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Abstract

In the building industry often porous materials are used for sound insulation. Those structures have mostly a plate-like geometry.
Thus, a plate theory which takes the porous character of the material into account seems to be promising. Known elastodynamic plate
theories based on kinematic and kinetic assumptions can not be easily extended to poroelasticity because it is questionable how these
assumptions can be transferred to the pore pressure. By using a series expansion in thickness direction for all unknowns, a priori
assumptions are not needed. This results, finally, in a poroelastic Kirchhoff plate with a consistent treatment of the pore pressure.
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1. Introduction

Classical plate theories rely on engineering assumptions re-
garding the distribution of stress and strain quantities over the
thickness. Up to now, poroelastic plate formulations where
mainly developed by adopting those assumptions to the poroe-
lastic case [1]. However, it is questionable how to treat the pore
pressure. Fortunately, a series expansion of the primal variables
with respect to the thickness also results in plate theories which
are similar or even equal to the classical ones [2]. This concept
can be extended to derive poroelastic plate theories of arbitrary
order. Here, the first order theory is presented.

2. Biot’s theory of poroelasticity

In this work, Biot’s theory of poroelasticity is used [3]. An
elastic skeleton with a statistical distribution of interconnected
pores and full saturation is considered. The porosity φ = V f

V
is

defined as the ratio of the fluid volume to the bulk volume. All
equations are given in the frequency domain such that only the
solid displacement field u and the pore pressure p are needed as
independent variables [4]. The total stress tensor σ contains all
stress components combining those of the solid and those of the
fluid. Beside the pore pressure, two more quantities appear com-
pared to the linear elasticity, namely a kind of fluid strain quan-
tity ζ and the flux q. The fluid transport in the interstitial space is
modelled by a generalised Darcy’s law.

Starting point for the derivation of the plate equations is the
variation of the inner energy of a poroelastic continuum

δΠI =

Z
Ω

(σ : ∇δu + ζδp) d Ω (1)

in the domain Ω. In (1), the variation δ is applied on the primal
variables u and p. Using a partial integration (1), yieldsZ
Ω

(σ : ∇δu + ζδp) d Ω =

Z
Γ

„
t · δu− 1

iω
qnδp

«
d Γ

−
Z
Ω

„
(∇ · σ) · δu− 1

iω
q · ∇δp

«
d Ω

(2)

where ζ has been replaced by means of the continuity equation
ζ = − 1

iω
∇ · q. Moreover, the total stress vector t = σ · n and

the normal flux qn = q · n appear, where n denotes the outward
normal component. Eq.(2) is the basis for obtaining the partial
differential equations and also the basis for a finite element for-
mulation.

3. Poroelastic plates

The essential feature of a plate is a small third dimension
compared to the other two dimensions. Here, the plate mid-
surface A lies in the (x1, x2)-plane and the x3-direction will be
the plate thickness as depicted in Fig. 1.
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Figure 1: Geometry of the plate

The solid displacement field u and the pore pressure p, as
well as the respective variations of those functions, are developed
in a power series with respect to the thickness

u (x1, x2, x3) =

∞X
k=0

k
u (x1, x2)x3

k (3a)

p (x1, x2, x3) =

∞X
k=0

k
p (x1, x2)x3

k . (3b)

With the series expansions (3) inserted into (2), the integration
over the thickness variable x3 can be performed. After inves-
tigating the physical meaning of the coefficients in (3), it turns
out that only terms of even order in

k
u3 and odd order in

k+1
u 1,

k+1
u 2

and
k+1
p are related to the plate problem. The others are quantities

describing the in-plane problem. The function
0
u3 :=

0
w corre-
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sponds to the vertical deflection of the plates mid-surface.
1

ψ is
a vector containing the functions

1
u1,

1
u2 which are identified as

the rotations. The other higher order terms are related to warping
effects, for details see [2]. The coefficients of the pore pressure
with a order k > 0 can hardly be explained which is due to the
scalar nature of the pore pressure.

As depicted in Fig.1, the boundary of the plate is given as
Γ = A+ ∪ A− ∪ E and the boundary integral in (2) must be
decomposed accordingly.

The body forces fs and ff have to be approximated by a se-
ries expansion as well. However, it seems reasonable to assume
them to be constant and hence only the constant term of the ex-
pansion is considered further.

Obviously, the series have to be truncated and, therefore, the
plate parameter c2 = h2

12
is introduced. The truncation is chosen

such that only terms multiplied by a specific order of the plate
parameter O

`
c2
´

are considered and the rest is neglected.

3.1. Zeroth order

For the zeroth order approximation, only terms multiplied by`
c2
´0

= 1, are considered. This means that the value zero is
synonymous to the statement ’is of higher order’.

The variational form (2) then only contains the functions
0
w,

1

ψ,
1
p together with the variations of those functions. As men-

tioned in [2] for the elastostatic case, loadings are connected to a
higher order. The elastostatic zeroth order theory then describes
only rigid body motions.

The same applies to the poroelastic case, whereas inertia
terms and terms multiplied by the frequency dependent poroelas-
tic factor β (see [5]) are found to be connected to a higher order
as well and have to be neglected.

Assuming a statically determined or undetermined supported
plate, the poroelastodynamic theory of zeroth order ends up with

the trivial solution
0
w =

1

ψ =
1
p = 0.

3.2. First order

First order means that all terms multiplied by
`
c2
´1

= c2 or
lower are considered and the rest is neglected. This leads to a

variational form (2) containing the variables
0
w,

1

ψ,
1
p and

2
w,

3

ψ,
3
p.

The first order approximation leads to a system of six partial
differential equations (PDE’s). Within this context, the full oper-
ator is not given explicitly, however, it is basically an extension
of the zeroth order operator.

The insights gained in the previous section concerning some
quantities being connected to higher orders, must be transferred
to this system as well. Thus, all loadings and inertia terms as well
as β which are multiplied by c2 must be neglected.

In due consideration of those specifications, the whole sys-
tem can be reduced to two coupled PDE’s, with the first given as

D∆∆
0
w − hω2%β

0
w + hB1 ∆

1
p− hβ 1

p = t3 + hf3 (4a)

and the second as

iωB1∆
0
w − iωβ

0
w −B2

1
p =

1

2
q3 . (4b)

In the above equations, D = Eh3

12(1−v2)
is the plate stiffness

with E as the Young’s modulus and ν as Poisson’s ratio. B1

and B2 are some poroelastic constants and %β = (1− φ) %s +
(φ− β) %f is the frequency dependent density of the bulk vol-
ume.

With (4) a coupled system of PDE’s is given describing the
dynamics of thin poroelastic plates. The pore pressure is linearly
distributed over the thickness since only

1
p appears.

4. Numerical results

The weak form of the system (4) is solved using a finite el-
ement formulation. To assure the C1 inter-element continuity,
rectangular Bogner-Fox-Schmit elements are used for

0
w and lin-

ear elements for
1
p.
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Figure 2: Elastic-drained, poroelastic and elastic-undrained re-
sponse of a rectangular poroelastic plate

The undrained and drained case assume a strong and a less in-
fluence of the interstitial fluid, respectively. They can be seen as
lower and upper bounds for the poroelastic material. As depicted
in Fig. 2, the poroelastic plate almost behaves like the elastic-
drained. For stiffer plates and higher viscosities, the difference
between the poroelastic and elastic-drained plate is even smaller.

5. Conclusion

A poroelastic plate theory has been derived from the gov-
erning equations of 3-dimensional poroelasticity without assump-
tions regarding the primal variables. A comparison to [1] shows
similarities, yet some terms differ or are missing which is due to
the allocation of those terms to higher orders. The underlying
theory implies that the interstitial fluid has no strong influence
when dealing with thin plates. For thick plates an extension to
the second order seems indispensable. This will be the matter of
forthcoming studies.
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