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Abstract—Identity-based encryption constitutes a promising
alternative to traditional cryptography that works without
symmetric keys or public key infrastructures. Such schemes
generally depend on the computation of bilinear pairings.
The latest developments in efficient pairing algorithms made
identity-based encryption available to embedded devices as well.
However, those devices are inherently exposed to side-channel
attacks. In this paper, we present a correlation power analysis
attack to extract the private key in the popular identity-based
encryption scheme by Boneh and Boyen. On an ARM Cortex-M0
we exploit the leakage of a finite field multiplication within the
highly practical optimal-Ate pairing defined over the elliptic
curves by Barreto and Naehrig. As a secondary contribution,
we practically verified the feasibility of our attack on an FPGA,
an ASIC, and using power simulations. For future work our
research intends to raise awareness of the importance of the
randomization countermeasure in pairing computations.

Keywords—Optimal-Ate Pairing; BN Curves; Side-Channel At-
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I. INTRODUCTION

In the last decade, much attention was drawn to the idea of
identity-based encryption. The concept, which was proposed
by Shamir [21] in 1984, allows the secure transmission of
confidential data by just using the recipient’s identity string
as the key. As a huge benefit compared to traditional cryp-
tography, identity-based encryption avoids both public key
infrastructures and the distribution of symmetric keys. One
thing most identity-based encryption schemes have in common
is the computation of bilinear pairings.

A bilinear pairing is a cryptographic primitive that may be
built upon elliptic-curve cryptography. BN curves by Barreto
and Naehrig [4], best suitable for the 128-bit security level,
are one of the most promising proposals for secure bilinear
pairings. BN curves allow such a level of performance that
they are even suitable for embedded devices (cf. Unterluggauer
and Wenger [22]). In these embedded environments we expect
identity-based encryption to play an important role in provid-
ing secure applications in the future. However, side-channel
leakage constitutes an omnipresent threat to the security of
such devices. Susceptibility of pairing implementations to side-
channel attacks were investigated early with respect to such
in small characteristics by Kim et al. [15] and Page and
Vercauteren [18]. However, the practical examination of a
full implementation of an identity-based encryption scheme

based on the optimal-Ate pairings over BN curves with large
characteristic still remains.

In this paper we present the results of a practical Corre-
lation Power Analysis (CPA) attack that leaks a user’s private
key in the identity-based encryption scheme by Boneh and
Boyen [7]. In contrast to the work in [11], which recovers
the user’s private key from an exemplary 8-bit hardware
circuit that only performs the operations that leak the sensitive
information, we successfully attack a full implementation on
a 32-bit architecture. Therefore, the secret input point of the
highly practical optimal-Ate pairing defined over BN curves
is revealed as opposed to [15, 18], who focused on pairings
over fields of small characteristics. For this purpose, this work
exploits the leakage of a finite field multiplication [14] within
the pairing computation. On the contrary, the attack on Tate
pairings over BN curves in [12] exploits the leakage of a
finite field addition. Besides the CPA attack, we provide future
work with evidence on how power analysis attacks perform
relatively to each other on an FPGA, an ASIC, and using power
simulations. Moreover, we emphasize that the projective point
randomization technique [9] is a countermeasure that is applied
to Ate pairings on BN curves almost without effort.

The paper is structured as follows. In Section II, we
investigate related work and further highlight how our work
complements the related work. Besides the background of
identity-based encryption and pairings, a high-level view of
the attack setting is given in Section III. A general description
of the attack is part of Section IV. Section V discusses the
practical results of the attack. Following possible countermea-
sures in Section VI, a conclusion is drawn in Section VII.

II. RELATED WORK

The first to investigate side-channel attacks in the context
of pairing computations were Page and Vercauteren [18].
They focused on pairings over ternary fields, pointed out
the possibility of timing and Simple Power Analysis (SPA)
attacks of improperly implemented finite field multiplications,
and proposed a Differential Power Analysis (DPA) attack that
sequentially extracts one bit after another using the technique
by Messerges [16]. Similarly, Kim et al. [15] showed each
a timing, an SPA and a DPA attack that potentially extract a
secret value involved in the computation of the Eta pairing over
hyperelliptic curves using binary fields. This paper in contrast
focuses on a Correlation Power Analysis (CPA) attack on
optimal-Ate pairings using large prime fields, whose arithmetic



differs enormously to that in binary or ternary fields used in,
e.g., [18].

Whelan and Scott [25] investigated the side-channel vulner-
ability of the Tate, the Ate, and the Eta pairing more generally.
They concluded that the computation of a bilinear pairing
e(P,Q) of the two elliptic curve points P and Q is inherently
more secure if its first parameter P is the secret as it seemed
impossible to build the hypothesis for a DPA attack. However,
for the Tate pairing not using elliptic curve twists, Blömer et al.
[6] concluded theoretically that schemes using bilinear pairings
with its first argument P being secret are not less vulnerable
to side-channel attacks than otherwise. We complement their
work by presenting results of a practical attack on the secret
first argument of an Ate pairing computation over BN curves
that uses elliptic curve twists.

An attack similar to the one presented in this work was
done by Ghosh and Roychowdhury [12]. In their attack, the
secret parameter Q of the Tate pairing e(P,Q) over BN curves
was revealed. In more detail, a finite field addition during
the evaluation of the line function in the Miller loop was
targeted. The operation involves the secret input Q as well as
the x-coordinate of the intermediate elliptic curve point that
derives from the public input point P . Starting from the Least
Significant Bit (LSB), they recover the secret x-coordinate
successively by performing a difference-of-means for each bit.
They gather the necessary power measurements from their own
FPGA-based pairing cryptoprocessor. Contrary to attacking a
finite field addition within the pairing computation, we exploit
the leakage of a finite field multiplication. Thereby we utilize
the technique of Hutter et al. [14], who efficiently attack a
multi-precision integer multiplication within ECDSA-enabled
RFID devices.

Private keys in identity-based encryption were shown to
be vulnerable to side-channel attacks in [11]. In a DPA attack,
they demonstrated the feasibility of extracting the secret input
of a prime-field based pairing computation from a hardware
circuit which has an 8-bit datapath and which merely performs
the operations leaking the secret information. In contrast, we
extract the private key from a full and practical implementation
of identity-based encryption on a 32-bit architecture, which is
significantly harder to be performed successfully due to the
exponentially larger number of possible values for each word
of the secret. Besides, our results are based on three different
measurement setups, while [11] use power simulations only.

Several countermeasures to inhibit attacks on pairing com-
putations were shown in the past. Page and Vercauteren
[18] proposed two variants of point blinding mechanisms
to counteract DPA attacks. In addition to that, Whelan and
Scott [25] proposed multiplying the Miller variable in each
iteration with a different random value. Unluckily, all of
the mentioned countermeasures offer rather bad performance.
Point blinding requires the computation of a second pairing at
least, while the multiplication of the Miller variable involves
an additional finite field multiplication in each iteration of the
Miller loop. However, Kim et al. [15] adopted the fast and
effective randomization countermeasure by Coron [9] to the
Eta pairing. They provided modified formulas to deal with
the randomized projective coordinates of one of the two input
points. In this paper we intend to raise awareness of the
randomization countermeasure in the context of optimal-Ate

pairings over BN curves. In this case, it is not even necessary to
modify the formulas to deal with the randomized coordinates.

III. BACKGROUND

A. Identity-based Encryption

In 1984, Shamir [21] proposed the concept of identity-
based encryption for secure communication in company net-
works and mailing systems without the necessity of public
key infrastructures. The concept uses identity strings instead
of public keys for encryption, e.g., someone’s e-mail address in
a mailing system, which inherently allows sending encrypted
e-mails. In order to achieve that, a trusted third party is
responsible for providing public parameters and for generating
the users’ private keys.

One fast identity-based encryption scheme that is already in
practical use is the BB1 scheme that was presented by Boneh
and Boyen [7]. Besides, they proposed a very practical BB1-
based Key Encapsulation Mechanism (KEM) for the future
IEEE standard on identity-based encryption. The KEM variant
of the scheme specifies the four algorithms Setup, Derive,
Encapsulate and Decapsulate. The Setup algorithm is run at
the trusted third party and creates a master secret and the
public parameters. Also the Derive algorithm is run at the
trusted third party in order to generate each user’s private
key. The two algorithms Encapsulate and Decapsulate are
run by the respective users, who may use embedded devices.
The Encapsulate algorithm provides both a session key and a
ciphertext that is decryptable by the intended recipient only.
The recipient recovers the session key from the received
ciphertext by invoking the Decapsulate algorithm with their
private key as a parameter.

The scheme uses three cyclic order-n groups G1, G2

and GT that allow the definition of a bilinear pairing e :
G1 × G2 → GT . The produced ciphertext C = (C0, C1)
consists of two elements in G1 and the respective private keys
Did = (D0,id, D1,id) are comprised of two elements in G2.
The scheme’s Decapsulate algorithm recovers the session key
K from a ciphertext C with the aid of the user’s private key
Did, the properties of the bilinear pairing e, and a hash function
H:

K = H(e(C0, D0,id)/e(C1, D1,id)).

In this algorithm, the session key is obtained from bilinear
pairing computations involving both a public and a secret
operand. The secret operand to the bilinear pairing—the user’s
private key in this particular case—is the target of adversaries.

Note that we focus our analysis on the BB1 scheme, but
the subsequent attack is applicable to all schemes that involve
pairing computations with a secret and a public operand.

B. Bilinear Pairings

The aforementioned BB1 scheme requires the computation
of bilinear pairings. A bilinear pairing e : G1 × G2 → GT

accepts an element of the two additive groups G1, G2, respec-
tively, maps them to the multiplicative group GT , and hereby
fulfills several properties:

1) Bilinearity: e(aP, bQ) = e(P,Q)ab ∀P ∈ G1,
Q ∈ G2, a, b ∈ Z.
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Algorithm 1 Ate pairing over BN curves.

Input: P ∈ E(Fp), Q ∈ E′(Fp2)
Output: a(Q,P )
1: T ← Q, f ← 1
2: for i = bld(s)c − 2 downto 0 do
3: f ← f2 · `T,T (P ) . subject to our attack
4: T ← [2]T
5: if si = 1 then
6: f ← f2 · `T,Q(P )
7: T ← T +Q
8: end if
9: end for

10: f ← f (p
12−1)/n

11: return f

2) Non-degeneracy: ∀P ∈ G1 \ {O} ∃ Q ∈ G2 :
e(P,Q) 6= 1 .

3) Computable: e(P,Q) can be computed efficiently.

The groups G1, G2 are typically groups over elliptic curves
and GT is the subgroup of a large extension field. However,
only certain elliptic curves allow the definition of G1, G2, GT

with an admissible bilinear pairing. In this paper, we use the
pairing-friendly elliptic curves by Barreto and Naehrig [4] of
the form E : y2 = x3 + b with b 6= 0. Ate pairings a(Q,P )
based on these curves are defined as

a : G2 ×G1 → GT : E(Fp12)× E(Fp)→ Fp12 . (1)

Since there exists an efficiently computable group homomor-
phism that exploits the curve’s sextic twist E′, elements in G2

can be compressed, which leads to the more efficient definition
of the Ate pairing

a : G2 ×G1 → GT : E′(Fp2)× E(Fp)→ Fp12 . (2)

Optimal-Ate pairings by Vercauteren [23] constitute particu-
larly fast variants of the Ate pairing and were used for the
practical evaluation. However, the succeeding elaborations are
valid for Ate pairings in general.

C. Vulnerability

The Ate pairings in the identity-based encryption scheme
are computed according to Algorithm 1. Since the attack
aims to recover the pairing’s secret input, a more detailed
investigation of the algorithm is necessary.

The algorithm to compute the Ate pairing a(Q,P ) basi-
cally consists of the Miller loop in Lines 1-9 and the final
exponentiation step in Line 10. The evaluation of the tangent
line `T,T (P ) in Line 3 and the point doubling in Line 4 of
Algorithm 1 can be interleaved using the fast formulas by
Costello et al. [10]. The respective sequence of operations at
the beginning of the first iteration of the Miller loop is shown
in Algorithm 2.

This sequence of operations is vulnerable to a side-channel
attack and may be exploited to extract either of the pairing’s
two parameters P and Q. In the Decapsulate routine of the
aforementioned BB1 identity-based encryption scheme, the
pairings a(D0,id, C0) and a(D1,id,−C1) are computed. In
both cases, the input parameter Q of the pairing a(Q,P ) is
the secret to be extracted.

Algorithm 2 Initial sequence of Ate pairing computations.

Input: P ∈ E(Fp),Q ∈ E′(Fp2)
1: (XT,YT,ZT)← (xQ, yQ, 1)
2: L1,0 ← X2

T
3: L1,0 ← 3 · L1,0

4: L1,0 ← L1,0 · xP

5: ...

In the following, we assume the input point Q of a(Q,P )
to be secret and P to be public. In Line 4 of Algorithm 2, the x-
coordinate of the publicly known input xP ∈ Fp is multiplied
with the unknown intermediate value L1,0 ∈ Fp2 . This finite
field multiplication consists of two separate prime field mul-
tiplications of xP with the two Fp-elements of L1,0. A prime
field multiplication is often partitioned into a multiplication
and a reduction step. The multiplication step within those two
prime field multiplications allows the extraction of the two Fp-
elements of the unknown intermediate L1,0 using a Correlation
Power Analysis (CPA) attack. The original secret input Q is
then easily computed from L1,0 using Tonelli-Shanks square
root computation in Fp2 and the elliptic curve equation.
Accordingly, the two pairing computations a(D0,id, C0) and
a(D1,id,−C1) in the identity-based encryption scheme allow
the recovery of the two parts of the user’s private key D0,id

and D1,id.

To counteract the attack, an idea may be to design protocols
such that P is secret and Q is public. However, in this setup
the same prime field multiplication L1,0 · xP can be attacked
to reveal the secret P since we are able to compute L1,0 for
any public input.

Other implementation formulas than the ones by Costello
et al. [10] may also be vulnerable to such type of attack. In
particular, the same type of attack can be performed on the
revised formulas for point doubling and tangent line evaluation
by Aranha et al. [1]. With a slightly modified hypothesis,
the same attack is feasible on the formulas using Jacobian
coordinates by Hankerson et al. [13], Beuchat et al. [5], and
Aranha et al. [1]. Moreover, other protocols and schemes using
pairing computations are exposed as well if these involve one
both constant and secret parameter.

IV. GENERAL ATTACK

As indicated before, the attack to extract the secret param-
eter used in the optimal-Ate pairing aopt(Q,P ) is performed
on a prime-field multiplication. A prime-field multiplication on
an embedded processor usually consists of a multi-precision
integer multiplication of the two input operands a and b that
is succeeded by a modular reduction. In order to attack the
multi-precision integer multiplication, we followed the ideas
presented by Hutter et al. [14].

The public operand a and the both constant and secret
operand b of the multi-precision integer multiplication consist
of N words of w bits, where w denotes the architecture’s
word size. The i-th word of a is labeled a[i]. A multi-precision
integer multiplication basically consists of the addition of word
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Fig. 1: Correlation of multiplication result for 16-bit hypotheses.

multiplication products, i.e.,

c = a · b =

N−1∑
i=0

N−1∑
j=0

a[i]b[j]2(i+j)w.

Its implementation may use, for example, operand scanning or
product scanning [8]. We focus on product scanning, but the
attack can easily be adapted for other implementation variants
as well. As secret multi-precision integers span a large space
of possible values, the attack is split into two basic steps:

1) The word multiplications a[i] · b[j] are attacked to
reduce the number of candidates for each of the N
words of b. The k most probable candidates for each
word are chosen to be used in the second step.

2) The accumulated intermediate sums of products
resulting from the respective word multiplications are
attacked using solely the remaining k candidates for
each word of b.

Generally, each word b[j]∀ j = 0, ..., N − 1 can be any
value between 0 and 2w−1. In the first step, we try to extract
the most probable k candidates of the 2w possible values for
each word of b. This is done by attacking the products of each
word of the secret b with the i-th word of the public input a[i].
All of the N words of the public input a are equally suitable for
this. Depending on the details known about the implementa-
tion, a Hamming weight or a Hamming distance model may be
used to construct a matrix that reflects the hypothetical power
consumption of the respective multiplications. Assuming that
the algorithm is executed t times, the hypothesis matrix using
a Hamming weight model is computed as follows, where al[i]
denotes the i-th word of the input used in the l-th execution
of the algorithm:


HW(a0[i] · 0) ... HW(a0[i] · (2w − 1))

...
. . .

...

HW(at−1[i] · 0) ... HW(at−1[i] · (2w − 1))



Hypothesis

E
xecution

A second matrix is built from the power traces measured
for each of the t executions of the algorithm. Correlation of the
hypothesis matrix with the matrix of measured power traces
results in a correlation matrix that shows how each hypothesis
correlates for every sample in the power traces. The correlation
matrix allows the detection of the regions in the power traces
where each of the multiplications a[i] · b[j]∀ j = 0, ..., N − 1
take place. Fig. 2d, for example, shows eight regions of high
correlation that correspond to the respective multiplications
a[i] · b[j]. Evaluating each of these regions over all hypotheses
makes possible the extraction of the most likely candidates for
each multiplication and hence for each word b[j] of the secret.

As pointed out by Hutter et al. [14], shifted variants of the
correct hypothesis also lead to high correlation since multipli-
cation is a linear operation. In the best case, each word can
be identified uniquely, but in the worst case w equally likely
hypotheses remain. An evaluation of all possible values for
the secret input of a word multiplication is depicted in Fig. 1.
In the Hamming weight model three equally likely candidates
remain. Their respective values are bit-shifted versions of the
correct secret-under-attack. In this case, the second part of the
attack is necessary to uniquely determine the word from the
remaining k candidates.

In Fig. 1b we attacked the same word using a Hamming
distance model. The correct value of the secret word becomes
clearly visible, but other hypotheses also yield high correla-
tions. In this instance, the second part of the attack helps
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to gain certainty about the correctness of the most likely
candidate found.

Based on the k most probable candidates that were deter-
mined for each word b[j] in the first part, the second step of
the attack aims to uniquely determine the full secret value b.
In this iterative process, one word after another is revealed
by consecutively attacking the single words of the final result
c. Initially, the first two words of the secret value b are
determined. For this purpose all combinations of the candidates
found for the first two words of b and all different inputs of a
are used to create a suitable hypothesis matrix that models the
second word of the result, c[1]. It is computed from the second
partial sum and the part of the first partial sum the propagates
into the second word of the result, i.e.,

c[1] = a[0]b[1] + a[1]b[0] + (a[0]b[0]� w).

The modeled power consumptions of the hypothetical values
for c[1] are then correlated with the recorded power traces. The
resulting correlation matrix uniquely determines the first two
words of the secret b. These revealed parts of the secret, namely
b[0] and b[1], are then used together with the candidates for
b[2] to create a new hypothesis for the third word of the result,
c[2]. In general, the hypothesis that attacks c[l] to uniquely
determine b[l] is build as

c[l] =

(
i+j=l∑

i≥0,j≥0

a[i]b[j] +(
l−1∑
m=0

(
i+j=m∑
i≥0,j≥0

a[i]b[j]

)
� (l −m)w

))
mod 2w.

In this manner, the candidates found in the first step are used
to successively determine the complete secret value b.

Note that the attack is not limited to implementations that
separate the multiplication and the reduction step, but may
also be applied to a Finely Integrated Product Scanning (FIPS)
implementation of the Montgomery multiplication. In this case,
the reduction with the public modulus needs to be considered
in the hypothesis of the single words of the final result in the
second step of the attack.

V. PRACTICAL SETUP AND RESULTS

The attack presented in the previous sections was con-
ducted in practice. An embedded software implementation
of the BB1-KEM identity-based encryption scheme suitable
for both the ARM Cortex-M0 [2] and the Cortex-M0+ [3]
was chosen as a target. The software implements optimal-
Ate pairings over 254-bit BN curves and uses an assembler-
optimized variant of the Separate Product Scanning (SPS)
method of the Montgomery multiplication [8] for prime field
multiplications. The Finely Integrated Product Scanning (FIPS)
method was faster, but since the implementation incorporated
the optimized multiplication in Fp2 that was presented in
[5, 20], it became necessary to separate the multiplication and
the reduction step in order to keep the size of the program
memory low.

Both the ARM Cortex-M0 and the ARM Cortex-M0+ work
on 32-bit operands, but merely support a 32 × 32 → 32 bit
multiplication that discards half of the product. Therefore, each

Algorithm 3 Multiply-Accumulate routine for Cortex-M0 and
Cortex-M0+ processors.
Input: r1, r2 are 32-bit operands
Input: r8, r9 are pointers to the operands
Output: {r5, r4, r3} is the accumulator
1: mov r1, r8
2: ldr r1, [r1, #offset1]
3: mov r2, r9
4: ldr r2, [r2, #offset2]

5: uxth r6, r1
6: uxth r7, r2
7: lsr r1, r1, #16
8: lsr r2, r2, #16

9: mov r0, r6
10: mul r0, r0, r7 . low × low
11: mul r6, r6, r2 . low × high
12: mul r2, r2, r1 . high × high
13: mul r1, r1, r7 . high × low
14: mov r7, #0
15: add r5, r5, r0 . low × low
16: adc r4, r4, r2 . high × high
17: adc r3, r3, r7

18: lsl r0, r6, #16
19: lsr r2, r6, #16
20: add r5, r5, r0 . low × high
21: adc r4, r4, r2
22: adc r3, r3, r7

23: lsl r0, r1, #16
24: lsr r2, r1, #16
25: add r5, r5, r0 . high × low
26: adc r4, r4, r2
27: adc r3, r3, r7

of the N2 word multiplications in the multiplication step of the
SPS multiplication method is split into four 16× 16→ 32 bit
multiplications that are aligned and accumulated appropriately.
A suitable multiplication routine that simultaneously does the
accumulation necessary for product scanning was presented by
Wenger et al. [24] and is shown in Algorithm 3.

The attack described in Section IV is rather hard to perform
on a 32-bit platform as each of the words of the secret operand
can attain any value between 0 and 232 − 1. This leads to
extremely large hypothesis matrices and requires high compu-
tational effort. Therefore, the attack was modified to better suit
the targeted platform. Since each 32-bit multiplication is split
into four 16-bit multiplications, the first step of the practical
attack targets the 16-bit half-words of the secret operand. The
respective hypothesis matrix is built from the multiplication
results of the least significant half-word of the public input with
all values possible for a secret half-word (216 possibilities).
This matrix targets the multiplications in Line 10 and 11 of
Algorithm 3. The first of these multiplications reveals the
lower half and the latter the upper half of each word of the
secret operand. As one of the operands is overwritten by the
multiplication result, a Hamming distance model is used to
reflect the hypothetical power consumption of the changing
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Fig. 2: Correlation of word multiplication results.

registers.

The second step of the attack was adapted accordingly. The
candidates for the 16-bit half-words of the unknown operand
are used to compute the hypothetical outcome for each word
of the final result. The respective words are contained by the
accumulator registers at various times. A simple Hamming
weight model was preferred to describe the actual power
consumption as the changes of the accumulator registers are
rather complex to model.

Three different setups were used to collect the power
traces necessary to practically perform the attack. In the first
setup, a self-built processor functionally equivalent to the ARM
Cortex-M0+ and its respective software implementation were
deployed to the Xilinx Virtex-II Pro xc2vp30 FPGA [26] on a

Sasebo G board [19]. In the second setup, the same hardware
platform was synthesized for a UMC 130 nm process and
power simulations were run to obtain the count of bit toggles
in each clock cycle. In the third setup, the same software
implementation was deployed to an ARM Cortex-M0 MCU by
NXP (LPC1114FN28 [17]). For all three setups the same set
of input data was used, which allows comparison of the quality
of side-channel leakage. Mixing results of the Cortex-M0 and
the Cortex-M0+ seems acceptable as the two processors differ
only slightly. The Cortex-M0+ comes with two pipeline stages
while the Cortex-M0 is in possession of three, which mainly
affects branching and only marginally influences the attack.

For the power measurements on the FPGA and the ARM
Cortex-M0 a MATLAB Side-Channel Analysis toolbox was
utilized to communicate with the cryptographic device using
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Fig. 3: Correlation of accumulation register.

its serial interface. It was further used to retrieve the power
traces from the oscilloscope. The FPGA and the Cortex-M0
were operated at a clock frequency of 25 MHz and 10 MHz,
respectively. To attain good measurements, both clock frequen-
cies were chosen such that the sampling rate of the oscilloscope
is an integer multiple of the device clock frequency. A trigger
signal was used to align the power traces, which were mea-
sured on an 1 Ω resistor on the line from the device to VCC
using a differential probe.

The effort to successfully perform the presented attack was
evaluated for the three different setups. For the first part of the
attack, which targets the multiplication of half-words, Fig. 2a-
2c show the number of traces required to distinguish the correct
hypothesis and its shifted variants from the others. Apart from
the correct hypothesis’ correlation, these figures show the
envelope function and the 99% quantile of all hypotheses, i.e.,
the range of correlations of all hypotheses but the highest 1%.
The envelope function represents the highest correlation of any
hypothesis but the correct one in each of the experiments with
different trace counts.

When using the noiseless toggle counts instead of power
measurements, the attack is already possible with data from
less than 100 different traces. The rather old Virtex-II FPGA
has quite high leakage, which results in successful attacks
with merely 800 traces. When attacking the ARM Cortex-M0
by NXP that is built with modern process technologies, the
attack succeeds with approximately 1,500 traces. Contrary to
the other two experiments, the correct hypothesis’ correlation
is much lower. Further, it takes significantly more traces for
the correct hypothesis to elevate from the hypotheses in the
99% quantile.

The results for the second part of the attack are simi-
lar. Fig. 3 shows the correlation of the second result word
a[0]b[1] + a[1]b[0] + (a[0]b[0]� w) depending on the number
of traces when using toggle counts. The experiment was done

with different numbers of candidates k learned for each half-
word of the secret b in the first part of the attack. These were
determined as the top k correlating hypotheses. The respective
first part of the attack was conducted using 100 power traces.
Since half-word candidates are found in the first part, there
remain k4 candidates to build the hypothesis matrix for the
second partial sum. Using the k = 5 most likely candidates for
each half-word resulted in a sooner success than when using
the k = 10 most likely candidates. For higher numbers of
candidates, tested with k = 15 and k = 20, no difference could
be observed compared to k = 10. The results from Fig. 2a and
Fig. 3b allow the conclusion that the complete attack succeeds
with the same number of traces as required in the first part of
the attack.

VI. COUNTERMEASURES

The presented CPA attack on a multi-precision integer
multiplication leads to the successful extraction of the secret
input point of a bilinear pairing. To mitigate such kind of
attacks, several general countermeasures have been presented
before, e.g., point blinding [18] and randomization of the
Miller variable [25]. Point blinding techniques leave the pairing
algorithm untouched and solve the problem on a higher level,
i.e., instead of computing e(P,Q) directly, one could either
compute e(P,Q) = e(aP, bP )1/ab with a and b being random
values or e(P,Q) = e(P,Q + R)/e(P,R) with R being
a random point. However, in the first case two additional
point multiplications in G1 and G2 and an exponentiation
in GT are required, and in the second case the computation
of a second pairing is necessary. Since either of those two
approaches degrades performance massively, both can hardly
be applied to embedded scenarios. Less expensive and hence
better suitable for embedded devices is the randomization of
the Miller variable as in [25]. This countermeasure requires
that in each iteration of the Miller loop all intermediate
variables contributing to f (cf. Algorithm 1) are multiplied
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with a random value. Due to the final exponentiation, this does
not affect the final result of the pairing algorithm. Still, this
kind of countermeasure is not very efficient.

Therefore, we propose a more suitable method to counter-
act side-channel attacks on pairings over BN curves in em-
bedded devices. Following the idea of Randomized Projective
Coordinates (RPC) in [9], resistance against the presented type
of attack is achieved by randomizing the intermediate point
T in the computation of aopt(Q,P ) in Algorithm 1. Instead
of initializing T trivially with (XT , YT , ZT ) = (xQ, yQ, 1),
one chooses a random value λ and assigns (XT , YT , ZT ) =
(λxQ, λyQ, λ) to the homogeneous projective point T . Inde-
pendently of which of the two input points Q and P is secret,
one is not able to build a suitable hypothesis for the presented
attack any more. Apart from this single initialization step,
the countermeasure does not incur any overhead. Moreover,
the randomization can easily be adapted to other sets of
implementation formulas and different variants of projective
coordinates.

VII. CONCLUSION

This paper featured a CPA attack on bilinear pairings that
poses a significant threat to pairing-based protocols. In this
respect, we pointed out how the pairing computation can leak
a user’s private key in the popular identity-based encryption
scheme BB1 by Boneh and Boyen [7]. We thereby illustrated
that many implementation formulas of the widely used Ate
pairings a(Q,P ) over BN curves are vulnerable to power
analysis attacks. In this regard, we were able to elaborate that
the presented attack is viable independently of which of the
two input parameters P and Q is secret.

Contrary to previous results, the attack targeted a finite
field multiplication in the computation of the practically
relevant optimal-Ate pairings. The feasibility of the attack
was evaluated using three different setups. For the attack
to succeed, the ASIC implementation turned out to require
twice as many traces as the FPGA implementation, which
on the other hand required eight times more traces than
when using power simulations. However, it remains an open
question, whether this observation can be generalized for future
side-channel evaluations. Finally, we want to emphasize that
Coron’s projective point randomization techniques are equally
important for pairing implementations as they are for elliptic
curve cryptography. Therefore it must be mandatory to utilize
randomized projective coordinates in all future side-channel-
secured pairing implementations.
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E. Okamoto, F. Rodrı́guez-Henrı́quez, and T. Teruya.
High-Speed Software Implementation of the Optimal
Ate Pairing over Barreto-Naehrig Curves. In M. Joye,
A. Miyaji, and A. Otsuka, editors, Pairing-Based
Cryptography - Pairing 2010, volume 6487 of Lecture
Notes in Computer Science, pages 21–39. Springer
Berlin Heidelberg, 2010.
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