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ON THE EQUIVALENCE OF THE LINEAR BIOT’S THEORY AND THE
LINEAR THEORY OF POROUS MEDIA
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ABSTRACT
Assuming a geometrically linear description (small displacements and small deformation gradients)

and linear constitutive equations (Hooke’s law) the governing equations are derived for two poroelastic
theories, Biot’s theory (BT) and the Theory of Porous Media (TPM – mixture theory extended by the
concept of volume fractions). In both cases, the solid displacements and the pore pressure are the
primary unknowns. Note that this is only possible in the Laplace domain leading to the same structure
of the coupled differential equations for both approaches. But the differential equations arising in BT and
TPM possess different coefficients with different physical interpretations. Correlating these coefficients
to each other leads to the well-known problem of Biot’s ‘apparent mass density’. Furthermore, some
inconsistencies are observed if Biot’s stress coefficient is correlated to the structure arising in TPM.

In addition to the comparison of the governing equations and the identification of the model pa-
rameters, the displacement and pressure solutions of both theories are presented for a one-dimensional
column. The results show good agreement between both approaches in case of incompressible con-
stituents whereas in case of compressible constituents large differences appear.

Keywords: Biot, TPM, porous media, linear theory

INTRODUCTION
For a wide range of fluid infiltrated materials, such as water saturated soils, oil impregnated

rocks, or air filled foams, the elastic as well as a viscoelastic description of the material behavior
is a crude approximation for the investigation of wave propagation in such media. Due to their
porosity and due to the interaction of the skeleton and the pore content, a different theoretical
approach is necessary to describe the observed effects like the second compressional wave.

A historical review on the subject of multiphase continuum mechanics identifies two theo-
ries which have been developed and are used nowadays, namely the Biot theory (BT) and the
Theory of Porous Media (TPM). For more details, the reader is directed to the work of de Boer
and Ehlers (1988, 1990) or to the recently published monograph (de Boer 2000). The early
works on porous media are attributed to Fillunger (1913). In this paper and in subsequent ones,
Fillunger was concerned with the question of buoyancy of barrages. At the same time, a more
intuitively theory has been developed by von Terzaghi (1923). These two basic works form the
basis for the two different theories used up to day.

Based on the work of von Terzaghi, a theoretical description of porous materials saturated
by a viscous fluid was presented by Biot (1941). This was the starting point of the theory
of poroelasticity or the BT. In the following years, Biot extended his theory to anisotropic
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cases (Biot 1955) and also to poroviscoelasticity (Biot 1956a). The dynamic extension of
Biot’s theory was published in 1956 in two papers, one covering the low frequency range (Biot
1956b) and the other one covering the high frequency range (Biot 1956c). One of the significant
findings in these papers was the identification of three different wave types for a 3-d continuum,
namely two compressional waves and one shear wave. The additional compressional wave is
also known as the slow wave and has been experimentally confirmed (Plona 1980). In Biot’s
original approach a fully saturated material was assumed. The extension to a nearly saturated
(partially saturated) poroelastic solid was presented by Vardoulakis and Beskos (1986).

On the other hand, based on the work of Fillunger, a different approach, namely the The-
ory of Porous Media, has been developed. This theory is based on the axioms of continuum
theories of mixtures (Truesdell and Toupin 1960; Bowen 1976) extended by the concept of
volume fractions by Bowen (1980, 1982) and others (de Boer and Ehlers 1986; Ehlers 1989;
Ehlers 1993b; Ehlers 1993a; Diebels 2000). Thus the TPM proceeds from the assumption of
immiscible and superimposed continua with internal interactions.

Remarks on the equivalence of both theories are found in the work of Bowen (1982). In
this paper, he showed that the BT is a special case of a linearized theory of mixtures with
constant volume fractions. Bowen called this the case of ‘frozen volume fraction’. To achieve
equivalence between both approaches the parameterQ introduced by Biot has to be zero, which
means that the interaction between both constituents is neglected. Furthermore, Ehlers and
Kubik (1994) compared and discussed the linear versions of both theories claiming that they are
equivalent if Biot’s apparent mass density is assumed to be zero. This density is introduced into
BT to describe the dynamic interaction of the constituents. As a consequence of the work by
Bowen (1982) and by Ehlers and Kubik (1994), it may be stated that even if both approaches are
similar the theories are mainly different in the way how the solid-fluid interaction is modeled.

In both papers, the authors used solid displacements, seepage velocity, and pore pressure
as unknowns. In the following, a two-phase material consisting of an elastic solid skeleton
and an interstitial viscous fluid is assumed. Furthermore, the assumption of full saturation is
made, e.g., the whole pore space is filled with fluid. For such materials the governing equations
are given based on the TPM (de Boer 2000; Ehlers 1989) in section 3 and based on BT (Biot
1941; Biot 1956b; Biot 1956c) in section 4. In the present contribution, contrary to the compar-
isons mentioned above, the governing equations are formulated using only solid displacements
and pore pressure as unknowns which is only possible in the Laplace domain. Bonnet and
Auriault (1987) have shown that this choice is sufficient to describe a poroelastic continuum.

The main focus of the paper is on wave propagation problems. Therefore, a linear de-
scription of the geometry in terms of small displacements and small deformation gradients is
assumed. Furthermore, we restrict ourselves to linear constitutive equations. The combination
of both assumptions leads to a set of linear differential equations which is transformed into the
Laplace domain (concerning the linearization process see (Schanz and Diebels 2003)). The
two sets of equations arising in BT and TPM, respectively, are compared not only term by term
but also an analytical solution for the displacement and pressure results of a one-dimensional
column are compared for both theories.

In a two-phase material not only each constituent, the solid and the fluid, may be compress-
ible on a microscopic level but also the skeleton itself possesses a structural compressibility. If
the compression modulus of one constituent is much larger on the microscale than the compres-
sion modulus of the bulk material this constituent is assumed to be materially incompressible.
A common example for an materially incompressible solid constituent is soil. In this case,
the individual grains are much stiffer than the skeleton itself. In the following, the governing
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equations are given for materially compressible and incompressible constituents, respectively,
cf. (Bowen 1980; Bowen 1982; Ehlers 1993b; Ehlers 1993a; Diebels 2000). Beside these two
extreme cases, there exists so-called hybrid models where only one of the constituents is mod-
eled as incompressible and the other one as compressible (Ehlers 1993b; Ehlers 1993a; Diebels
2000). As these intermediate cases can be simply deduced from the equations given next they
are not considered here in detail.

Throughout this paper, the summation convention is applied over repeated indices and Latin
indices receive the values 1,2, and 1,2,3 in two-dimensions (2-d) and three-dimensions (3-d),
respectively. Commas(),i denote spatial derivatives and primes()′ denote the material time
derivative with respect to the moving skeleton.

THEORY OF POROUS MEDIA
In order to describe the two different phases of the material the concept of volume fractions

is introduced (Bowen 1980; Bowen 1982; Ehlers 1989). Therefore, the given volume element
V is divided in two fractionsVS andVF occupied by the solid skeleton (indexS) and the
interstitial fluid (indexF), respectively. If the whole space is filled with matter, the saturation
condition requiresV = VS+VF . The volume fraction of each constituent is defined by

nk =
Vk

V
with k = F,S. (1)

The partial densitiesρk of both constituents relate the mass element of the constituents to the
volume elementV of the mixture while the effective densitiesρkR relate the same element of
mass to the volume element occupied by the constituent. Therefore, the partial densities are
obtained by the product of the volume fraction and the respective effective density

ρk = ρkRnk with k = F,S. (2)

Changes of the partial density are therefore possible due to changes of the effective density
and of the volume fraction, i.e., the material itself as well as its porous structure allow for a
compressibility.

Compressible constituents
Within the general framework of compressible constituents, the effective densities are state

variables and the volume fractions are internal variables (Bowen 1980; Bowen 1982; Ehlers
1989) which may be transformed to state variables under certain conditions. A consequent
linearization, however, shows that in the linear case the volume fraction has to be constant, i.e.,
the initial solid volume fractionnS

0 does not change (Schanz and Diebels 2003). Subsequently,
due to the saturation condition 1= nS+nF , both volume fractions are assumed to be constant

nS≈ nS
0 ⇒ nF ≈ nF

0 = 1−nS
0 . (3)

This corresponds to the case called ‘frozen volume fractions’ by Bowen (1982).
The balance equations of momentum of a two-phase continuum give the basis for the the-

oretical description within the TPM. They can either be given for both constituents separately
or one of the individual balances may be replaced by the balance of momentum of the mixture
as discussed in detail in (Diebels and Ehlers 1996). In the present contribution, the mixture
balance of momentum is used in combination with the fluid momentum balance. The linear
balances of momentum are
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1. for the mixture
nS

0ρSRu′′i +nF
0 ρFR[

u′′i +w′i
]
= TS

i j , j +TF
i j , j +ρbi (4)

2. for the fluid
nF

0 ρFR[
u′′i +w′i

]
= TF

i j , j + p∗i +nF
0 ρFRbF

i , (5)

where no distinction between the partial time derivative and the material time derivative have
to be made (for details on the linearization see Schanz and Diebels (2003)). In Eqs. (4) and (5),
ui denotes the solid displacement andwi denotes the seepage velocity defined as the relative
velocity of the fluid with respect to the deforming solid skeleton. The stress tensor is given
by Tk

i j with k = S for the solid skeleton andk = F for the fluid, respectively. The body force
density in the fluid and in the solid isnF

0 ρFRbF
i andnS

0ρSRbS
i , respectively, and, additionally, the

bulk body forceρbi with ρ = nS
0ρSR+nF

0 ρFR is introduced. The force densityp∗i results from
a momentum production representing the interaction between both constituents. Therefore,
it is obviously not present in the equation for the mixture (4). Additionally, the balance of
momentum of momentum is fulfilled if the stress tensors are symmetric.

Furthermore, constitutive assumptions must be specified which link the stress tensors and
the momentum production term to kinematic quantities. Neglecting the fluid extra-stress (Diebels
et al. 2001), the stress tensor of the fluid is governed by the pore pressurep

TF
i j =−nF pδi j and accordingly TF

i j , j =
(
−nF pδi j

)
, j =−pnF

,i −nF p,i , (6)

whereδi j denotes the Kronecker delta. Furthermore, the viscosity of the fluid is taken into
account by the momentum production or by the interaction force between the solid and the
fluid which is given by the linear relation (Ehlers 1989)

p∗i = pnF
,i −

(
nF

)2

κT wi (7)

with the permeabilityκT ,()T =̂TPM. This permeability depends on the intrinsic permeability
kS and on the fluid viscosityµF according to the relationκT = kS/µF (see, e.g., Diebels et al.
(2001)). Note, independent of the assumption of constant volume fractions the gradientnF

,i

cancels itself in the equilibrium (5) due to the sumTF
i j , j + p∗i .

For the solid skeleton Hooke’s law is taken into account assuming a linear elastic behavior.
Hence, with the extra stress(

σS
E

)
i j = G(ui, j +u j,i)+

(
K− 2

3
G

)
δi j uk,k (8)

the stress tensor of the solid skeleton is given by (Diebels 2000)

TS
i j =−zSnS

0pδi j +
(
σS

E

)
i j

= G(ui, j +u j,i)+
((

K− 2
3

G

)
uk,k−zSnS

0p

)
δi j ,

(9)

if a linear strain-displacement relationεi j = 1/2(ui, j +u j,i) holds. The shear modulusGand the
compression modulusK are introduced in the constitutive equations. These material constants
refer to the bulk material and, therefore, the compression modulus includes also the compress-
ibility of the skeleton structure. Furthermore, the state variablezS was introduced in Diebels
(2000) to separate effects related to material and structural compressibilities, respectively.
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The balance of mass of the solid is formulated for the partial densityρS= nSρSRand is split
into two parts by the introduction of the arbitrary function 0≤ zS≤ 1 (Diebels 2000)(

ρS)′+ρSu′i,i = 0 ⇒

ρSR
((

nS)′+zSnSu′i,i
)

+nS
((

ρSR)′+ (
1−zS)ρSRu′i,i

)
= 0 .

(10)

For arbitrary values ofzS, (10) is fulfilled if each part of the sum is equal to zero(
nS)′ =−zSnSu′i,i and

(
ρSR)′ = (

1−zS)ρSRu′i,i . (11)

Based on a micro mechanical investigation, Diebels (2000) has proposed the dependencezS =
1−KS/KSR relatingzS to the compression modulus of the structureKS and the compression
modulus of the solid grainsKSR. He showed that this choice is thermodynamically admissible
and that in the case of an incompressible solid skeleton the limitzS= 1 transforms (10) into the
well known volume balancenS = nS

0 detF−1
S .

Finally, an equation of state for the fluid must be prescribed because in (6) for the fluid extra
stress tensor no constitutive assumption was given. Within the framework of a linear theory,
the simplest case of the ideal gas equation is applied

ρFR(p) =
p

Rϑ
, (12)

with the absolute temperatureϑ and the specific gas constantR. More complex laws to describe
the volumetric behavior of the fluid could be included here, however, the linearization neglects
additional effects. Combining the ideal gas equation with the linearized form of the continuity
equation for the fluid with respect to the moving solid reference system yields

nF
0

p′

Rϑ
+ρFR

0

(
nF

0 +zSnS
0

)
u′i,i +nF

0 ρFR
0 wi,i = 0 . (13)

According to Eq. (3), also constant volume fractions are inserted in (13).
Gathering all above given linear balances the following set of coupled differential equations

is obtained

ρ0u′′i +nF
0 ρFR

0 w′i = Gui, j j +
(

K +
1
3

G

)
u j, ji −

(
nF

0 +zSnS
0

)
p,i +ρbi , (14a)

nF
0 ρFR

0

[
u′′i +w′i

]
=−nF

0 p,i −
(
nF

0

)2

κT wi +nF
0 ρFRbF

i , (14b)

nF
0

p′

Rϑ
+ρFR

0

(
nF

0 +zSnS
0

)
u′i,i +nF

0 ρFR
0 wi,i = 0 . (14c)

The primary variables in (14) are the solid displacementui , the seepage velocitywi , and the
pore pressurep. Note that in Eqs. (14), due to the linearization, constant densitiesρSR

0 ,ρFR
0

and ρ0 = nS
0ρSR

0 + nF
0 ρFR

0 are used with the exception of the body force terms (Boussinesq
approximation) where a linear approximation of the density is inserted.

From a physical point of view it is sufficient to describe the problem with only two primary
variables namely the solid displacementui and pore pressurep instead of three variables as
discussed in Bonnet (1987) and Lewis and Schrefler (1998).

In the quasi-static case, i.e.,u′′i ≈ 0,w′i ≈ 0, the balance of momentum of the fluid (14b)
can be rearranged to express the seepage velocity in terms of the pore pressure gradient. In this
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case, Darcy’s law is obtained. Inserting this expression into Eqs. (14a) and (14c) eliminates
the seepage velocity as primary variable from the set of the governing equations. Since in the
dynamic case,wi is given as time derivative in (14b), this procedure is only possible in Laplace
domain. Under the assumption of vanishing initial conditions the transformed Eqs. (14) are

ρ0s2ûi +nF
0 ρFR

0 sŵi = Gûi, j j +
(

K +
1
3

G

)
û j, ji −

(
nF

0 +zSnS
0

)
p̂,i +ρb̂i , (15a)

nF
0 ρFR

0

[
s2ûi +sŵi

]
=−nF

0 p̂,i −
(
nF

0

)2

κT ŵi +nF
0 ρFRb̂F

i , (15b)

nF
0

sp̂
Rϑ

+ρFR
0

(
nF

0 +zSnS
0

)
sûi,i +nF

0 ρFR
0 ŵi,i = 0 (15c)

where(̂) indicates the Laplace transform ands is the complex Laplace variable.
Rearranging the Laplace transformed balance of momentum for the fluid (15b) the seepage

velocity is obtained

ŵi =− βT

snF
0 ρFR

0

[
p̂,i +s2ρFR

0 ûi −ρFRb̂F
i

]
with βT =

snF
0 ρFR

0 κT

nF
0 +sκTρFR

0
. (16)

Eliminating the seepage velocity ˆwi from the remaining balances (15a) and (15c) by use of
(16), finally, the balance of momentum for the mixture

s2(
ρ0−βTρFR

0

)
ûi−βT [

p̂,i −ρFRb̂F
i

]
= Gûi, j j +

(
K +

1
3

G

)
û j, ji−

(
nF

0 +zSnS
0

)
p̂,i +ρb̂i (17)

and the mass balance of the fluid

nF
0

sp̂
Rϑ

+ρFR
0

(
nF

0 +zSnS
0−βT)

sûi,i −
βT

s
p̂,ii +

βTρFR

s
b̂F

i,i = 0 (18)

are achieved. These operations establish a system of coupled partial differential equations for
the unknowns solid displacement ˆui and pore pressure ˆp

Gûi, j j +
(

K +
1
3

G

)
û j, ji −

(
nF

0 +zSnS
0−βT)

p̂,i −s2(
ρ0−βTρFR

0

)
ûi = βTρFRb̂F

i −ρb̂i ,

(19)

p̂,ii −nF
0

s2

βTRϑ
p̂−

s2ρFR
0

βT

(
nF

0 +zSnS
0−βT)

ûi,i = ρFRb̂F
i,i . (20)

An analytical representation of Eqs. (19) and (20) in time domain is only possible for a constant
valueβT . This is only achieved in the limitκT →∞, i.e.,µF → 0. Consequently, the interaction
force p∗i between the solid and the fluid is proportional to the pore pressurep∗i ≈ pnF

,i and the
influence of the seepage velocity on the momentum exchange vanishes. Evidently, this is only
valid under equilibrium conditions where no fluid motion takes place.

Incompressible constituents
Naturally, the linearized balances of momentum for the mixture (4) and for the fluid (5)

are not changed due to the assumption of incompressible constituents. On the other hand, the
continuity equation of the solid (10) reduces to a balance of volume. As stated above, the
incompressible case is included in the general framework by the choicezS = 1. The physical
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interpretation is obviously a constant densityρSRresulting in the well-known balance of volume
(Ehlers 1993b; Ehlers 1993a; Diebels 2000)(

nS)′+nSui,i = 0 . (21)

Assuming both constituents as materially incompressible and inserting the assumptionsρFR =
const. andzS = 1 into the continuity equation of the fluid (13) yields

ρFR(
nF

0 wi +u′i
)
,i = 0 . (22)

The constitutive equations for the incompressible solid and incompressible fluid can also
easily be achieved. The stress tensor of the fluid (6) and the interaction force (7) are not changed
yielding the well known principle of effective stress, but note that the pore pressure becomes
a Lagrangian multiplier in this case which ensures the assumption of constant density. There
is no longer an equation of state linking the density to the pressure. Finally, the divergence of
the total stress is obtained by these assumptions in combination with the saturation condition
nS+nF = 1

TS
i j , j +TF

i j , j = Gui, j j +
(

K +
1
3

G

)
u j, ji − p,i . (23)

As in the compressible case, the incompressible model results in three equations for the
three variables solid displacementui , pore pressurep, and the seepage velocitywi

ρ0u′′i +nF
0 ρFR

0 w′i = Gui, j j +
(

K +
1
3

G

)
u j, ji − p,i +ρbi , (24a)

nF
0 ρFR

0

[
u′′i +w′i

]
=−nF

0 p,i −
(
nF

)2

κT wi +nF
0 ρFRbF

i , (24b)(
nF

0 wi +u′i
)
,i = 0 . (24c)

Because the balance of momentum of the fluid Eq. (24b) is equal to Eq. (15b) of the com-
pressible case, an extraction of the seepage velocity is only possible in Laplace domain. The
transformation of Eq. (24b) leads to the same expression as given in (16). Eliminating the
seepage velocity from the balance of momentum (24a) and from the balance of volume (24c)
results in the set of coupled differential equations for the unknowns solid displacement ˆui and
pore pressure ˆp

Gûi, j j +
(

K +
1
3

G

)
û j, ji −

(
1−βT)

p̂,i −s2(
ρ0−βTρFR

0

)
ûi = βTρFR

0 b̂F
i −ρb̂i , (25)

p̂,ii −
s2ρFR

0

βT

(
1−βT)

ûi,i = ρFRb̂F
i,i . (26)

As in the compressible case, an analytical representation in time domain is only possible for
κT → ∞.

BIOT’S THEORY
In this section, Biot’s model of a poroelastic continuum is presented. Using different no-

tation for all variables which are not definitely the same as in the TPM approach allows for an
a posteriori comparison between both approaches including an identification of the individual
terms and of their physical meaning.
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Compressible constituents
Following Biot’s approach to model the behavior of porous media, an elastic skeleton with

a statistical distribution of interconnected pores is considered (Biot 1955). The porosity is
denoted by

φ =
VF

V
, (27)

whereVF is the volume of the interconnected pore space contained in a sample of bulk vol-
umeV. Contrary to these connected pores the sealed pores are considered as part of the solid.
Therefore,φ = nF is only valid if all pores are interconnected. As mentioned above, full sat-
uration is assumed leading toV = VF +VS with VS the volume of the solid including sealed
pores.

If the constitutive equations are formulated with the total stressσi j = σS
i j + σFδi j the con-

stitutive equation (Biot 1941)

σi j = G(ui, j +u j,i)+
((

K− 2
3

G

)
uk,k−αp

)
δi j (28)

is given using Biot’s effective stress coefficientα and the solid strain is replaced by the common
linear strain-displacement relationεS

i j = 1/2(ui, j +u j,i). In addition to the total stressσi j , the
variation of fluid volumeζ per unit reference volume is introduced as a second constitutive
equation

ζ = αui,i +
φ2

RB p . (29)

In Eq. (29),RB is an additional material parameter characterizing the coupling between the
solid and the fluid. The variation of fluid contentζ is governed by the mass balance, i.e., by the
continuity equation

∂ζ
∂t

+qi,i = 0 (30)

with the specific fluxqi . This flux is identified with the filter velocityqi = φwi . A time inte-
grated form of (30) identifiesζ as a kind of volumetric strain describing the motion of the fluid
relative to the solid as discussed in Detournay and Cheng (1993).

Additional to (30), the balance of momentum for the bulk material must be fulfilled. The
dynamic equilibrium is given by

σi j , j + fi = ρ
∂2ui

∂t2 +φρF
∂wi

∂t
, (31)

with the bulk body force per unit volumefi = (1−φ) f S
i + f F

i , and the bulk densityρ =
ρS(1−φ)+φρF . For these densities the subscript is used instead of the superscript in order to
distinct them from the quantities arising in TPM.

Furthermore, the fluid transport in the interstitial space in terms of the specific fluxqi is
modeled with a generalized Darcy’s law

φwi = qi =−κB
(

p,i +ρF
∂2ui

∂t2 +
ρa +φρF

φ
∂wi

∂t
− f F

i

)
(32)
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which is given constitutively. Here,κB = kS/µF denotes the permeability defined by the intrin-
sic permeabilitykS and the viscosity of the fluidµF . The superscriptB is chosen to distinct this
permeability from the permeability in the TPM. Furthermore,f F

i is the fluid body force per
unit volume. In Eq. (32), an additional density, the so-called apparent mass densityρa was in-
troduced by Biot (1956b). The apparent mass describes the dynamic interaction between fluid
phase and solid skeleton. Typically it is written asρa = CφρF whereC is a factor depending
on the geometry of the pores and the frequency of excitation. At low frequencies, Bonnet and
Auriault (1985) measuredC = 0.66 for a sphere assembly of glass beads. In higher frequency
ranges, a certain functional dependence ofC on the frequency has been proposed based on con-
ceptual porosity structures (Biot 1956c; Bonnet and Auriault 1985). In the following,C = 0.66
is assumed.

The equation of motion for the poroelastic model is obtained from the above balance laws
and constitutive equations. As shown in Bonnet (1987), it is sufficient to use the solid dis-
placementsui and the pore pressurep as basic variables to describe a poroelastic continuum.
Therefore, the above equations are reduced to these two primary variables as was already done
for the TPM model. First, Darcy’s law (32) is transformed into Laplace domain and rearranged
to obtain

ŵi =− κBρFφ2s
φ2 +sκB(ρa +φρF)︸ ︷︷ ︸

βB

1
sφρF

(
p̂,i +s2ρF ûi − f̂ F

i

)
. (33)

In Eq. (33), the abbreviationβB is defined for further usage and the superscriptB is chosen to
distinct from the similar abbreviation in TPM. Moreover, as in TPM vanishing initial conditions
for ui , p, andwi are assumed. Now, the final set of differential equations for the displacement
ûi and the pore pressure ˆp is obtained by inserting the constitutive Eqs. (28) and (29) in the
Laplace transformed dynamic equilibrium (31) and into the continuity equation (30). Taking
into account ˆwi according to (33) leads to

Gûi, j j +
(

K +
1
3

G

)
û j,i j −

(
α−βB)

p̂,i −s2(
ρ−βBρF

)
ûi = βB f̂ F

i − f̂i , (34)

p̂,ii −
φ2s2ρF

βBRB p̂−
(
α−βB) s2ρF

βB ûi,i = f̂ F
i,i . (35)

This set of coupled differential equations describes the behavior of a poroelastic continuum on
the basis of BT. As in TPM, an analytical representation in time domain is only possible for
κB → ∞. This case represents negligible friction between solid and interstitial fluid.

Incompressible constituents
To find the respective governing equations for incompressible constituents the material

parametersα andRB have to be rewritten in a different way. Considerations of constitutive
relations at micro mechanical level as given in Detournay and Cheng (1993) lead to a more
rational model for this purpose

α = 1− K
KS

and (36a)

RB =
φ2KFK2

S

KF (KS−K)+φKS(KS−KF)
, (36b)

9



whereKS denotes the compression modulus of the solid grains andKF the compression mod-
ulus of the fluid. Based on these expressions materially incompressible behavior of the con-
stituents may be described by the above given constitutive assumptions. Note that material
incompressibility means that the compression modulus of each individual constituent is much
larger than that one of the bulk material. The respective conditions are (Detournay and Cheng
1993)

K
KS
� 1 incompressible solid,

K
KF

� 1 incompressible fluid. (37)

The corresponding limit process shows (Detournay and Cheng 1993)

α≈ 1 and RB → ∞ . (38)

According to (29)ζ≈ ui,i , i.e., the fluid is influenced only by the solid volumetric strain. With
these considerations at hand the set of governing differential equations reduces to

Gûi, j j +
(

K +
1
3

G

)
û j,i j −

(
1−βB)

p̂,i −s2(
ρ−βBρF

)
ûi = βB f̂ F

i − f̂i , (39)

p̂,ii −
(
1−βB) s2ρF

βB ûi,i = f̂ F
i,i . (40)

COMPARISON OF BOTH THEORIES
Both theories, namely BT and TPM, describe the same physical behavior of fluid satu-

rated porous media. In the sections 3 and 4, the governing equations for each theory are given
for compressible as well as incompressible constituents. Now, a comparison of these equa-
tions is performed in order to identify the the physical interpretation of the parameters of both
approaches and to show whether there are discrepancies between the theories even if the un-
derlying structure of the governing equations is the same.

Preliminary for this comparison is the (evident) assumption that the independent variables
solid displacementui and pore pressurep have the same physical meaning in both approaches.
Furthermore, from the constitutive equations Eqs. (8) and (28) it can be concluded that the
shear modulusG and the compression modulusK are macroscopic moduli valid for the porous
skeleton, i.e., solid material including its structure. In order to compare the other parameters
arising in the governing equations the model equations are recalled, first, for incompressible
constituents:

• Displacement, TPM (25) and BT (39)

Gûi, j j +
(

K +
1
3

G

)
û j, ji −

(
1−βT)

p̂,i −s2(
ρ0−βTρFR

0

)
ûi = βTρFR

0 b̂F
i −ρb̂i

Gûi, j j +
(

K +
1
3

G

)
û j,i j −

(
1−βB)

p̂,i −s2(
ρ−βBρF

)
ûi = βB f̂ F

i − f̂i

• Pore pressure, TPM (26) and BT (40)

p̂,ii −
s2ρFR

0

βT

(
1−βT)

ûi,i = ρFRb̂F
i,i

p̂,ii −
s2ρF

βB

(
1−βB)

ûi,i = f̂ F
i,i
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TABLE 1. Material data of Berea sandstone (rock)

K
(

N
m2

)
G

(
N
m2

)
ρ
(

kg
m3

)
φ KS

(
N
m2

)
ρF

(
kg
m3

)
KF

(
N
m2

)
κ
(

m4

Ns

)
rock 8·109 6 ·109 2458 0.19 3.6·1010 1000 3.3·109 1.9 ·10−10

Comparing the densities it is found that

ρFR
0

!= ρF and ρ0 = nS
0ρSR

0 +nF
0 ρFR

0
!= ρ = ρS(1−φ)+φρF , (41)

i.e., in BT the densities correspond to the effective densities introduced in TPM. Furthermore,
the porosity can be identified with the initial fluid volume fractionnF

0 = φ which is also indi-
cated by their initial definitions (1) and (27). However, as mentioned in section 4, this conclu-
sion requires that all pores are interconnected.

With theses identifications in mind the body forces can be compared. While in TPM the
body force densitybk

i is defined as force per mass, in BTf k
i is defined as force per volume

(k = S,F). According to the definition of the densities the identificationf k
i = ρkRbk

i is obtained.
Clearly, this difference is due to the different underlying definitions of the body forces.

Finally, the governing equations of both theories become identical ifβB = βT holds. Com-
paring the definitions (33) and (16) the following identity has to hold

βB =
κBρFφ2s

φ2 +sκB(ρa +φρF)
!= βT =

snF
0 ρFR

0 κT

nF
0 +sκTρFR

0
. (42)

Before evaluating (42) the different expressions for the permeabilities have to be discussed. In
BT, the permeability is defined by the quotient of the intrinsic permeabilitykS and the viscosity
µF of the fluid, i.e.,κB = kS/µF . Note that the intrinsic permeabilitykS describes only the
pore structure. As discussed in section 3, the permeabilityκT in TPM has the same physical
meaning asκB. Taking this equality into account from Eq. (42) it follows that

nF
0 ρFR

0
!= ρa +φρF ⇒ ρa ≡ 0 . (43)

However, this can only be achieved if the apparent mass densityρa vanishes, which is in accor-
dance with Ehlers and Kubik (1994). Therefore, for the incompressible case it can be concluded
that the linearized governing equations of both theories are identical if condition (43) holds.

This equivalence of both approaches is also verified using the solution for a one dimen-
sional column of length̀ as sketched in Fig. 1. The side walls and the bottom are assumed
to be rigid, frictionless, and impermeable. Hence, the displacements normal to the surface
are blocked and, on the other hand, the column is free to slide parallel to the wall. At the
top, the stressσy(y = `) is prescribed while the pressure vanishes, i.e.,p(y = `) = 0N/m2.
Therefore, the surface is ideally drained. At the bottom the column is fixed and impermeable,
i.e., uy(y = 0) = 0m andqy(y = 0) = 0m/s. Due to these restrictions only the displacement
componentuy in vertical direction and the pore pressurep remain as degrees of freedom. Semi-
analytical solutions are found for the compressible case in Schanz and Cheng (2000) and for
the incompressible case in Schanz and Diebels (2003).

In Fig. 2, the displacement at the top of the 1-d column (see, Fig. 1) is plotted versus time
for both theories. The material data are those of a rock as given in Table 1. The agreement of
both results is perfect as expected due to the identification of the parameters.
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FIG. 1. Geometry and dynamic loading of a one-dimensional column
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FIG. 2. Displacement at the top of the column

As stated above, the perfect agreement of the results shown in Fig. 2 can only be achieved
for vanishing apparent mass density. So, the question is which influence has the apparent
mass density in BT and what differences appear if condition (43) is not fulfilled? To answer
this, numerical tests have shown that the apparent mass density has no influence on the results
for the given set of material data according to Table 1. However, if the permeabilityκ =
κB = κT is increased or if the viscosity of the fluid is decreased, differences appear depending
on the apparent mass. As already reported by Schanz and Cheng (2000), the second slow
compressional wave becomes visible for increased permeabilities.

To study this effect, the pressure 5m behind excitation of a long column (` = 1000m) is
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(a) ρa = 0.66φρF
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(b) ρa ≡ 0

FIG. 3. Pressure 5m behind excitation of an infinite column: Different apparent mass
densities

depicted versus time for different values ofκ in Fig. 3. The smallest value of the permeability
κ = 1.9 ·10−10m4/(Ns) represents the realistic case. In this case, both graphs show no dif-
ference. Furthermore, two effects are observed. Firstly, an initial jump indicates that the fast
compressional wave travels with infinite wave speed. This is due to the incompressible model.
Secondly, by increasingκ a second jump becomes visible corresponding to the highly damped
second compressional wave (Schanz and Cheng 2000). This slow compressional wave is of
negative amplitude because it represents the out-of-phase movement of fluid and solid. The
arrival time and, therefore, the wave speed of this wave depends on the chosen value of the
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apparent mass density. Additionally, the pressure level in case ofρa ≡ 0 is smaller than that
of ρa = 0.66φρF . These results show that the interaction between solid and fluid is influenced
by the apparent mass density according to the structure of the BT, whereρa was introduced as
‘mass coupling parameter’ (Biot 1956b). Therefore, it is concluded that TPM and BT model
the interaction between solid and fluid in a different way, however, for the test data this has no
significant influence.

In the next step, the comparison of the compressible models is performed. For this purpose,
the governing equations are recalled

• for the displacements, TPM (19) and Biot (34)

Gûi, j j +
(

K +
1
3

G

)
û j, ji −

(
nF

0 +zSnS
0−βT)

p̂,i −s2(
ρ0−βTρFR

0

)
ûi = βTρFRb̂F

i −ρb̂i

Gûi, j j +
(

K +
1
3

G

)
û j,i j −

(
α−βB)

p̂,i −s2(
ρ−βBρF

)
ûi = βB f̂ F

i − f̂i

• for the pore pressure, TPM (20) and Biot (35)

p̂,ii −nF
0

s2

βTRϑ
p̂−

s2ρFR
0

βT

(
nF

0 +zSnS
0−βT)

ûi,i = ρFRb̂F
i,i

p̂,ii −
φ2s2ρF

βBRB p̂ − s2ρF

βB

(
α−βB)

ûi,i = f̂ F
i,i

Obviously, if the equivalences found in case of incompressible constituents are taken into ac-
count only two additional parameters have to be identified. Firstly, the comparison of the
pressure term yields the not expected result

ρFφ
RB =

1
Rϑ

. (44)

On the left hand side of Eq. (44), the material parameterRB (36b) depending on the fluid as
well as on the solid properties is compared with the gas constantRand the absolute temperature
ϑ on the right hand side characterizing only the fluid. The same appears in identifying the last
parameterα. If both expressions are the same in both theories it must hold that

α = 1− K
KS

!= nF
0 +zSnS

0 . (45)

Inserting the identification given by Diebels (2000) into (45)

zS = 1− KS

KSR (46)

leads to a contradiction. It should be kept in mind thatK andKS have the same physical inter-
pretation in Biot’s theory asKS andKSRhave in TPM, respectively. Therefore, the constitutive
relation derived on micro mechanical models for both theories are not in agreement to each
other.

This contradiction becomes obvious in Fig. 4 where the displacement at the top of the
column is given versus time. While in the incompressible case no difference between the dis-
placement solutions of both approaches are visible, here, large differences appear. To compute
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FIG. 4. Displacement at the top of the column: Compressible constituents

these results the specific gas constant of waterR= 461,61Nm/(kgK) at the absolute temper-
atureϑ = 293K is used.

Finally, to close the comparison the influence of the apparent mass density in case of com-
pressible constituents is studied. As before in the incompressible case, the pressure in a long
column is presented for both theories. The pressure result 5m behind excitation is depicted
versus time for different values ofκ = κB = κT in Fig. 5. Additionally to the observations in
the incompressible case, in the compressible case the fast compressional wave is observed as a
first jump. This appears in BT att ≈ 0.0017s and in TPM att ≈ 0.0022s. The arrival time of
the slow compressional wave in BT is, as in the incompressible case, different whichever the
apparent mass density is zero or not, i.e., att ≈ 0.004s or att ≈ 0.005s. The arrival time of the
slow compressional wave in TPM ist ≈ 0.013s and does not coincide with one of Biot’s mod-
els. Furthermore, the pressure level in TPM is much smaller than in BT. This is in accordance
with the different displacement levels as shown in Fig. 4.

CONCLUSIONS
In the present article, Biot’s theory for both compressible and incompressible constituents

is recalled. Additionally, under the assumption of a linear theory, the dynamic equations for
the mixture theory based Theory of Porous Media (TPM) are presented. Both theories model
a two-phase continuum consisting of a porous solid skeleton saturated with an interstitial pore
fluid. A comparison of the governing equations as well as wave propagation results for an
one-dimensional poroelastic column are presented.

Summarizing the results of the comparison, the structure of the governing differential equa-
tions in BT and in TPM is the same. So, the wave forms predicted by both theories are equal.
As a side effect, it was shown that Darcy’s law results naturally from the balance of momentum
in the fluid. Due to this, also the generalized version of Darcy’s law, which takes the inertia
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FIG. 5. Pressure 5m behind excitation of an infinite column: Compressible model
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terms into account, is a consequence of the fluid balance of momentum.
In case of incompressible constituents, the model parameters are identified in a way that

the governing equations are the same in both theories if the apparent mass density is set to zero.
The equivalence between both approaches is also verified numerically. On the other hand, in
case of compressible constituents neither the identification procedure nor the numerical results
match. This is related to the definition of Biot’s stress coefficientsα andRB and the identifi-
cation of the state variablezS in TPM, respectively. These parameters are motivated by micro
mechanical considerations in both theoretical approaches. The micro mechanical motivation
for the parameters is not mandatory and should be critically surveyed.
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