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Abstract. The present work deals with the problem of modelling wave propagation phenomena
within a 3-d elastodynamic halfspace. While there exist several Boundary Element formula-
tions based on the more common collocation method, the development of Symmetric Galerkin
Boundary Element Methods in this field is at the very beginning and rather challenging. On
that score the present work should be understood as a first step.

Here, the time discretization of the underlying Boundary Integral Equations (BIEs) is done via
the Convolution Quadrature Method (CQM) proposed by Lubich. After the time discretization,
a variational formulation is established resulting in a Galerkin based method in space. Moreover,
to obtain a symmetric Galerkin Boundary Element formulation the 2nd BIE is required. This
BIE involves hypersingular kernel functions which must be treated carefully in the numerical
implementation. Hence, a regularization based on integration by parts of the elastodynamic
fundamental solution is presented which, finally, results in a Boundary Element formulation
containing at least only weakly singular kernel functions.

In Boundary Element Methods semi-infinite domains are commonly approximated in space by
considering just a sufficiently large enough region. Unfortunately, applying this procedure to
the symmetric formulation implies the evaluation of additional terms on the truncated surface’s
boundary due to the regularization of the involved kernel functions.

Therefore, a methodology based on infinite elements intended to overcome this drawback will
be presented. The numerical tests done so far show that this approach might be capable of
treating semi-infinite domains also within a symmetric Galerkin scheme.

Initial boundary value problem for elastodynamics

By definition of the Lamé-Navier operator

L := −(λ+ µ)∇∇ · −µ∇ · ∇ (1)

in terms of the Nabla operator ∇ and Lamé’s constants λ, µ the initial boundary value problem
for some linear elastic solid occupying the domain Ω ⊂ R3 with its boundary Γ = ∂Ω reads as

(Lu)(x̃; t) + %
∂2

∂t2
u(x̃; t) = b(x̃; t) (x̃; t) ∈ Ω× (0,∞)

uΓ(y; t) = gD(y; t) (y; t) ∈ ΓD × (0,∞)

t(y; t) = gN(y; t) (y; t) ∈ ΓN × (0,∞) .

(2)

In (2), the unknown displacement field u(x̃; t) depends on the location x̃ ∈ Ω and the time
t ∈ (0,∞). Furthermore, uΓ and t are the boundary displacements and tractions for which the



Dirichlet data and Neumann data, gD and gN are prescribed on the boundary parts ΓD and
ΓN , respectively. The body’s mass density is denoted by % and b(x̃; t) is a given body force per
unit volume. For simplicity this body force is assumed to be absent in the following. Finally,
homogeneous initial conditions are considered, i.e., u(x̃; 0) = 0 and ∂

∂t
u(x̃; 0) = 0 for all x̃ ∈ Ω.

Boundary integral equations. To obtain a boundary element formulation of the stated
problem, first, an appropriate boundary integral representation of the given system (2) is in-
troduced [1]

u(x̃; t) =

∫ t

0

∫
Γ

U(y − x̃; t− τ) · (Tyu)(y; τ) dsy dτ

−
∫ t

0

∫
Γ

[(TyU)(y − x̃; t− τ)]T · u(y; τ) dsy dτ ∀ x̃ ∈ Ω,y ∈ Γ, t ∈ (0, T )

(3)

containing the fundamental solution U(y−x̃; t−τ). In (3), Ty = T (∂y,n(y)) denotes the stress
operator based on Hooke’s law

(Tyu)(y; t) = t(y; t) = σ(y; t) · n(y) (4)

where σ(y; t) is the Cauchy stress tensor and n(y) is the outward normal vector. The first
boundary integral equation is obtained by applying a limiting process Ω 3 x̃→ x ∈ Γ onto the
representation formula (3). Using operator notation, this boundary integral equation reads for
a sufficiently smooth boundary Γ

(V ∗ t)(x; t) = ((1
2
I +K) ∗ u)(x; t) ∀x ∈ Γ . (5)

The introduced operators are the single layer operator V , the identity operator I, and the
double layer operator K which are defined by

(V ∗ t)(x, t) =

∫ t

0

∫
Γ

U(y − x, t− τ) · t(y, τ) dsy dτ (6a)

(I ∗ u)(x, t) =

∫ t

0

∫
Γ

δ(y − x; t− τ)I · u(y; τ) dsy dτ (6b)

(K ∗ u)(x, t) = lim
ε→0

∫ t

0

∫
Γ\Bε(x)

(TyU)>(y − x, t− τ) · u(y, τ) dsy dτ . (6c)

In these expressions, Bε(x) denotes a ball of radius ε centered at the point x. Note that
the single layer operator (6a) involves a weakly singular integral and that the integration of
the double layer operator (6c) has to be understood in the sense of a Cauchy principal value.
Moreover, in the definition (6b) I denotes the identity matrix, and δ is the Delta-distribution.

To obtain a symmetric formulation, additionally the second boundary integral formula is
needed. The application of the traction operator Tx to the dynamic representation formula (3)
with a subsequent limit Ω 3 x̃→ x ∈ Γ yields

(D ∗ u)(x, t) = ((1
2
I − K′) ∗ t)(x, t) ∀x ∈ Γ . (7)

The newly introduced operators are the hypersingular operator D and the adjoint double layer
operator K′

(D ∗ u)(x, t) = − lim
ε→0

∫ t

0

Tx
∫

Γ\Bε(x)

(TyU)>(y − x, t− τ) · u(y, τ) dsy dτ (8a)

(K′ ∗ t)(x, t) = lim
ε→0

∫ t

0

∫
Γ\Bε(x)

(TxU)(y − x, t− τ) · t(y, τ) dsy dτ . (8b)

The application of the hypersingular operator has to be understood in the sense of a finite part.



Symmetric formulation. For the solution of the initial boundary value problem (2) the
symmetric formulation as proposed in [3, 11] using both boundary integral equations (5) and
(7) is considered. While the first integral equation (5) is used only on the Dirichlet part ΓD of
the boundary the second one (7) is evaluated on the Neumann part ΓN

(V ∗ t)(x; t)− (K ∗ u)(x; t) = (1
2
I ∗ gD)(x; t) (x, t) ∈ ΓD × (0,∞)

(K′ ∗ t)(x; t) + (D ∗ u)(x; t) = (1
2
I ∗ gN)(x; t) (x, t) ∈ ΓN × (0,∞) .

(9)

Further, the Cauchy data u, t are decomposed into

u = ũ + g̃D and t = t̃ + g̃N . (10)

In these decompositions, arbitrary but fixed extensions, g̃D and g̃N , of the given Dirichlet and
Neumann data, gD and gN , are introduced such that

g̃D(x; t) = gD(x; t) (x, t) ∈ ΓD × (0,∞)

g̃N(x; t) = gN(x; t) (x, t) ∈ ΓN × (0,∞)
(11)

holds. Note that the extension g̃D of the given Dirichlet datum has to be continuous due to
regularity requirements [12].

Inserting the decompositions (10) into (9) leads to the symmetric formulation for the unknown
Cauchy data ũ, t̃

V ∗ t̃−K ∗ ũ = (1
2
I +K) ∗ g̃D − V ∗ g̃N (x, t) ∈ ΓD × (0,∞)

K′ ∗ t̃ +D ∗ ũ = (1
2
I − K′) ∗ g̃N −D ∗ g̃D (x, t) ∈ ΓN × (0,∞) .

(12)

Variational principles. Using the inner product 〈f, g〉Γ =
∫

Γ
f(x)g(x) dsx a variational

formulation is introduced to find ũ and t̃ such that

〈V ∗ t̃,w〉ΓD
− 〈K ∗ ũ,w〉ΓD

= 〈(1
2
I +K) ∗ g̃D − V ∗ g̃N ,w〉ΓD

〈K′ ∗ t̃,v〉ΓN
+ 〈D ∗ ũ,v〉ΓN

= 〈(1
2
I − K′) ∗ g̃N −D ∗ g̃D,v〉ΓN

(13)

holds for all test functions w(x) and v(x). Note, as this Galerkin scheme is used only for the
spatial integrations the test functions w(x) and v(x) exhibit no time dependency.

Temporal discretization. The time discretization of (13) can be done in several ways. Here,
the Convolution Quadrature Method (CQM) developed by Lubich [8] is chosen. Thereby, the
time convolution integrals of the form

y(t) = f ∗ g =

∫ t

0

f(t− τ)g(τ) dτ . (14)

are approximated by a quadrature rule which forms a discrete convolution

ym = y(m∆t) ≈
m∑
k=0

ωm−k(f̂ ,∆t)g(k∆t) . (15)

In (15), the quadrature weights ωm−k depend only on the time step size ∆t and the Laplace
transform f̂ of the function f . Confer to [10] for more details about the application of the
CQM in boundary element methods.



Finally, applying this time stepping scheme to (13) yields a semi-discrete variational form

m∑
k=0

[
〈V̂m−kt̃k,w〉ΓD

− 〈K̂m−kũk,w〉ΓD

〈K̂′m−kt̃k,v〉ΓN
+ 〈D̂m−kũk,v〉ΓN

]
=

m∑
k=0

[
〈(1

2
Î + K̂)m−kg̃Dk

− V̂m−kg̃Nk
,w〉ΓD

〈(1
2
Î − K̂′)m−kg̃Nk

− D̂m−kg̃Dk
,v〉ΓN

]
(16)

where (·)m−k denotes the weight ωm−k((·),∆t) depending on the respective Laplace transformed
integral operator.

A Boundary Element formulation for semi-infinite domains

The typical problem statement for an elastodynamic halfspace where the domain Ω = {x̃ | x̃ ∈
R3 ∧ x̃3 < 0} as well as the boundary Γ = {y |y ∈ R3 ∧ y3 = 0} are unbounded reads as

((L+ %
∂2

∂t2
)u)(x̃; t) = 0 (x̃, t) ∈ Ω× (0,∞)

t(y; t) = g(y; t) (y, t) ∈ Γ× (0,∞)
(17)

with homogeneous initial conditions u(x̃; 0) = 0 and ∂
∂t

u(x̃; 0) = 0 ensuring that the solution
of (17) fulfill the Sommerfeld radiation condition [5].

Since ΓD = {∅} and ΓN = Γ the semi-discrete variational form (16) reduces to

m∑
k=0

〈D̂m−kũk,v〉Γ =
m∑
k=0

〈(1
2
Î − K̂′)m−kgk,v〉Γ (18)

which is an appropriate Galerkin formulation of (17) in terms of boundary integral equations.

Regularization of the hypersingular operator. Concerning the numerical evaluation of
the bilinear form in (18) the involved hypersingularity makes a direct evaluation rather impos-
sible. Therefore, a regularization based on Stokes theorem is used to transfer the hypersingular
bilinear form to a weak one. This regularization is given in detail in [7] and based itself mainly
on the work of Han [6]. Additionally, the double layer potential is also transfered to a weak
form using the same techniques as for the hypersingular bilinear form.

Within this work it is sufficient to mention that the regularization process demands either a
closed boundary surface Γ or vanishing integral kernels at infinity. Since the involved kernels
fulfill the Sommerfeld radiation condition the last constraint is satisfied and the regularization
holds also for the elastodynamic halfspace.

Nevertheless, problems might occur on a discrete level. There, it is a common practice to
model just a truncated part of the infinite geometry. Unfortunately, the emerging truncation’s
borderline represents the surface’s boundary such that Γ is neither closed anymore nor that the
integral kernels can be assumed to vanish. Therefore, it must be ensured that the discretized
area is closed or modelling the infinite surface.

Spatial discretization. Figure 1(a) illustrates the discretization approach of an unbounded
domain. Thereby, the boundary Γ is represented in the computation by an approximation Γh
which is the union of two sets of different geometrical elements

Γh =

Nf
e⋃

`=0

τ f` ∪
N i

e⋃
m=0

τ im . (19)



In (19), τ f denotes standard linear finite elements, e.g., surface triangles, and N f
e is their total

number. Additionally, the boundary’s far-field is represented by N i
e infinite boundary elements

τ i whose configuration is depicted in Fig. 1(b). For the concept of infinite elements refer to [2]
and the references cited there.

Further, the boundary functions ũ and g are approximated by the separation of variables with
trial functions ϕi and ψj, which are defined with respect to the geometry partitioning (19), and
time dependent coefficients ui and gj

ũ(x) ≈
N∑
i=1

ui(t)ϕi(x) and g(x) ≈
M∑
j=1

gj(t)ψj(x) . (20)

In case of finite boundary elements the functions ϕi are chosen to be equivalent to those shape
functions forming the geometry approximation.

x2

x1

(a) Halfspace with infinite elements

x0

x1

z0

z1

x̂1

x̂2

(b) Infinite element

Figure 1: Discretized halfspace and infinite mapping

By introducing local coordinates x̂ = [x̂1, x̂2]> ∈ [0, 1] × [0, 1) the mapping χτ : τ̂ → τ from
the reference element τ̂ to an infinite element τ reads as

x = χτ (x̂) = 〈φ(x̂1),

[
x0

x1

]
〉+

x̂2

1− x̂2

〈φ(x̂1), α

[
z0

z1

]
〉 (21)

where x0 and x1 denote the two fixed vertex nodes, and z0 and z1 represent two direction
vectors with the property 〈zk, zk〉 = 1. The scalar value α > 0 is a scaling factor. The function
φ within the dot product 〈·, ·〉 describes the approximation for the finite extent and is given by
φ(x̂1) = [1− x̂1, x̂1]>.

Since the integral kernels depend mostly on the distance r = |y−x| between two points y and
x it is preferable to note that for infinite elements the asymptotic behavior of the distance is
of order O((1 − x̂2)−1). Moreover, the transformation of the integral kernels to the reference
element demands the computation of the Gram determinant which itself can be expressed via
the Jacobi matrix

Jτ i(x̂) =
[
∂x
∂x̂1

∂x
∂x̂2

]
=:
[
J1 J2

]
=
[
O(r) O(r2)

]
(22)

and reads as

gτ i(x̂) =
√

det(J>
τ iJτ i) =

√
〈J1,J1〉〈J2,J2〉 − 〈J1,J2〉2 = O(r3) . (23)

For some kernel function k(x(x̂),y(ŷ)) = O(r−1) the integrand in a Galerkin scheme takes the
form

I[`,m] =

∫
τ`

∫
τm

gτ`(x̂)gτm(ŷ) k(x(x̂),y(ŷ)) ϕ̂`(x̂)ϕ̂m(ŷ) dx̂ dŷ . (24)



From (24), it is obvious that the trial function for an infinite element has to be of order O(r−3)
to guarantee that the integral is finite. Therefore, the trial and test functions ϕi of an infinite
element are chosen as

ϕi(x) ◦ ϕ̂(x̂) = φ(x̂1) (1− x̂2)3 (25)

where φ(x̂1) is identical to the function used for the geometry approximation (21).

Finally, a comment concerning the singular integrals must be made. All integral operators
used in the present work are weakly singular. They are treated completely numerical based on
quadrature rules developed by Sauter and Erichsen [4].

Numerical examples

Now, numerical results for the present Boundary Element formulation are given. The mate-
rial data represents soil with Lamé’s constants λ = µ = 1.3627 · 108 N/m2, and mass density
% = 1884 kg/m3. The discretization of the infinite domain consists of 800 regular linear triangles
and 80 infinite elements with a scaling factor of α = 1. The triangles occupy a total area of
20m× 20m. Moreover, at the mesh’s center an area of A = 2m2 is excited by a traction jump
g = [0, 0,−1]>H(t) N/m2 according to the unit step function H(t). The remaining surface is
traction free.

(a) Vertical displacements u3 (b) Radial displacements u1

Figure 2: Vertical and radial displacements at the observation point x?

Figure 2 depicts the solution for an observation point x? on the surface in 4m distance to
the center of the loading. The first and the second numerical solution vary in the chosen
time step size but reveal in general the same behavior. Compared to the analytical solution
[9] both displacement solutions exhibit oscillations for larger times which are due to artificial
reflections at the crossing of finite and infinite boundary elements. But beside these effects,
both numerical solutions show approximately the characteristics of the analytical solution.
Contrary, a computation without infinite elements titled as ’NOINF’ but with the same time
step size as the first depicted numerical solution namely ∆t = 8.5 · 10−4 s yields a defective
result for times larger than 0.034s. This is exactly the time the compression wave with the
velocity c1 =

√
λ+2µ/% = 465.8m/s has to travel from the center of loading to the truncated

boundary and back to the observation point x?. From this it can be stated that the infinite
element approach for the treatment of semi-infinite domains by symmetric Boundary Element
Methods is expedient but requires further research.



Conclusions

A boundary element method for elastodynamics based on a Galerkin discretization in space
and on the Convolution Quadrature Method in time was presented. To obtain a symmetric
formulation, also the usage of the second boundary integral equation is required which demands
the computation of hypersingular kernel functions. Therefore, a regularization of the elastody-
namic hypersingular integral operator is used leading to a weakly singular bilinear form. Since
the regularization is based on integration by parts it is not suitable for treating problems where
the mesh of a halfspace is truncated.

To overcome this drawback the concept of infinite elements was used and adopted to the
present boundary element formulation. Unfortunately, the numerical results obtained so far
are not completely satisfactory since they feature oscillations for larger times. To reduce these
oscillations or, better, to eliminate them further investigations are essential. Nevertheless,
the infinite element approach is advantageous compared to computations without any infinite
elements as it reaches the static limit for larger times.
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