
Code between the Lines:
Semantic Analysis of Android Applications

Johannes Feichtner1,2 and Stefan Gruber1

1 Institute of Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

2 Secure Information Technology Center – Austria (A-SIT)
Seidlgasse 22, 1030 Vienna, Austria

Abstract. Static and dynamic program analysis are the key concepts
researchers apply to uncover security-critical implementation weaknesses
in Android applications. As it is often not obvious in which context
problematic statements occur, it is challenging to assess their practical
impact. While some flaws may turn out to be bad practice but not
undermine the overall security level, others could have a serious impact.
Distinguishing them requires knowledge of the designated app purpose.

In this paper, we introduce a machine learning-based system that is
capable of generating natural language text describing the purpose and
core functionality of Android apps based on their actual code. We design a
dense neural network that captures the semantic relationships of resource
identifiers, string constants, and API calls contained in apps to derive
a high-level picture of implemented program behavior. For arbitrary
applications, our system can predict precise, human-readable keywords
and short phrases that indicate the main use-cases apps are designed for.

We evaluate our solution on 67,040 real-world apps and find that with
a precision between 69% and 84% we can identify keywords that also
occur in the developer-provided description in Google Play. To avoid
incomprehensible black box predictions, we apply a model explaining
algorithm and demonstrate that our technique can substantially augment
inspections of Android apps by contributing contextual information.

1 Introduction

As many Android applications perform security-critical tasks, it is crucial to
validate their implementation security using static and dynamic program analysis.
In recent years, researchers have elaborated various approaches to disclose possible
leaks of private data, identify malware, or to uncover security deficiencies in
Android apps. Typically, the results of these analyses fall into two categories:
firstly, a classification into malevolent or harmless or, secondly, concrete results
of specific aspects the inspection has been aiming for. While both types may
be adequate with regards to the particular objectives, they barely evolve to a
superior level where the implemented behavior and context of program statements
is also taken into account.



In practice, missing context awareness leads to situations where researchers
disclose security flaws in execution traces but are unable to comprehend the impact
or relevance of the finding in terms of the actual purpose of an application. E.g.,
basically, it is problematic if a constant, hard-coded key is used for encryption.
However, if this happens within an advertisement library where encryption is only
used for obfuscation, the impact of the finding needs to be assessed differently.
Similarly, it depends on the use-case of an app whether supplying GPS information
via HTTPS to an external entity, such as for assistance in traffic navigation, is a
legitimate action or the undesirable leakage of sensitive data.

In a broader sense, these examples highlight what analyses are currently
unable to cover: the semantic understanding of applications. Rather than gaining
a high-level picture of the functionality and security of a program, common
approaches for inspection focus on single instructions at the lowest possible level.
While this is undoubtedly a legitimate level to determine the immediate effects
on memory calls and registers, we are still missing a platform that enables us to
reason about the effects of coherent code parts on the overall program state.

Augmenting app analysis by contextual information, such as the intended
purpose and designated functionality, is of utmost importance to obtain a holistic
picture of app behavior. However, currently no solutions exist that could relate
the metadata of an app with their actual implementation. This situation is
aggravated by the fact that developer-provided descriptions are often minimal,
inaccurate, and miss key information. Within this context, we formulate the
following problems: (1) Which attributes of an application describe its behavior?
(2) How to identify the main purpose of an app? (3) What keywords and phrases
should be included in a description text to represent an app’s functionality?

In this paper, we introduce a solution that infers the main purpose of Android
apps based on their implementation. Leveraging the recent advances in neural
networks, our work attempts to capture and classify semantic relationships
between apps. Our system works unsupervised, involves no labeling of data sets,
and is trained with real-world app samples that are only coarsely pre-filtered,
e.g., regarding the language of descriptions. The output is not only a prediction
of what functionality our systems believes to be realized within an application.
Using a model explanation algorithm, we also obtain an insight into what is
relevant in apps, can explain the reasoning of predictions, and based on this
knowledge, derive meaningful keywords and short phrases in natural language.

In summary, we make the following key contributions:

– To infer the functionality from Android app implementations, we propose a
combination of three dense neural networks that combine knowledge extracted
from resource identifiers, string constants, and API calls. Our system delivers
concise keywords and short phrases that describe the main purpose of apps3.

– We train, validate, and test our models with 67,040 apps from Google Play.
In a case study, we demonstrate the practical relevance and plausibility of
predictions by contrasting them with the developer-provided app description.

3 Our implementation is available at: https://github.com/sg10/apk-verbalizer

https://github.com/sg10/apk-verbalizer


– To assess the quality of our system and to avoid incomprehensible black box
predictions, we apply the model explaining algorithm SHAP [8]. It enables us
to understand the influence of network input features on the derived output.

The outcome of this work represents a notable contribution towards a holistic
analysis of Android applications. It helps researchers and users to foster an
understanding of what functionality is actually implemented in Android apps.

2 Related Work

Aligning the description of Android apps with the alleged functionality and
permission usage has become a growing field of research. In the following, we
present related work on this topic and point out differences to our solution.

Behavior Modeling. Hamedani et al. [4] strive to find the most appropriate cat-
egory for an app based on 14 implementation-related features that are processed
using different classification algorithms. As shown in a case study by Kowalczyk et
al. [6], using as many app attributes as possible for classification, tends to depict
apps more accurately and improves the performance of all kinds of analysis tasks.
Takahashi et al. [11] follow this principle and consider several thousand features.
They combine permissions, API methods, categories, and presumed cluster assign-
ments to identify malware based on Support Vector Machines. CLANdroid [12],
in contrast, aims to identify similar apps by defining semantic anchors that
refer to sensor information, permissions, intents, and identifiers. Based thereon,
they use Latent Semantic Index to derive a matrix representation for every app.
MalDozer [5] leverages a convolutional neural network to find harmful behavior
by discretizing sequences of invoked API methods. FlowCog [9] adopts natural
language processing to infer whether apps provide sufficient semantics for users
to understand privacy risks emerging from the information flow.

App Descriptions. Among all related research, the work of Zhang et al. [15]
comes closest to this paper. By extracting keywords contained in the call graph
of permission-related API calls, the authors intend to derive a description of
security-related app behavior. For instance, if the call graph contains the method
KeyguardManager.isKeyguardLocked(), it is modeled as the words “the phone”,
“be”, “locked”. To assess the quality of app descriptions, Kuznetsov et al. [7]
extract identifiers and strings from an app’s XML definitions and semantically
compare them with the developer-provided description text.

Sensitive APIs. In a combination of static code inspection and text analysis,
Watanabe et al. [14] present a keyword-based technique to correlate access
to privacy-relevant resources with app descriptions. AutoCog [10] correlates
permission-related API calls with frequently occurring text fragments. As a result,
semantic patterns are derived that can provide an insight into why Android apps
request certain permissions. With a focus on potential abuse of sensitive APIs,
Gorla et al. [3] derive app clusters based on pre-labeled description topics. Related
to that, the approach of Gao et al. [2] infers expectable permissions by applying
statistical correlation coefficients after mining topics from descriptions using NLP
techniques and Latent Dirichlet Allocation (LDA).



3 Behavior Modeling of Android Apps

A näıve approach to identify functionality implemented in Android applications
would be to statically define rules for classifying source code. However, the
evolving nature of smartphone apps with constantly changing APIs and the usage
of third-party libraries would make it cumbersome to spot and label specific
behavior. As a remedy, our approach leverages modern methods of machine
learning that work unsupervised and involve no prior labeling of data sets.

Before designing a neural network that predicts the main purpose of apps, we
need to tackle a basic question: Which attributes of an app describe its behavior?
Users can answer this question intuitively by installing and testing an application.
Vendors would refer to the source code to derive similar conclusions. The approach
presented in this paper is inspired by both perspectives and focuses on information
sources that are included within the code and resources of Android app archives.

We attempt to model Android app behavior from two different angles. On the
one hand, we consider static string resources that indicate what an app does from
a user’s and developer’s perspective. On the other hand, we describe a program
by the Android API calls it includes, e.g., to access sensitive information, draw UI
effects, or implement event listeners. Based on the presence and co-occurrence of
calls, we expect to see individual patterns that characterize different functionality.

In the following, we outline the features our neural network will use as an
input to infer a semantic understanding of the purpose of apps:

– App Resource Identifiers: Semantic information provided by developers.
In order to access resources, such as UI elements, graphics, or multilingual
definitions from program code, Android uses IDs that unambiguously identify
individual elements. Although these values can be chosen arbitrarily during
development, they usually correspond semantically to the resource content.

– String Constants: UI text and functional descriptions, shown to the user.
Static UI elements, language variables, and URLs are typically stored within
app resources. When shown to the user, these constants provide valuable
semantic information regarding the purpose of an app and actions users can
perform. E.g., if an app includes UI elements containing the string values
“new transaction”, “account balance”, and “money transfer”, its implemented
functionality most likely targets financial transactions.

– API Calls: Define how an app interacts with the Android OS environment.
The widespread use of third-party libraries, code obfuscation techniques,
and the multitude of possible usage scenarios make it challenging to identify
the individual semantics for every code block. We, thus, postulate that the
behavior of apps is not (only) determined by the interaction of individual
code fragments, but especially by their interaction with the operating system
and users. Consequently, to infer implementation behavior, we focus on calls
to APIs of the Android framework. By their modus operandi, they, e.g.,
control access to sensitive user data, device sensors, visual effects, media
processing, and networks and, thus, clearly define the functionality of apps.



As each of these three feature types is embedded within a different semantic
context, it is not viable to simply collect all occurrences and use them as a
combined input for a neural network. For a more accurate representation, we
propose to train three separate neural networks that take different input features
but share the same underlying architecture and produce the same type of output.

4 Semantic App Analysis

We design a dense neural architecture to infer the implemented functionality
from real-world Android applications. Our goal is to develop a system that can
process an unknown app archive and delivers keywords and short phrases that
describe the main purpose. To remediate the ”black box” usually associated with
neural networks, we require that our solution provides an insight into which input
features are decisive for predictions.

In the training phase, we train three separate neural networks with Android
app archives and their developer-provided descriptions from Google Play. For
each app, we first extract all relevant semantic features, weigh their importance
using TF-IDF and use the resulting vector as input for the corresponding neural
network. In parallel, we build a TF-IDF model with app description texts that
will be used to derive a neural network output in natural language.

In the prediction phase, our system receives an app not seen during training.
After deriving and processing a TF-IDF vector representation of all features
included in a given archive, each neural network will return a list of key words
and short phrases that commonly occur in app descriptions when certain input
features are used. As shown in Figure 1, the output of the network for predicting
description words based on given string constants may, e.g., consist of the words
sms, messenger, and friends, with the adjacent decimal value expressing the
relevance of the predictions. An algorithm for explaining neural networks called
SHAP (see Section 4.4) is then applied to find out which input features contribute
most to the prediction of these output tokens. Summarizing the outputs of all
three models and sorting them regarding the shown relevance provides us with a
ranked list of description fragments that describe the main purpose of an app.

Single APK

��

Preprocess

�

Trained Network for
String Constants

Description:
sms
messenger
friends

W
0.31
0.10
0.09

Influences sms:
sms, receive,
send, notification,
provider, contacts,
…

String Constants

SHAP

Resource IDs

API Methods

Fig. 1. Prediction of implemented app functionality using three dense neural networks.



4.1 Feature Preprocessing

Before training a neural network, it is essential to prepare the data for efficient
learning. In the following, we cover the preprocessing steps that are applied to all
developer-provided descriptions used in the training phase and the semantic input
features processed by our networks after extracting them from app archives.

App Resource Identifiers. By parsing the XML files provided as resources
in Android app archives, we obtain a list of identifiers consisting of alphanumeric
characters and underscores. Unlike variable or function names in source code,
identifiers are typically not obfuscated but stored in the way app vendors define
them during development. The name, or identifier, usually reflects its purpose to
some extent and can also give hints about the overall app. In practice, values
are mostly made up of words or word combinations that are linked either by
underscores or formatted via camel-case, e.g., select image dialog, confirmRemove,
pay btn, or start quiz headline. The challenge is therefore to decompose these
values meaningfully in order to capture semantic relations. Without tokenization,
e.g., it would not be possible to determine that the identifiers select image dialog
and select video dialog imply similar actions that differ only in image and video.
For a semantically more accurate representation, we split the words into smaller
alphanumeric entities, i.e., select, video, image, dialog and link them as n-grams.

String Constants. Android, by design, allows apps to display UI elements
in different languages. Therefore, vendors have to provide translations for all
UI-related string values that are referenced by language-agnostic resource iden-
tifiers. In this work, we aim to infer keywords and short phrases in English
only. To achieve this, we mimic the behavior of the Android operating system
and try to match identifiers with constants by primarily searching them in lan-
guage files that are supposed to include values in English, i.e., values-en.xml or
values-en-us.xml. Only in the case of mismatch, we fallback to default defini-
tions in values.xml. This simple resolution strategy ensures that the corpora of
values subsequently trained in TF-IDF models consist mainly of English words.

After extracting all relevant string constants from an app, we iteratively
decompose each value into substrings by splitting at non-alphanumeric characters,
e.g., whitespaces, HTML tag brackets, dots, etc. While most resulting tokens
are likely app-specific, others supposedly occur frequently across multiple apps.
To estimate the relevance of individual tokens in relation to all apps, we use
the tokens and their occurrence count to build a TF-IDF model. Thereby, we
leverage the property of TF-IDF that rarely occurring and very frequent tokens
are ignored to maintain a reasonable dictionary size. As a result, for each app,
we obtain a TF-IDF vector that can be used as input for a neural network.

API Calls. Inspecting the call graph of Android apps enables us to identify
and count invocations of Android APIs. We process the reverse-engineered source
code of the app archive and build a call graph based on static, explicit code
statements. We enrich the graph with additional edges by resolving inheritance
relations and implicit data flows using EdgeMiner [1] by Cao et al. As Android



apps have no predefined entry points, Activities, Services, and Providers defined
in the AndroidManifest.xml of each app are used as the starting point for
modeling the call graph. This approach ensures that we capture only calls of API
methods that implement an app’s main functionality.

Our goal is to count execution paths, i.e., connections, between app entry
methods Ein,j and API call methods Eout,k. Therefore, we use the Dijkstra
algorithm to check for each node Ein,j whether there is a connection to Eout,k in
the graph. If so, we increment a counter for API call k. We count all methods as
a combination of their (fully qualified) class and their method name.

As with resource identifiers and string constants, we create a TF-IDF model
for API methods. For each app, we now have a list of pairs that consist of method
calls and how often it was found in the app’s source code. By using the TF-IDF
algorithm, we decide which method names end up in the dictionary, based on their
frequency. TF-IDF then transforms this information and returns a 1-dimensional
decimal vector for each app sample that we can use as neural network input.

App Descriptions. As the output of our machine learning model, we want to
infer feature-related parts of the app description. Intuitively, we use n = (1, 2, 3)
to cover phrases that include one, two, and three words. With stopword removal
and Porter stemming, we reduce the number of frequent word combinations that
are of comparably minor importance beforehand, e.g., take some photos and take
a photo both become take photo. By stemming tokens, removing stopwords, and
windowing with three different window sizes, we aim to capture more meaning.

The tokens, regardless of whether the model finds frequent single occurrences
or combinations, are stored in their stemmed form. Stemming removes parts of
the word to subsume multiple word variations and facilitate computation. It often
does not, however, reduce the words to a stem that can be easily read by humans.
Since the stemming transformation is not a bidirectional transformation due to
the loss of information, an accurate un-stemming method cannot exist. Stemmed
tokens contrast our goal to provide human-readable description fragments.

As a solution, we use a greedy algorithm to recover original words from their
stem. Therefore, we keep track of all the stemming transformations, i.e., whenever
a token T is altered and results in its stemmed version T̂ = fstem(T ). The suffix

removal of stemming leads to T̂ having multiple corresponding original tokens T ,
so we collect the number of times of: T → T̂ . After processing all descriptions,
we obtain an association count table that lists how often T̂ was caused by each
original T . E.g., if the stemming result of a token is locat, it will be replaced with
location, regardless of whether the original token was location, located, locating, or
locate. By counting how often an original token results in a particular stemmed
token, we can replace the stemmed token by its most common origin.

Ultimately, each description is represented by a list of tokens that we want
to transform via a TF-IDF model. The model has features that consist of single
tokens, 2-grams, and 3-grams. Stemmed tokens are re-transformed to their most
likely original, non-stemmed word to be more easily readable afterwards. Hence,
for each app description, we obtain a 1-d vector with normalized decimal numbers
between 0 and 1, which we can subsequently use as machine learning targets.



4.2 Model Architecture

We propose a combination of three models of dense neural networks to predict
keywords and short phrases that characterize a given Android application. Each
model produces n-grams as output and receives TF-IDF vectors with either
resource identifiers, string constants, or method names as input. In this section,
we highlight the advantages of dense neural networks for our problem and present
our network architecture regarding the set of chosen layers and hyperparameters.

T
F-

ID
F

In
pu

t

N
H
1

N
eu

ro
ns

D
ro

po
ut

N
H
2

N
eu

ro
ns

D
ro

po
ut

T
F-

ID
F

D
es

cr
ip

tio
n

Fig. 2. Dense neural architecture to infer TF-IDF vectors with descriptive keywords
from TF-IDF vectors of resource identifiers, string constants, and API calls.

Figure 2 illustrates our network architecture. The bag-of-words representation
via TF-IDF vectors enforces positional constraints, i.e., the value for a particular
word is always put into the same vector cell. This input property allows us to use
a standard dense network structure in contrast to other convolutional or recurrent
architectures that factor in positional and sequential information. Between dense
layers, we apply dropout for regularization. As the output of each neuron consists
of floating-point numbers, we have a regression task and use a linear activation
function for the output layer and mean-squared error as a loss function.

The size of the input and output depend on the dictionary size of the TF-IDF
models. Precisely, the dictionary sizes are limited by the minimum and the
maximum document frequency, i.e., in how many apps a certain method call
or resource identifier token occurs at all. Here, especially the lower boundary is
crucial. If the minimum document frequency is too high, we miss information
the neural network could use to infer the output more precisely. In case the
minimum is too low, the model remembers too many tokens that rarely occur,
and the dictionary becomes very large. The larger the input space, the more
inputs and weight parameters are stored in memory, and the longer the training
process takes. The selection of TF-IDF model parameters, thus, binds the training
process. To find suitable network architectures, we used random search. For this
non-exhaustive search, we trained networks with one to three hidden layers and
1,000 to 15,000 hidden neurons. Dropout was randomly set between 0% and 40%.

We choose the parameters empirically by trying different setups and observing
the resulting dictionary sizes and model performances. Therefore, we set the
minimum document frequency for each of the three input types to 2% of the total
number of documents (apps), and the corresponding maximum frequency to 20%.
This range means, e.g., if we have an app dataset of size N and a token occurs n



Table 1. Neural network configurations of the three models.

Input TF-IDF
# Features

Network Hidden
Layers

Description TF-IDF
# Features

Resource Identifiers 3315 2968, 3265, 1393 (3 Layers) 6140
String Constants 6391 2898, 3105 (2 Layers) 6140
API Methods 11735 5891 (1 Layer) 6140

times, it only ends up in the dictionary if it occurs in 0.02N ≤ n ≤ 0.2N apps.
Table 1 lists our final network configurations and the TF-IDF dictionary sizes.

4.3 Model Training

The three models are trained using the mean-squared error measure as a loss
function. As a performance metric, however, it is not fit for the purpose. Unfortu-
nately, it does not give any intuitive expression of how well the model performs.
Thus, we discretize the description TF-IDF vectors by choosing a threshold θ,
above which we set the vector element to 1, or 0 otherwise. We can then use
standard performance metrics like F-score, precision, and recall on these binary
vectors to compare an actual description’s vector with a description prediction.

Our correlation-based learning approach tries to find similarities between
apps and thus neglects app-specific terms in the description. From a performance
point of view, this means that we can expect a lower recall than precision. For
early stopping, we are required to choose a pivotal performance metric that
measures whether training should stop or continue. We, thus, use a weighted
F-score (β = 0.5) that rates precision higher than recall. Consequently, we apply
the F0.5 performance for early stopping to find a good final training state.

4.4 Explaining Predictions

The essence of machine learning is finding patterns via function approximations in
a given set of data. Due to the complex inner working of networks, it is not always
obvious how predictions are derived. To find out which input items contribute to
the prediction of keywords, we apply the model explainer SHAP [8].

SHAP is a method proposed to estimate the importance of sample features.
The algorithm behind it is based on Shapley values, a concept in cooperative
game theory: of n potential players, several combinations of k ≤ n players are
possible, i.e., can play together against the bank. Each combination of players
achieves a different (monetary) result. The Shapley value shows the contribution
of each player by incorporating different combinations. Lundberg et al. used this
concept in combination with additive feature attribution. By masking out several
parts of the input features, different model results per sample are obtained. The
results can be united according to Shapley, but this is computationally expensive.
SHAP provides several approximations, e.g., one for neural networks called Deep
SHAP. By leveraging knowledge about the network’s parameters and structure,
and not treating it as a black box, Deep SHAP creates a simpler, approximated
model. In this work, we apply Deep SHAP on our neural network models.



5 Evaluation

The goal of this evaluation is twofold. First, we investigate the performance of
our neural network with real-world Android apps. Second, applying our solution
on a hand-picked set of applications, we compare predictions about the presumed
functionality of apps with the actual description text from Google Play.

5.1 Dataset

We evaluate our approach using real-world applications from the PlayDrone
dataset [13]. We opted for this repository of apps as it does not only feature raw
app archives but also makes the vendor-provided app description available.

After downloading 115,294 Android apps and their corresponding metadata,
we removed cross-platform apps as they implement their core functionality with
web technologies and lack the corresponding resource identifiers, string constants,
and API calls. From the remaining set of 85,915 apps, we filtered apps that
had no descriptions in English language and ensured that preprocessing each
description text resulted in at least 20 TF-IDF vectors. This boundary was set
to reduce the potential impact of insignificant samples on the training process.

Table 2 highlights the final set of apps we used to train, validate, and test
each network input feature. 20% of apps used for training are randomly picked to
be also part of the validation set. This partitioning scheme is required to prevent
overfitting of our machine learning model and to ensure meaningful predictions.
The test set includes 1,000 randomly chosen apps that are not used during
training. We build the set such that it only includes apps with a reasonably good
description. Therefore, we make the simplifying assumption that apps with a
higher download count tend to have higher description quality and, thus, prefer
samples from comparably popular apps. We sort all apps in the dataset by
download count and take every third app until we obtain 1,000 test samples.

5.2 Results

We trained neural networks for resource identifiers, string constants, and API
calls, each with a set of 66,040 apps. To ensure an unbiased evaluation, the three
models were validated using 20% of training data and tested individually with
1.5% of previously unseen data to confirm their final performance.

Table 2. Subsets of Android apps used as neural network input.

# Apps

Android apps crawled 115,294
Cross-platform apps 29,379
English descriptions and ≥ 20 TF-IDF tokens 67,040

Training set 66,040
Validation set (20%) 13,208
Test set 1,000



Table 3. Performance on the test set of the three neural network input types via
discretized TF-IDF vectors. Discretization threshold: θ = 0.05.

Resource Identifiers String Constants API Calls

Precision 79% 84% 69%
Recall 27% 19% 18%
F0.5-Score 57% 50% 44%

The evaluation results on the test set are summarized in Table 3. The direct
comparison of F-scores shows that resource identifiers yield the best results, while
API calls perform significantly worse, with string constants in between. While
precision values range between 69% and 84%, the recall column presents low
values for all models. We attribute this mainly to two reasons. First, descriptions
contain lots of words specific to the app that are hard to generalize. This makes
reconstructing many of these rarely occurring words difficult. Second, the TF-IDF
model for the description output does not take synonyms into account. E.g., if
the description contains the word image, but the word photo is predicted, it
counts as a mismatch and lowers the recall despite the semantic correctness.

In practice, these results mean that our trained neural networks can well
predict keywords and short phrases that also occur in the developer-provided
description. High precision and low recall imply that the rate of false negatives is
higher than the rate of false positives. This is desirable in our setting because a
lower false positive rate also produces fewer false attributions of app functionality.

5.3 Case Study

For a better understanding on the practical relevance of functionality predictions,
in the following, we take a closer look at each model’s output regarding two
music-related apps that were not used during training. We visualize the top 8
predictions and relevance values via word clouds. The font size of each token is
set with respect to the weight (relevance) the models assign to all outputs.

Figure 3 illustrates the top-ranked predictions of the three models for the
music video streaming app Vevo. Apart from video being top-ranked, the nature
of a video streaming and sharing platform is expressed by the phrases tv show /
tv channels, movies, subscription, music, live and content. The tv-related phrases
show that the models cannot distinguish between traditional television and online
video streaming. As the predictions stem from many other apps, we reason that

(i) Resource Identifiers

video
tv show

kids

music

watch

songs
subscription

content

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.vevo.j...

1 of 1 8/31/19, 1:36 PM

(ii) String Constants

tv channels
video

watchmovies

new

content
live

stories

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.vevo.j...

1 of 1 8/31/19, 1:42 PM

(iii) API Calls

video
watch

tv

news live

movies

sports

us

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.vevo.j...

1 of 1 8/31/19, 1:40 PM

Fig. 3. Word clouds with each model’s predictions for the video streaming app Vevo.



(i) Predicted Functionality

music player
playlist

files album

cloud

backup

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.forsh...

1 of 1 8/31/19, 9:07 PM

(ii) Actual Description

4shared Music was created for those, who

can’t live without music and don’t want

their attention to be attracted with any-

thing else, but music while listening to it.

Using your ‘Search’ menu item you can

look for music files you like and add them

to your playlist at 4shared Music. More-

over, you can upload tracks from your

Android device to your 4shared Music.

With 4shared Music you can enjoy 15GB

of space for your music and nothing out

of place. Upload and add all music files

you like and make your life even more

enjoyable with 4shared!

Fig. 4. Comparison of the real description of 4shared Music and our models’ predictions.

the neural networks understand the domain of the input and learn to cluster
video-related applications internally. We also see that the inferred tokens based
on API calls are much more general. The overall domain of the app becomes
clear but, e.g., no n-grams, such as tv channels or tv show were learned. Overall,
despite their independent reasoning, the three models each yield descriptive
information and can correctly identify the app’s main purpose.

The app 4shared Music is a music player that accesses audio files stored on the
cloud storage provider 4shared. In Figure 4, we contrast the developer-provided
description with the summarized predictions of our three models. Our neural
networks correctly found that the app is a music player, dealing with playlists
and albums. They also identified the second domain of the app, the online storage
platform, in terms of cloud, backup, and files. While all these tokens make sense,
the actual app description text does not mention all of them, e.g., player, cloud,
and backup are absent. In other words, since the description text does not cover
these tokens literally, the measurable performance (see Section 5.2) decreases
despite the good generalization. An accurate but abstracted word cloud that is
intelligible to humans is, thus, difficult to measure.

5.4 Prediction Explanation

Each of our three machine learning models predicts a list of keywords and short
phrases based on a given Android app archive. Apart from seeing this result,
we also want to know which word predictions are caused by which input items.
Therefore, we apply Deep SHAP (see Section 4.4) to all model predictions.

If, e.g., our resource identifier model outputs the word dictionary, we want to
find the influences of these predictions. A reasonable, for humans understandable
relation would be input tokens, such as search, word, or translate. Instead, in case
meaningless tokens are predicted, the model would have learned this correlation
as “noise” from similar apps but not from a particular app feature.



Table 4. SHAP algorithm applied on two predictions for the app Slacker Radio.

(i) Resource Identifiers

Description
Token(s)

Input
Tokens SHAP

music player artist 0.0122
album 0.0107
playlist 0.0071
art 0.0034
lyrics 0.0032

(ii) String Constants

Description
Token(s)

Input
Tokens SHAP

music playlist 0.0321
song 0.0230
stations 0.0125
songs 0.0096
tracks 0.0039

To assess network input-output relations, we take one sample and get the top
prediction for it, i.e., we focus on the network’s output with the highest numeric
value. Then, we calculate the SHAP values for all inputs and list the corresponding
input features and their SHAP values. Table 4 shows this result for the app
Slacker Radio. The predicted keywords with the highest values were music player
for resource identifiers and music for string constants. By looking at the top
input influences, we can see that the two different network models make their
decision based on reasonable inputs. These input tokens affect the output in a
way that is easily comprehensible and verifiable by humans.

From applying SHAP to many samples, we noticed that for resource identifiers
and string constants, found correlations are mostly self-evident. Although we also
found many Android apps where the model based on API calls returned very
accurate keywords, the associated SHAP values were not intuitively traceable.
For instance, the Vevo app (see Figure 3) has video as its top predicted term.
The associated SHAP values refer to generic methods belonging to the Activity

class from the Android API that, by their design, are unspecific to multimedia
apps. We assume that in such cases, implementations make use of a specific set of
methods that are then considered as a sort of fingerprint to identify video-related
app purposes. In other cases, SHAP explanations for API calls show very obvious
correlations. E.g., for the keyword shake, we found the SensorManager class of
the Android API among the closest-related input features. Overall, our qualitative
analysis using the SHAP model explanation algorithm confirmed that all our
models could very well outline the main purpose of most real-world applications.

6 Conclusion

In this work, we presented a solution to describe the main purpose of Android
apps in natural language by analyzing resource identifiers, string constants, and
API calls contained in app archives. Based on a combination of three dense neural
networks, our approach accurately captures semantic relationships among apps.
We carefully evaluated our approach on 67,040 real-world Android apps and
showed that with a precision between 69% and 84% our neural networks could
predict keywords and short phrases that also occur in the developer-provided
description in Google Play. Our solution provides an effective method to describe
the behavior of unknown app implementations.



References

1. Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel, C., Vigna, G., Chen, Y.:
EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through
the Android Framework. In: Network and Distributed System Security Symposium
– NDSS’15. The Internet Society (2015)

2. Gao, H., Guo, C., Wu, Y., Dong, N., Hou, X., Xu, S., Xu, J.: AutoPer: Auto-
matic Recommender for Runtime-Permission in Android Applications. In: 43rd
IEEE Annual Computer Software and Applications Conference, COMPSAC 2019,
Milwaukee, WI, USA, July 15-19, 2019, Volume 1. pp. 107–116. IEEE (2019)

3. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app
descriptions. In: International Conference on Software Engineering – ICSE’14. pp.
1025–1035. ACM (2014)

4. Hamedani, M.R., Shin, D., Lee, M., Cho, S., Hwang, C.: AndroClass: An Effective
Method to Classify Android Applications by Applying Deep Neural Networks to
Comprehensive Features. Wireless Communications and Mobile Computing 2018,
1250359:1–1250359:21 (2018)

5. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: Automatic frame-
work for android malware detection using deep learning. Digital Investigation 24,
S48–S59 (2018)

6. Kowalczyk, E., Memon, A.M., Cohen, M.B.: Piecing together app behavior from
multiple artifacts: A case study. In: Symposium on Software Reliability Engineering
– ISSRE’15. pp. 438–449. IEEE Computer Society (2015)

7. Kuznetsov, K., Avdiienko, V., Gorla, A., Zeller, A.: Checking app user interfaces
against app descriptions. In: Workshop on App Market Analytics – WAMA. pp. 1–7.
ACM (2016)

8. Lundberg, S.M., Lee, S.: A Unified Approach to Interpreting Model Predictions. In:
Neural Information Processing Systems – NIPS’17. pp. 4765–4774 (2017)

9. Pan, X., Cao, Y., Du, X., He, B., Fang, G., Shao, R., Chen, Y.: FlowCog: Context-
aware Semantics Extraction and Analysis of Information Flow Leaks in Android
Apps. In: USENIX Security’18. pp. 1669–1685. USENIX Association (2018)

10. Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: AutoCog: Measuring
the Description-to-permission Fidelity in Android Applications. In: Conference on
Computer and Communications Security – CCS’14. pp. 1354–1365. ACM (2014)

11. Takahashi, T., Ban, T.: Android application analysis using machine learning tech-
niques. In: AI in Cybersecurity, pp. 181–205. Springer (2019)

12. Vásquez, M.L., Holtzhauer, A., Poshyvanyk, D.: On automatically detecting similar
Android apps. In: International Conference on Program Comprehension – ICPC’16.
pp. 1–10. IEEE Computer Society (2016)

13. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: Mea-
surement and Modeling of Computer Systems – SIGMETRICS’14. pp. 221–233.
ACM (2014)

14. Watanabe, T., Akiyama, M., Sakai, T., Mori, T.: Understanding the Inconsistencies
between Text Descriptions and the Use of Privacy-sensitive Resources of Mobile
Apps. In: Symposium On Usable Privacy and Security – SOUPS’15. pp. 241–255.
USENIX Association (2015)

15. Zhang, M., Duan, Y., Feng, Q., Yin, H.: Towards Automatic Generation of Security-
Centric Descriptions for Android Apps. In: Conference on Computer and Commu-
nications Security – CCS’15. pp. 518–529. ACM (2015)


