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Abstract

We have developed a three -dimensional
display algorithm for discrete objects in a
discrete space. Objects may be concave or convex,
have holes (including interior holes) and can
consist of disjoint parts. The input for our
algorithm is a binary scene derived from a
consecutive set of segmented and interpolated
computed tomography (CT) cross -sections. The
output is a shaded three-dimensional appearance
of an organ from a user specified viewing
direction.

Introduction

Certain spatial imaging problems represent
the object space by a set of volume elements or
voxels in a three dimensional array. With the
advent of a number of three dimensional imaging
technologies, three dimensional digital images
have become quite common in many scientific
fields. A very large and popular source of such
three dimensional data arrays presents the area
of computed tomography. For a human observer it
is not easy to recognize features in this three -
dimensional array, if they are presented only as
numerical data in an array. Therefore there
exist some techniques to represent three -
dimensional data, which often can be interpreted
as objects in a space, with shaded -surface
display. Especially in the area of computed
tomography, we want to display organs or parts
of the skeleton with a shaded surface.

There are essentially two approaches to the
shaded -surface display problem. The difference
lies in the methods of representing objects in the
three dimensional image. In the first approach,
a set of contours is used to define the object
regions in a sequence of slices. The boundary
surfaces of the object are produced either by
tiling contours in succesive slices with
triangular patches or by fitting surface elements
to the contours by the method of lofting using
cardinal splines (1).

In the second approach, a set of volume
elements represents an object in the three
dimensional image. A boundary surface of the
object is a set of faces of voxels, which are
determinded by tracking through the connected set
of faces comprising the boundary surface.
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The representation in this approach can handle
objects of very complex shapes, which are commonly
encountered in medical applications (2).

Our approach is closely related to the second,
but with the essential difference of interpreting
the cubic voxels as single points. A surface of an
object in this case is formed by a set of points
sampled in some appropriate sense.

Having represented a boundary, surface by this
approach, the hidden surface removal and the
shading algorithm can be greatly simplified. For
the hidden surface algorithm the object boundary
data are stored in the order of increasing
coordinates. Thus a dynamic mode of display is
possible, without changing the boundary data format.
This feature makes it possible to keep the
computations required in assign shading to an object
to a minimum. Furthermore this display algorithm
can also generate synthetic stereo -scopic views
from an object scene. The algorithms are written
in FORTRAN in a portable fashion and are implemented
on a PDP 11/34 minicomputer.

I. The Object Space Model

We first describe our object space model or
universe, which is similar to the cuberille model
by Herman (3). The universe is defined as a discrete
three dimensional image or scene, built up by cubic
formed voxels of discretisation unit size. We
assume that together with the scene a rectangular
coordinate system has been determined which assigns
to each voxel a triple (i,j,k) of integers. The
origin of the universe is the point of intersection
of the coordinate axis. An important feature of
our model is that we use a discrete metric.

In many application areas the scene is
digitized in the sense that the values must be
integers in a finite interval, for example the
CT -Scene has values in the range of - 1024 to
+ 1024. For our object space model we assume a
binary scene, that means that the value set is

(0,1).

2. Objects and Their Surface

For a human observer there is no difficulty
to identify objects in three dimensional scenes.
It is therefore surprising that it is far from
trivial, to give a precise mathematical definition
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of an "object" and its "surface ".
Our approach to define an object in the

binary scene is that we interpret a voxel V(i,j,k)=
I as a single point in the universe, disregarding
its finite surface. An object is formed by a set
of points, which are 0(3)- adjacent (see Appendix
A) and it is therefore a connected subset of
voxels of the universe. Furthermore an object is
always of the same order as the universe, in our
case of order three it is composed of discrete
units of the three- dimensional space. All objects
in a third -order universe must occupy volume.
A 2 -D object could not exist there.

We now indicate an approach to define
surfaces of objects in our universe. We need this
surface for the shading algorithm in our display
model.

The surface S of an Object 0 is a set of
points V with the following properties:

(1) S:= {V(i,j,k) IV(i,j,k)= 1 and
+

+IV(i,j- 1,k)- V(i,j +1,k)1
+IV(i,j,k- 1)- V(i,j,k +1)1 >1 }

(2)IS1) 3 (numbers of connected points)

In other words the surface of an object
consists of points which are border points of the
object and that means that the 0(1)- adjacent
to a single object point is not symmetric. To
avoid singularities of the surface, the numbers
of connected surfacepoints has to be not less
than three. With these properties we have given
an exact definition of a surface for our object
in a binary scene.

3. Display of Object Surfaces

A further problem of the true display of an
object is the calculation of the shading of the
surface. We use a shading model according to the
Lambertian law, which consists of diffuse
illumination and diffuse reflection. In our opinion
this model is satisfying in medical application
for the display of organs of the CT- Scene.

The light energy E emanating from a surface
point is the sum of the diffuse illumination Epd
and the diffuse reflection E ---

E = Epd + Eps

Epd = Rp Id

Eps = (R pscos 0,1. ps
In these equations, Rp is the reflectance coeffi-
cient at P, in the range of 0 to 1, Id is the dif-
fuse illumination falling on the entire scene,I
the energy arriving from a light source. The angle
Vis the angle between the surface, normal Np and a
ray to the light source(4). To calculate the dif-
fuse reflection, the normal vector in a surface
point is used,but with our definition of the surface
the normal vector is implicitly defined in the form
of n. V(i- 1,j,k) -V(i +1,j,k)1l

Np = n1 = V(i,j -1,k) -V(i,j

nk V(i,j,k -1) -V(i,j,k+1)
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This definition of the normal vector
generates a sample of 26 distinct directions of a
surface. As we can show in our examples, this dis-
cretisation of an object surface is satisfying for
our problem. For a finer discretisation with a more
smoothed surface, one can define the normal vector
in a greater neighbourhood, than the first order
neighbourhood. This problem in 3 -D is similar to
chain -coding in 2 -D spaces (5).

To a surface point EL of our object 0

consists now of the six - tuple ( i, j, k, mi
nj, nk). We calculate these values slice by slice
from our binary scene, and get a linear list of
surface elements EL, sorted by increasing co-
ordinates. The fact that coordinates increase is
important for our hidden surface algorithm.

4. Perspective Projection

The projection, we had implemented is the per-
spective projection because it corresponds to
natural view and to camera imaging. But in general
there is no restriction on projection of our object
model.

The universe in our definition is a discrete
three dimensional space, and also the image -space
onto which we are projecting is a discrete, but
two dimensional space. In order to get a "true"
projection of our object we have to guarantee, that
the projection of voxels, which are 0(3)- adjacent,
yields 0(2)- adjacent pixels in the image space.
To do this we are projecting the diameter of the
object space unit by unit onto connceted units of
the image plane. By projecting also the 8 corners of
the universe to the discretizised image space, we
can define our discrete image plane. It is very
important, that the image plane has square formed
discretisation units to provide a deformation of
the object.

By observing these considerations, our
projection of an object, sampled by points, will
give a correct view of this object.

5. Display of Object Surfaces

In order to create a realistic image, we must
apply a hidden -surface algorithm. One of the
simplest is the depth- buffer algorithm (see
Appendix B). Instead of calculating the depht of
each surface -point, we use a sorting of the surface
elements in the way of increasing coordinates and
project it in the same order. Thus surface elements,
which are closer to the observer will,during the
process,cover those which are farther away. There-
fore the resulting image shows only the visible
surface of an object.

The sorting of the surface elements need not
be changed, if the observer position moves in an
octant. However if the direction of view changes
from one octant to another you had to re -sort the
surface elements.

6. Examples

For illustration of our results we have chosen
a CT -Scene from the head. It consists of 10 slices,
each slice with a thickness of 5 mm. (Fig. 2)
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Our aim was to display the objects skull and
lesion. The first step was the interpolation of
thinner subslices, to geta CT -scene of cubic
voxels. For this CT -Scene we used linear inter-
polation.

In the second step, we generated a binary
scene by segmentation of the CT -Scene (6). This
we did by thresholding over the range of values
according to object's CT numbers (7). The binary
scene consists of 160 x 160 x 46 elements and
the surface of our object has about 76600
elements.

The three -dimensional displays show the skull
and the lesion in shaded perspective views from
different directions. (Fig.3, Fig.4)

7. Outlook and Conclusion

We have outlined an efficient algorithm for
a realistic display of surfaces based on CT-
scannes. In a next step we want to implement
a more efficient data storage for the surface
elements, namely the octree representation (8).
This technique of octree encoded objects will
allow us: to implement the shading feature
transparency, to remove object parts and to
intersect two or more objects to generate a
single display of them.
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Appendix A

Adjacency and Connectivity in 2 and 3-
Dimensional Discrete Space (9).

A pixel or point p in a 2- dimensional space
R2 is a tuple of integers (pi, p2). Two points
p and p' are

(a) 1- adjacent if and only if

(i) O<Ipi - pi :1, i =1,2
2

i=1

and (b) 2- adjacent if and only if

(i) 0 c IPi - Pi'I <1, i =1,2
(ii) IPi - pi (= 2

Two points are 0(1)- adjacent if they are 1- adjacent
and they are 0(2)- adjacent if they are 1- adjacent or
2- adjacent.

For the 3- dimensional space we can define the n-
adjacent and 0(n)- adjacent for two voxels or points
in R3 similar to the 2- dimensional case. The
geometric appearance of this situations is shown
in Fig. 1.

466

Appendix B

The depth- buffer algorithm given below requires
two arrays for intensity and depth, each of which
is indexed by pixel coordinates (x,y).

1 For all pixels on the screen, set DEPTH (x,y)
to a maximum value and INTENSITY (y,x) to a
background value

2 for all surface elements EL(i,j,k,ni,n.,nk)do

3 begin

4 calculate perspective projection D3(i,j,k)+
D2(x,y)

5 calculate the depth d of the surface element EL

6 if d depth (x,y) do

7 begin

8 depth (x,y) = d

9 calculate shading s of surface element EL

10 intensity (x,y) = s

11 end

12 end

The modified depth- buffer algorithm needs
only one array for the intensity of the resulting
image.

1 For all pixels on the screen, set INTENSITY
(x,y) to a background value

2 for all surface elements EL(i,j,k,ni,nj,nk) do

3 begin

4 calculate perspective projection D3(i,j,k) -3
D2 (x,y)

5 calculate shading s of surface element EL

6 INTENSITY (x,y) = s

7 end
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Figure 1. The geometric appearance of the three
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b) 2- adjacent and c) 3- adjacent.
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Figure 1. The geometric appearance of the three 
possible adjacencies in R^: a) J-adjacent, 
b) 2-adjacent and c) 3-adjacent.
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Figure 2. Slice 30 out of the 46 1.0 mm thick
slices of a head scann. This slice is produced
by an EMI CT10I0 scanner.

Figure 3. Four views of the detected surface
of the skull and lesion as displayed by our
program.
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Figure 4. A single view of the detected surface
of the skull and lesion. This picture is zoomed
with the factor 2 by linear interpolation.

Figure 2. Slice 30 out of the 46 I.O mm thick 
slices of a head scann. This slice is produced 
by an EMI CT1010 scanner.

Figure 4. A single view of the detected surface 
of the skull and lesion. This picture is zoomed 
with the factor 2 by linear interpolation.

Figure 3. Four views of the detected surface 
of the skull and lesion as displayed by our 
program.
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