computer Science, pages 303–319. Springer, September 2007.

23. S. Tillich and J. Großschädl. VLSI Implementation of a Functional Unit to
Accelerate ECC and AES on 32-bit Processors. In C. Carlet and B. Sunar, editors,
Arithmetic of Finite Fields, First International Workshop, WAIFI 2007, Madrid,
Spain, June 2007, Proceedings, volume 4547 of Lecture Notes in Computer Science,
pages 40–54. Springer, June 2007.

24. J. Wolkerstorfer. An ASIC Implementation of the AES-MixColumn operation. In
P. Rössler and A. Döderlein, editors, Austrochip 2001, pages 129–132, 2001. ISBN
3-9501517-0-2.

25. L. Wu, C. Weaver, and T. Austin. CryptoManiac: A Fast Flexible Architecture for
Secure Communication. In ISCA ’01: Proceedings of the 28th annual international
symposium on Computer architecture, pages 110–119, New York, NY, USA, 2001.
ACM Press.

http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf

	Introduction
	Previous Work on Instruction Set Extensions
	Overview of AES and AVR
	Short Description of AES
	Description of the AVR Architecture

	Our Proposed AES Extensions
	Support for AES Encryption
	Support for AES Decryption
	Performance Enhancement and Implementation Flexibility

	Implementation Issues
	Hardware Implementation of the Proposed Extensions
	AES Software Implementation Using the Proposed Extensions

	Performance Analysis
	Hardware Cost
	Performance
	Code Size and RAM Requirements
	Summary of Comparison

	Conclusions

