
JAAVR: Introducing the Next Generation of
Security-enabled RFID Tags

Erich Wenger, Thomas Baier, and Johannes Feichtner
Institute for Applied Information Processing and Communications

Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

erich.wenger@iaik.tugraz.at, {thomas.baier, johannes.feichtner}@student.tugraz.at

Abstract—JAAVR stands for Just Another AVR, is a clone of
the popular ATmega128 microprocessor, and is used as the core
component of a security-enabled RFID tag. First, we evaluate
different hardware designs using JAAVR to communicate via
ISO 14443A. Second, we implement AES, Grøstl and Elliptic
Curve Cryptography (ECC) and present several new runtime and
low-memory records. Third, we add those assembly-optimized
implementations to our RFID platform and investigate their
impact in chip area and power consumption. Our designs are
fully synthesizable as ASIC and FPGA and were tested using a
discrete analog front-end and a standard RFID reader.

I. INTRODUCTION

The focus of Radio Frequency Identification (RFID) tech-

nologies is to build a tag with an antenna and a tiny microchip.

This microchip should be small, so it can be cheaply produced

in the millions, and consume as little power as possible so

that its operating range is maximized. Recent trends in RFID

technology extend the functionality of simple RFID tags by

adding more and more complex communication layers. Thus

simple old-fashioned state-machines have to be replaced with

more flexible solutions: area-optimized microcontrollers.

In order to integrate RFID tags within the Internet of

Things, requirements like authentication and confidentiality

have been raised. These demands can be achieved by using

symmetric-key ciphers (eg. Advanced Encryption Standard

(AES)), public-key ciphers (eg. Elliptic Curve Cryptography

(ECC)), and hash functions (e.g. Grøstl). Those algorithms

need to be carefully designed in hardware in order to achieve

small and low-power solutions, which still fulfill the practical

constraints of RFID.

In this paper we take a very flexible design approach.

We present a clone of the ATmega128 processor called Just

Another AVR (JAAVR) and use it to build an RFID tag that

communicates via the ISO 14443A standard, and is able to

process AES, Grøstl, and ECC. This microprocessor is small

(6.4 kGE), has a low power consumption (11μW/MHz), and

comes with a complete design-flow (e.g. simulator, assembler,

compiler, debugger, ...) so it can be programmed easily. First,

we improve the runtime-performance as well as memory-

requirements of the AES and Grøstl for the ATmega128

(and JAAVR). Second, we evaluate different state-of-the-art

ECC implementation techniques. Third, we build a JAAVR-

enabled RFID platform using 8.2 kGE, which we verified as

ASIC and FPGA. Further, we extend it with AES (+5.4 kGE),

Grøstl (+5.8 kGE), ECC (+9.7 kGE), and all of them com-

bined (+15.3 kGE). We are able to outperform many of the

latest, dedicated cryptographic hardware designs and with a

simple switch, improve the performance of the cryptographic

algorithms by up to 30 %.

The rest of the paper is structured as follows: Section II

discusses related work. Section III elaborates our design

concept and Section IV explores the performance numbers of

the already mentioned cryptographic primitives AES, Grøstl,

and ECC. Hardware-related results follow in Section V and

Section VI concludes the paper.

II. RELATED WORK

Building the next generation of RFID tags has been a

huge research topic for years. In 1999, Masui et al. [35]

already presented a wireless 11mm2 large RFID chip with

a dedicated CPU. In 2001 Rakers et al. [43] reduced the size

of a contactless smartcard to 8.12mm2, capable of performing

DES and Triple DES. In the same year Abrial et al. [1]

presented an asynchronous 8-bit microprocessor capable of

handling ISO 14443B using a chip area of 16mm2. More

recent works combine RFID technology with microcontrollers

and cryptographic primitives such as the AES and the El-

liptic Curve Digital Signature Algorithm (ECDSA). Plos et
al. [41] presented a microprocessor-based NFC-enabled RFID

tag which only consumes 10μA and fits within approximately

10 kGE. Lee et al. [33] presented a fully functional passive

RFID tag, produced in a 180 nm CMOS process, needing

only 1.1mm2, and being capable of calculating AES-128.

Most motivating for our project was the work of Hutter et
al. [24]. They combined AES and ECDSA with a common 16-

bit datapath using a custom 8-bit microcontroller and were able

to achieve low-area results of 21.5 kGE for AES and ECDSA,

while AES only needed 2.4 kGE.

Those results bring us to the other part of our related work.

In the following we give an overview in dedicated hardware

designs of AES, Grøstl, and ECC optimized for low-resource

environment. Most notable is the work of Feldhofer et al. [14],

[16] who implemented AES-128 within 3,400 GE. Since then

ongoing research on AES implementations further reduced

the necessary chip area for AES. Hämäläinen et al. [20] and

Moradi et al. [36] present an encryption-only AES architecture

needing 3,100 GE and 2,400 GE. Kaps et al. [30] reported AES

implementations with around 4,070 GE.

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.81

349

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.81

640

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.81

640

Compared to AES, much more resources are required for

Grøstl and ECC. The most notable Grøstl low-resource hard-

ware implementations have been done by Tillich et al. [48]

needing only 14,622 GE. Henzen et al. [23] also implemented

Grøstl using 25 kGE. In terms of ECC much research has

been done in recent years. Most notable are the binary

extension-field implementations by Batina et al. [7], Bock et
al. [8], Hein et al. [22], Kumar et al. [32], Lee et al. [34],

and Wolkerstorfer et al. [49]. Those designs need between

10,392 GE and 23,818 GE and require between 32.42μW and

500μW per MHz. There have also been a few prime-field ECC

implementations by Auer et al. [6], Fürbass et al. [17], and

Wolkerstorfer et al. [49] requiring around 24 kGE and between

500μW and 1,692μW per MHz.

We finish the discussion of related work with the paper of

Feldhofer et al. [15], comparing dedicated cryptographic hard-

ware modules for RFID applications. Their paper discusses the

difference of dedicated AES, SHA-1, and ECC designs for

RFID applications. This paper however presents a combined

approach with a common 8-bit microprocessor.

III. DESIGN CONCEPT

Efficiently implementing cryptographic primitives for RFID

tags and sensor networks is a challenging task. Most of the

previously discussed papers concentrated on implementing a

single cryptographic primitive. However, it is important to

realize that those primitives are components of larger designs.

In fact, the protocols to access those primitives have become so

complex that it has become necessary to use tiny microproces-

sors instead of simple state machines. Such a microprocessor

should be small, efficient (low-power, high performance-per-

cycle), and easily programmable. In order to achieve those

goals, it is not only necessary to build a small hardware design,

but also to take care of a complete design-flow (e.g. simulator,

assembler, compiler, debugger, ...).

We decided to use the popular ATmega128 processor as

the core of our architecture. This processor is one of the

most popular 8-bit RISC processors ever designed and also

well supported by available simulators [46], compilers (e.g.
avr-gcc) and debuggers. Its 8-bit architecture, the dedicated

I/O bus, and the flexible instruction-set make the processor

perfectly suited to handle RFID and sensor-network protocols.

A. ATmega128 Processor

Developed in the 1990s, the AVR series by Atmel became

one of the most popular 8-bit processors ever manufactured. A

series of high-performance, low-power Atmel AVR processors

evolved to the popular ATmega series. The ATmega series

supports up to 133 instructions and comes with a wide range of

peripherals. We decided to use the ATmega128 [4] as model.

It is an 8-bit RISC processor with Harvard architecture, 32

general-purpose registers, an on-chip multiplier, 128 kbyte of

Flash, 4 kbyte of EEPROM, and 4 kbyte of SRAM. It also

supports boundary-scan JTAG as well as several timers, ADCs,

UARTs, and an SPI and a TWI interface.

Fig. 1. JAAVR Architecture.

B. JAAVR

A challenge that we did not discuss so far is that no AT-

mega processor is openly available as synthesizable VHDL or

Verilog code. We found several AVR-compatible processors at

OpenCores [39], but none of them fulfilled our requirements of

being fully synthesizable (as FPGA and ASIC), cycle-accurate,

and well-tested. Therefore we (successfully) implemented our

own version of an ATmega-compatible processor.

Our processor is called Just Another AVR (JAAVR) and is

based on an ATmega128 processor. In order to be maximally

compatible with the ATmega128, we made sure that JAAVR

has identical registers, an identical instruction-set, and an

identical timing. We achieved this by using the documents [4],

[5] and simulavr [46] as reference.

In order to test the full instruction set, we wrote programs

covering all available assembly instructions. First the compiled

executable is run within a modified version of simulavr,

which automatically generated test-vectors. A test vector

contains the values of the processors register-file for each

processing cycle. The identical program is then run on the

VHDL model of JAAVR and in each cycle the content of the

register-file is compared with the current test vector.

JAAVR comes with three buses as it is shown in Figure 1:

a synchronous program bus, a synchronous data bus, and

an asynchronous I/O bus which is mapped within the data

buses address range. The synchronous data and program buses

ensure that it is possible to use area-efficient macros. Further-

more, JAAVR comes with 36 fixed-priority interrupts which

can be cleared by the CPU. For an FPGA implementation we

added a simple 604 bytes large UART bootloader. The program

memory is synthesized as block RAMs which were initialized

at runtime.

With a fully functional VHDL design of an ATmega-

compatible processor, it is possible to to apply several op-

timizations. Most notably are our performance optimizations

which reduce the execution delay of several instructions. By

operating a simple switch in our design, it is possible to

350641641

reduce the execution time of MUL, MULS, MULSU, FMUL,

FMULS, FMULSU, ST, STD, PUSH, IJMP, RJMP, CBI, SBI
(2 → 1), RCALL, ICALL, LPM, ELPM (3 → 2), and CALL,

RET, RETI (4 → 3) instructions by one cycle. Experiments

showed that these optimizations improved the performance of

the subsequently discussed cryptographic functions by up to

30 %.

IV. CRYPTOGRAPHIC PRIMITIVES

Cryptographic services (confidentiality, data integrity, au-

thentication, and non-repudiation) have to be defined depend-

ing on the application, environment, and necessary function-

ality. These goals can then be achieved by using standardized

protocols, which are based on basic primitives, such as un-

keyed, symmetric-key and public-key primitives. We decided

to implement the popular AES standard, the SHA-3 finalist

Grøstl, and the resource aware elliptic-curve-based public-key

scheme.

Our main goal concerning those three algorithms is to eval-

uate their runtime performance as well as their area footprint.

As we will show in Section V, the chip-area consumption

mainly depends on the size of the program memory (ROM)

and the size of the necessary data memory (RAM). Security

requirements such as side-channel awareness and countermea-

sures have not been evaluated explicitly, but were kept in mind

during implementation. Because the ATmega128 and JAAVR

have identical instruction-set timings, the following results are

applicable for both processors. The average speedup of 30 %

only applies when the compatibility mode is switched off.

A. AES

AES [37] was standardized in 2001 and since then it has

been used in a magnitude of applications and has become the

most investigated symmetric-key cipher. AES is a round-based

block cipher, operating on 128-bit data blocks, with an internal

128-bit state. The state is modified by iteratively applying the

SubBytes, ShiftRows, MixColumns, and AddRoundKey trans-

formations. Depending on the required security level, one can

select from AES-128, AES-192 and AES-256, which vary

on the size of the key and the number of applied round

transformations. Having embedded applications in mind, we

focus on AES-128.

1) Implementations: AES-128 uses a 128-bit key and per-

forms the round transformations 10 times. The 128-bit state

is constantly held in the registers R0-R15. In order to avoid

loading the key twice, the key expansion step and the Ad-
dRoundKey transformation have been merged into a single

function. Thus also expensive RCALL and RET instructions

can be evaded.

Due to the fact that MixColumns applies a transformation

on every column of the state matrix, this is the most expensive

part of AES. For an efficient implementation of MixColumns,

the needed amount of XOR and multiplication operations has

been reduced to a minimum. A multiplication with 2 is

performed by consecutively executing an ADD, BRCC and EOR
operation. ADD is used to do a right shift and depending on

TABLE I
COMPARISON OF AES-128 IMPLEMENTATIONS.

Version ROM RAM Runtime [Cycles]
[Bytes] [Bytes] Enc. Dec.

C version 6,814 858 6,502 7,938
High-speed 2,212 294 3,290 4,534
Low-RAM 2,304 38 3,490 4,630
Eisenbarth et al. [12] 1,659 33 4,557 7,015
Poettering et al. [42] 1,568 192 3,629 4,462

the carry register, a reduction using the irreducible polynomial

x8 ⊕ x4 ⊕ x3 ⊕ x ⊕ 1 is performed. This sequence of

operations can be performed in constant time. In fact, all

our AES implementations run in constant time and thus are

safe from timing attacks. We implemented the MixColumns
transformation using 48 XOR operations, 16 multiplications

by 2, and 36 MOV instructions.

2) Results: Table I shows runtime, ROM, and RAM re-

quirements of our and related AES implementations. A C ver-

sion is given as reference in order to point out the margin

exhausted by assembly implementations. In our high-speed

design, an S-box lookup table was loaded to the RAM. By

keeping the S-box within the program memory we were able

to decrease the expensive RAM requirement from 294 to

38 bytes. In terms of runtime, even our RAM optimized

implementation is still faster than Eisenbarth et al. [12] and

Poettering et al. [42].

B. Grøstl

When selecting a hash-function we decided not to go for

the traditional ‘out-of-date’ hash function SHA-1, but focussed

on one of the SHA-3 finalists. Based on the fact that Grøstl

shares a lot of similarities with AES, it has been chosen for

this work.

Grøstl [18] is an iterated hash function operating on two

distinct permutations P and Q and a compression function f .

The input of the compression function is a message block m
and a 512-bit chaining value h. For the construction of f the

following definition is used f(h,m) = P (h⊕m)⊕Q(m)⊕h.

The permutations P and Q are based on AES and thus

consist of four transformations, known as AddRoundConstant,
SubBytes, ShiftBytes, and MixBytes, which are applied several

times. It comes to mind to actually combine the implementa-

tions of AES and Grøstl. In our highly optimized assembler

implementations, AES and Grøstl share an S-box lookup table

and temporary data memory. Apart from that, we had to keep

the assembly implementations completely separated.

1) Implementations: In order to save processing cycles, the

round transformations AddRoundConstant, SubBytes and Shift-
Bytes are handled consecutively. Hence, unnecessary RAM

access can be avoided and a low memory footprint is ensured.

The MixBytes transformation is the most expensive part in

Grøstl as it involves a matrix multiplication within F256. In

order to reduce the needed amount of XOR and multiplication-

by-2 operations, we followed the approach of Aoki et al [2].

Per column, MixBytes needs 48 XOR instructions, 9 MOV
instructions and 16 multiply-by-2 operations.

351642642

TABLE II
COMPARISON OF GRØSTL-256 IMPLEMENTATIONS.

Version ROM RAM Runtime [Cycles] Cycles / Byte
[Bytes] [Bytes] 55 bytes 2776 bytes 55 bytes 2776 bytes

High-speed 4,990 534 41,232 1,230,722 750 443
Balanced 1,406 536 44,830 1,337,477 815 482
Low RAM 1,792 216 50,006 1,490,917 909 537
Ipsen [29] 4,684 602 87,643 2,636,561 1,594 950
Roland [45] 4,228 994 50,105 1,301,944 911 469
Roland [45] 4,170 226 49,610 1,471,280 902 530

2) Results: In the following (see Table II), three highly-

optimized assembly implementations of Grøstl-256 are pre-

sented. They focus on efficient usage of memory and compu-

tation resources and thereby yield results, which outperform

existing solutions.

A speed-optimized version makes extensive use of assembly

macros and omits expensive RCALL (3 cycles) and RET (4

cycles) instructions. Due to the elimination of unused over-

head, the high-speed version needs only 443 cycles/byte for

a message with 2776 bytes. A disadvantage of this technique

is that the code size increases to 4,990 bytes as the MixBytes
routine is embedded 16 times.

The balanced version is very similar to the high-speed

version but does not embed MixBytes using assembly macros.

Like MixBytes, the SubBytes step is applied on all columns and

therefore can be integrated within MixBytes in order to evade

redundant code. As a consequence, the code size minimizes

to 1,406 bytes.

The low-RAM version is especially suited for devices

with small RAM, because the S-box values are loaded from

program memory. Therefore the RAM access instruction LD
(2 cycles) is replaced by the instruction LPM (3 cycles) which

accesses the program memory. As a result of this, the cycles

per byte raise up to 537 bytes for a long message but the

consumed RAM reduces to 216 bytes.

Table II also shows performance results of our and re-

lated implementations. The program memory values include

256 bytes for the S-box. Compared to related work [2], [29],

[45], our implementations outperform them in terms of speed

and memory.

C. Elliptic Curve Cryptography

Nowadays there exist three well-established public-key

schemes (RSA [44], ElGamal [13], and ECC [31]) which

are complementarily used in many applications. From those

three, elliptic curve schemes need fewer data memory and out-

perform RSA and ElGamal on many embedded architectures

(cf. [19]).

The security of elliptic curves is based on the Elliptic

Curve Discrete Logarithm Problem. Up to now, only generic

attacks on elliptic curves have been found (Baby-step giant-

step, Pollard-Rho) and therefore it is possible to compute ECC

(compared to RSA and ElGamal) on relatively small finite

fields. For further details on elliptic curve cryptography, we

refer the interested reader to the following books [11], [21].

1) Implementations: The most important design decision

when implementing elliptic curves is which elliptic curve and

which underlying finite field to use. We decided to use prime

fields because the ATmega128 comes with an integrated 8-

bit multiplier. Further we decided to use the popular curves

secp160-256r1 standardized within the SECG [9], [10]

and NIST [38] standards. The secp160r1 elliptic curve has

been removed from the latest version of the standards but we

use it as reference as most related work focused on this elliptic

curve.

The most expensive block within hardware and embedded-

system design is data memory. Therefore, the most expen-

sive algorithms are public-key algorithms. Therefore it was

especially important to carefully choose how to implement

elliptic curve cryptography on JAAVR, respectively on an

ATmega128.

We selected to use the latest Montgomery-ladder formulas

by Hutter et al. [25]. They require only seven registers, 16 field

multiplications, and 17 addition operations, while guaranteeing

a constant number of field operations as well as some basic

resistance against side-channel attacks.

On the level of prime-field operations we used a binary

inversion algorithm based on the Extended Euclidian algorithm

as well as highly assembly-optimized multiplication, addition

and subtraction methods. We took advantage of the special

Mersenne-like primes and performed reductions by only using

addition, subtraction, and shift operations.
2) Results: In our experiments we varied both the elliptic

curve and the used multi-precision multiplication formulas. As

shown in Table III, we investigated the impact of operand-

scanning (OS), product-scanning (PS), and the newly in-

troduced operand-caching (OC) [26] multiplication methods

on runtime and program memory (ROM) size. As reference

we also provide results using operand-scanning, written in

C compiled with avr-gcc V4.5 with the ‘-Os’ flag enabled.

While ‘-O1’ gave similar (but larger) results, ‘-O2’ and ‘-O3’

deteriorated both the runtime and code size.

While using the fast operand-caching method, runtime im-

provements of factors between 2.7 and 3.4 where possible,

compared to the pure C version, but the size of the program

memory also increased by factors between 2.0 and 3.1. How-

ever, using a looped instead of an unrolled operand-caching

implementation decreased the size of the program memory by

29-52 %.

In comparison to related work by Gura et al. [19] and

Szczechowiak et al. [47], our runtime performance is inferior

352643643

TABLE III
ELLIPTIC CURVE PERFORMANCE EVALUATION.

Curve Implementation ROM Runtime
[Bytes] [kCycles]

secp160r1 pure C, OS 3,864 35,101
PS looped 4,180 20,440
OC looped 5,546 13,787
OC unrolled 7,762 13,027

secp192r1 pure C, OS 3,706 52,265
OC looped 5,720 16,573
OC unrolled 9,290 15,371

secp224r1 pure C, OS 3,706 81,172
OC looped 5,570 29,688
OC unrolled 11,372 27,633

secp256r1 pure C, OS 5,114 122,960
OC looped 7,132 46,117
OC unrolled 14,924 43,057

secp160r1 Gura et al. [19] 3,682 6,480
secp192r1 Gura et al. [19] 3,979 9,920
secp224r1 Gura et al. [19] 4,812 17,520
160-bit curve Szczechowiak et al. [47] 46,100 9,376

to theirs. This is easily explained by investigating the used

point-multiplication formulas. While Gura et al. used an NAF-

method for point multiplication (which is not side-channel

secure), Szczechowiak et al. used a Comb method with 16

pre-computed points, resulting in a large program memory.

Summarizing our software results, we can say that even

160-bit ECC is 317 times slower than Grøstl and 3,960 times

slower than AES, rendering AES and Grøstl superior for any

real-time applications. In terms of program memory, ECC is

only 1.67 and 2.64 times larger compared to AES and Grøstl.

It is important to note that 160-bit ECC only offers a security

level of 80-bit, while both AES-128 and Grøstl-256 offer a

security level of 128-bit. By applying 256-bit ECC with a

security level of 128-bit the runtime would increase by a factor

of 3.5.

V. HARDWARE RESULTS

In the following we discuss several results, which we

accumulated during our experiments. First, we take a look

at the JAAVR processor. Second, we use JAAVR to perform

over-the-air communication using an RFID protocol and third,

we compare the different impacts of the previously described

primitives on our lowest-cost RFID solution.

For the following results we used the UMC 130 nm low-

leakage CMOS process technology with Faraday design li-

braries. Further, we used Cadence RTL Compiler v08.10

to synthesize, Cadence First Encounter v08.10 to place and

route, NCSim v08.20 to simulate and Cadence First Encounter

v08.10 for power simulation. As FPGA platform we used a

Spartan-3 XC3S1000-5FTG256C in connection with Xilinx

ISE Design Suite v13.3.

A. JAAVR

A complete fully-compatible version of the JAAVR pro-

cessor needs 6,459 GE. In comparison, the popular 16-bit

OpenMSP430 [39] processor requires 8 kGE. ARM’s newly

designed 32-bit Cortex-M0 processor [3] requires around

TABLE IV
RFID HARDWARE DESIGNS.

Hardware design Area Power
w/o Macros w/ Macros

[GE] [GE] [uW]
(1) Flexible 295,782 82,530 -
(2) ISO14443A using timer 8,962 - 77,6
(3) ISO14443A using HW modem 8,222 - 57.0

12 kGE. So JAAVR is 19 % and 46 % smaller compared to

those other processor designs.

The area of 6459 GE is shared between various function

blocks: 1,664 GE are general purpose registers, 786 GE are

the multiplexers used to access those registers, 799 GE belong

to the ALU, 468 GE are needed for the multiplier, 661 GE is

the size of the instruction decoder, and 183 GE are spent on

the interrupt controller. The remaining chip area is needed by

other internal registers (SREG, SP, PC) and address generation.

Due to the fact that in RFID chip-area is most significant, we

also designed a slimmed-down version of JAAVR. In JAAVR-

slim we removed the multiplier (which is actually only used

within ECC) and slightly changed the MOVW instruction. It

now needs 2 cycles to complete. Thus a fairly large internal

multiplexer could be avoided. JAAVR-slim requires 5,053 GE

which is about 22 % smaller than JAAVR.

When JAAVR is synthesized on the Xilinx Spartan-3 FPGA,

it requires 1,078 slices and has a maximum frequency of

28 MHz.

B. JAAVR performing ISO14443-A

Using JAAVR, many applications can be investigated. Com-

mon applications such as sensor networks or RFID tags are

components of the upcoming Internet of Things (IoT). From a

system designer’s perspective it is necessary to achieve small,

low-power/energy designs that are capable of communicating

with a certain protocol. In this work we decided to take a

deeper look at RFID.

Passive RFID tags are supplied via an electromagnetic field.

The amount of energy that arrives at the actual microchip

is dependent on the distance between the RFID reader and

the tag. The larger the operating distance, the less energy

is available for the RFID tag. Or in other words, the more

energy consumed by the RFID tag, the shorter is the possible

operating distance. In the case of near-field-communication

(NFC), several Milliwatts of power are realistic.

In the following we present three solutions, all capable

of performing various RFID protocols (cf. Table IV). All

these designs have been practically evaluated using the HF

FPGA DemoTag presented by Plos et al. [40]. This prototyping

platform comes with a discretely built analog front-end and the

previously mentioned Spartan-3 FPGA.

This DemoTag is also available in a different version

which is equipped with an ATmega processor instead of an

FPGA. This tag comes with a development platform and

is shipped with a firmware, capable of communicating with

ISO 14443 [27], ISO 15693 [28], and NFC. In fact, for our

353644644

first design approach we simply modified this ready-to-use

firmware which resulted in a very flexible RFID solution. Syn-

thesis showed that 295,782 GE would be required to actually

manufacture it. The flexible design comes with an 29,454 bytes

large program memory, a 4 kByte SRAM (same size as the

original ATmega128), two 8-bit timers, two 16-bit timers, one

UART, and 44 general-purpose I/O pins (GPIO). Timer, UART

and GPIOs are fully compatible with the original ATmega128.

The by far largest components of this flexible RFID ar-

chitecture are the program and data memories. Thus, in the

following we distinguish between two design principles which

are probably not applicable for every design process: the

question is whether RAM, ROM, Flash, or EEPROM macros

can be used in one’s design process. For the used UMC 130 nm

low-leakage technology, we have access to both RAM and

ROM macros. Building the same flexible design using macros

would decrease its chip area to 82,530 GE. However, this is

still too expensive for cost-critical RFID applications.

For the practical FPGA evaluation, the data and program

memories were synthesized using block RAMs and a boot-

loader was added to initialize the program memories. After

setting a simple jumper, it is possible to update the firmware

running on JAAVR via UART. This FPGA implementation

has been used to practically verify that the hardware design

is capable of doing wireless RFID communication with a

standard reader.

In our second solution (cf. Table IV) we decided to get rid of

all unnecessary components and concentrate on a single RFID

protocol: ISO 14443A. This is the same underlying protocol

which is currently supported by the latest Google phones. The

design only consists of a single timer, some GPIOs, as well

as specially fitted program and data memories. In order to

achieve a chip area of 8,962,GE, we used JAAVR-slim instead

of JAAVR.

For the first two hardware solutions we simply used and

synthesized the Atmel compatible Timer, and GPIO compo-

nents. Now that we have a fully synthesizable and flexible

design framework (JAAVR) at our disposal, we are able to add

custom components. For our third solution (cf. Table IV), we

added a dedicated ISO 14443A digital hardware modulation

and demodulation front-end (modem). As a result, all timers

and GPIOs could be removed and outstanding chip-area and

power results were achieved. Additionally it is possible to

reduce the clock frequency of JAAVR from 13.56 MHz (the

carrier frequency) down to an integer fraction of it to further

reduce the power consumption.

Table V lists the detailed chip area and power requirements

for this highly optimized hardware solution consisting of:

JAAVR-slim, a 606 bytes large ROM, an 8-byte RAM, and an

ISO 14443A hardware modem. The modem stores incoming

data in an IO-mapped, triple buffered, 8-bit register and

automatically performs CRC checks. Command handling is

all done by JAAVR-slim using plain C-software. A possible

assembly implementation could avoid any RAM usage at all

and would potentially minimize power consumption and ROM

size as well. In order to reduce the necessary CPU frequency

TABLE V
JAAVR-SLIM WITH ISO-14443-A DIGITAL HARDWARE FRONT-END.

Module Area Power [uW]
[um2] [GE] 1.13 MHz 3.39 MHz 13.56 MHz

JAAVR-slim 25,871 5053 12.4 34.0 149.2
ROM 7,194 1,405 2.9 8.9 36.9
RAM 2,565 501 0.4 1.0 4.3
Modem 5,974 1,167 10.0 10.4 13.0
Misc 491 96 31.3 37.1 37.1
Total 42,095 8,222 57.0 91.4 240.5

and data-memory requirements as much as possible, each data

byte is processed immediately after it has been received. This

approach leads to a minimal CPU frequency of 1.13 MHz. The

change of the clock pre-scaler has a direct impact in the power

consumption of JAAVR-slim. However, the modem is always

clocked with 13.56 MHz. The resulting power values between

57μW and 240.5μW make our design well suited for RFID

and ready to add cryptography.

C. JAAVR with Cryptographic Primitives in Software

Up until now, much research has been performed on ded-

icated cryptographic hardware designs. In this subsection we

show a very flexible design approach in which the program

memory and appropriate data memories are synthesized and

the impact of AES, Grøstl, and ECC on our total chip area

as well as our power consumption is measured. Table VI lists

the detailed results of several experiments.

The most important factors concerning chip size are the

program memory, the data memory, and whether JAAVR

or JAAVR-slim has been used. JAAVR-slim was used for

AES and Grøstl, and JAAVR was used for ECC. As it turns

out, the ROM macros available to us, are much larger than

the synthesized program memories. This is why we only

considered synthesized program memories. Further, the size of

the data memory has a significant influence on the total area-

consumption. For all algorithms we used the data-memory

sizes evaluated in the preceding software implementations.

In the following we do not only consider the total area

consumption of our software-only solutions but also discuss

the the difference in hardware requirements for doing cryp-

tography.

1) AES: Our most significant result concerning AES is that

in our case using a dedicated AES hardware extension is more

efficient than our software-only solution. The AES core by

Feldhofer et al. [16] requires 3,400 GE, while 5,367 GE need

to be added in our software-only solution using JAAVR. Com-

pared to the stand-alone JAAVR tag without cryptography, the

power consumption increased by a factor between 1.3 and 2.5

but is still within reasonable boundaries.

2) Grøstl: The biggest difference between Grøstl and AES

is the size of the necessary internal state matrix. We are capa-

ble of taking advantage of RAM macros, so the area increase

compared to AES is quite negligible. Neither Tillich et al. [48],

nor Henzen et al. [23] use RAM macros, so their hardware

designs (14.6 kGE and 25 kGE) are larger than our software-

only solution (14 kGE) with RFID interface.

354645645

TABLE VI
IMPACT OF CRYPTOGRAPHIC PRIMITIVES ON CHIP AREA AND POWER.

Crypto Algorithm ROM RAM Crypto Total Power
Size Area Size synth. w/ Macro w/ Macro w/ Macro 1.13 MHz 3.39 MHz 13.56 MHz

[Byte] [GE] [Byte] [GE] [GE] [GE] [GE] [uW] [uW] [uW]
w/o crypto 604 1,405 8 501 - - 8,222 57.0 91.4 240.5
AES 3,590 5,833 38 2,322 1,376 +5,367 13,589 75.0 131.9 351.4
Grøstl 2,822 4,927 216 12,707 2,671 +5,798 14,020 69.0 117.6 332.2
Grøstl & AES 5,382 7,534 216 12,704 2,671 +8,391 16,613 75.0 131.9 351.4
ECC 4,968 7,790 384 22,458 3,653 +9,684 17,906 - - 484.8
AES & Grøstl & ECC 9,234 13,330 384 22,463 3,653 +15,271 23,493 - - 484.8

TABLE VII
COMPARISON WITH RELATED WORK.

Crypto Algorithm Crypto Area Total Area Power
[GE] [GE] [uW/MHz]

AES +5,367 13,589 25.91
Grøstl +5,798 14,020 24.50
ECC +9,684 17,906 35.75
AES [16] 3,400 45.00
Grøstl [48] 14,622 2,210.00
Grøstl [23] 25,000 -
ECC Fp192 [49] 23,818 500.00
ECC F2163 [34] 12,506 32.42

3) ECC: Compared with AES and Grøstl, ECC needs

an about two times larger program memory and is several

magnitudes slower. So running it with a frequency of less

than 13.56 MHz would result in an execution time of several

seconds which is unpractical for real-time applications. For the

ECC results we used the assembler optimized secp160r1
implementation using a looped product-scanning multiplica-

tion method. A memory with only 384 bytes is necessary. The

area results of 17,9 kGE and the difference of 9.6 kGE are

quite promising compared to the prime-field area results of

Wolkerstorfer et al. [49].

4) AES & Grøstl & ECC: When AES & Grøstl or AES

& Grøstl & ECC are linked together and synthesized simulta-

neously, the real advantage of our software-only based design

methodology can be observed. The total area consumption of

23.5 kGE combines AES, Grøstl, and ECC, as well as an ISO-

14443-A wireless RFID interface and is much smaller than the

sum of the smallest implementations in the related work. In

relation to that, Hutter et al. [24] need 21.5 kGE to combine

AES and ECDSA. However, an RFID interface was not part

of their design.

VI. CONCLUSION

In this paper we presented a flexible design approach, using

a standard microprocessor to combine RFID and cryptographic

functionalities. We improved current AES and Grøstl imple-

mentations in terms of speed and memory footprint on the

ATmega128 and also evaluated state-of-the-art ECC point-

multiplication methods, varying the security margin and the

used multi-precision multiplication methods. Our hardware

results are manifold. We both presented a programmable,

digital RFID solution, just needing 8,222 GE, as well as an

RFID design capable of performing AES, Grøstl, and ECC

(three basic cryptographic primitives) requiring only 23.5 kGE.

With an improved instruction-set timing it is even possible

that JAAVR outperforms its model ATmega128 processor

doing cryptography by up to 30 %. However, we have not

yet tapped the real potential of our design. Future work is

going to both improve the runtime performance and chip-area

of our cryptographic implementations by using instruction-set

extensions and merging cryptographic hardware components

with the JAAVR core.

ACKNOWLEDGMENT

The work described in this paper has been supported in

part by the European Commission through the ICT programme

under contract ICT-2007-216676 ECRYPT II.

REFERENCES

[1] A. Abrial, J. Bouvier, M. Renaudin, P. Senn, and P. Vivet. A new
contactless smart card IC using an on-chip antenna and an asynchronous
microcontroller. Solid-State Circuits, IEEE Journal of, 36(7):1101–1107,
July 2001.

[2] K. Aoki, G. Roland, Y. Sasaki, and M. Schläffer. Byte slicing grøstl
- optimized intel aes-ni and 8-bit implementations of the sha-3 finalist
grøstl. 2011. in press.

[3] ARM. ARM Homepage. Available online at http://www.arm.com/
products/processors/cortex-m/cortex-m0.php.

[4] Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-
System Programmable Flash. Available online at http://www.atmel.com/
dyn/resources/prod documents/doc2467.pdf, August 2007.

[5] Atmel Corporation. 8-bit AVR Instruction Set. Available on-
line at http://www.atmel.com/dyn/resources/prod documents/doc0856.
pdf, May 2008.

[6] A. Auer. Scaling Hardware for Electronic Signatures to a Minimum.
Master thesis, University of Technology Graz, October 2008.

[7] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede.
Low-Cost Elliptic Curve Cryptography for Wireless Sensor Networks.
In L. Buttyán, V. Gligor, and D. Westhoff, editors, Security and Privacy
in Ad-Hoc and Sensor Networks – ESAS, volume 4357, pages 6–17,
Berlin Heidelberg, 2006. Springer-Verlag.

[8] H. Bock, M. Braun, M. Dichtl, E. Hess, J. Heyszl, W. Kargl, H. Ko-
roschetz, B. Meyer, and H. Seuschek. A Milestone Towards RFID
Products Offering Asymmetric Authentication Based on Elliptic Curve
Cryptography. Invited talk at RFIDsec 2008, July 2008.

[9] Certicom Research. Standards for Efficient Cryptography, SEC 2: Rec-
ommended Elliptic Curve Domain Parameters, Version 1.0. Available
online at http://www.secg.org/, September 2000.

[10] Certicom Research. Standards for Efficient Cryptography, SEC 2: Rec-
ommended Elliptic Curve Domain Parameters, Version 2.0. Available
online at http://www.secg.org/, January 2010.

[11] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and
F. Vercauteren, editors. Handbook of elliptic and hyperelliptic curve
cryptography. Discrete Mathematics and its Applications (Boca Raton).
Chapman & Hall/CRC, Boca Raton, FL, 2006.

[12] T. Eisenbarth, T. Gneysu, S. Heyse, S. Indesteege, S. Kerckhof, F. Koe-
une, T. Nad, T. Plos, F. Reggazoni, F.-X. Standaert, and L. van
Oldeneel tot Oldenzeel5. Compact Implementation and Performance
Evaluation of Block Ciphers in ATtiny Devices. In ECRYPT Workshop
on Lightweight Cryptography, Belgium, November 2011.

355646646

[13] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In Advances in Cryptology - CRYPTO
’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings,
volume 196 of LNCS, pages 10–18. Springer, 1984.

[14] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication
for RFID Systems Using the AES Algorithm. In CHES, pages 357–370,
2004.

[15] M. Feldhofer and J. Wolkerstorfer. Strong Crypto for RFID Tags
- Comparison of Low-Power Hardware Implementations. In IEEE
International Symposium on Circuits and Systems (ISCAS 2007), New
Orleans, USA, May 27-30, 2007, Proceedings, pages 1839–1842. IEEE,
May 2007.

[16] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on
a Grain of Sand. IEEE Proceedings on Information Security, 152(1):13–
20, October 2005.

[17] F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size
for RFID Applications. In Proceedings of 2007 IEEE International
Symposium on Circuits and Systems. IEEE, IEEE, May 2007.

[18] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, and S. S. T. Martin Schläffer. Grøstl – a SHA-3 candidate. Docu-
ment version 2.0, available online at http://www.groestl.info/Groestl.pdf,
March 2011.

[19] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing
Elliptic Curve Cryptography and RSA on 8-Bit CPUs. In M. Joye and J.-
J. Quisquater, editors, Cryptographic Hardware and Embedded Systems
– CHES 2004, Proceedings, volume 3156 of Lecture Notes in Computer
Science, pages 119–132. Springer, 2004.

[20] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D. Hämäläinen. Design
and Implementation of Low-Area and Low-Power AES Encryption
Hardware Core. In 9th EUROMICRO Conference on Digital System
Design: Architectures, Methods and Tools (DSD 2006). Proceedings,
pages 577–583. IEEE Computer Society, September 2006.

[21] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer, Berlin, Germany / Heidelberg, Germany /
London, UK / etc., 2004.

[22] D. Hein, J. Wolkerstorfer, and N. Felber. ECC is Ready for RFID - A
Proof in Silicon. In Selected Areas in Cryptography, 15th International
Workshop, SAC 2008, Sackville, Canada, August 14-15, 2008, Revised
Selected Papers, Lecture Notes in Computer Science (LNCS), September
2008.

[23] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and F. K.
Gürkaynak. Developing a Hardware Evaluation Method for SHA-3
Candidates. In Cryptographic Hardware and Embedded Systems – CHES
2010. Proceedings, volume 6225 of Lecture Note in Computer Science,
pages 248–263, Santa Barbara, CA, 2010. Springer-Verlag.

[24] M. Hutter, M. Feldhofer, and J. Wolkerstorfer. A Cryptographic
Processor for Low-Resource Devices: Canning ECDSA and AES like
Sardines. In C. A. Ardagna and J. Zhou, editors, Information Security
Theory and Practices. Proceedings, volume 6633 of Lecture Notes in
Computer Science, pages 144–159. Springer, 2011.

[25] M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementa-
tions of Elliptic Curve Cryptography in Co-Z Coordinate Representation.
In A. Nitaj and D. Pointcheval, editors, Progress in Cryptology -
AFRICACRYPT 2011. Proceedings, volume 6737 of Lecture Notes in
Computer Science, pages 170–187. Springer, 2011.

[26] M. Hutter and E. Wenger. Fast Multi-Precision Multiplication for
Public-Key Cryptography on Embedded Microprocessors. In B. P.
und Tsuyoshi Takagi, editor, Cryptographic Hardware and Embedded
Systems – CHES 2011. Proceedings, volume 6917 of Lecture Notes in
Computer Science, pages 459–474. Springer, 2011.

[27] International Organization for Standardization (ISO). ISO/IEC 14443-3:
Identification Cards - Contactless Integrated Circuit(s) Cards - Proximity
Cards - Part3: Initialization and Anticollision. Available online at http:
//www.iso.org, 2001.

[28] International Organization for Standardization (ISO). ISO/IEC 18000-3:
Information Technology AIDC Techniques — RFID for Item Manage-
ment – Part 3: Parameters for air interface communications at 13.56
MHz, March 2004.

[29] M. S. Ipsen. C-Implementation of Grøstl Optimized for 8-bit Architec-
tures, December 2011. submitted to ebash.

[30] J.-P. Kaps. Cryptography for Ultra-Low Power Devices. PhD thesis, ECE
Department, Worcester Polytechnic Institute, Worcester, Massachusetts,
USA, May 2006.

[31] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48:203–209, 1987.

[32] S. S. Kumar and C. Paar. Are standards compliant Elliptic Curve
Cryptosystems feasible on RFID? In Workshop on RFID Security 2006
(RFIDSec06), July 12-14, Graz, Austria, 2006.

[33] J.-W. Lee, D. H. T. Vo, Q.-H. Huynh, and S. H. Hong. A Fully Integrated
HF-Band Passive RFID Tag IC Using 0.18-μm CMOS Technology for
Low-Cost Security Applications. volume 58, pages 2531–2540, June
2011.

[34] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic-Curve-
Based Security Processor for RFID. IEEE Transactions on Computers,
57(11):1514–1527, November 2008.

[35] S. Masui, E. Ishii, T. Iwawaki, Y. Sugawara, and K. Sawada. A 13.56
MHz CMOS RF identification transponder integrated circuit with a
dedicated CPU. In Solid-State Circuits Conference, 1999. Digest of
Technical Papers. ISSCC. 1999 IEEE International, pages 162–163,
February 1999.

[36] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the
Limits: A Very Compact and a Threshold Implementation of AES. In
K. G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011.
Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
69–88. Springer, 2011.

[37] National Institute of Standards and Technology (NIST). FIPS-197:
Advanced Encryption Standard, November 2001. Available online at
http://www.itl.nist.gov/fipspubs/.

[38] National Institute of Standards and Technology (NIST). FIPS-186-3:
Digital Signature Standard (DSS), 2009. Available online at http://www.
itl.nist.gov/fipspubs/.

[39] OpenCores. OpenCores Homepage. Available online at http://opencores.
org/, November 2011.

[40] T. Plos, M. J. Aigner, T. Baier, M. Feldhofer, M. Hutter, T. Korak, and
E. Wenger. Semi-Passive RFID Development Platform for Implementing
and Attacking Security Tags. International Journal of RFID Security and
Cryptography, 1:16–24, 2012.

[41] T. Plos and M. Feldhofer. Hardware Implementation of a Flexible
Tag Platform for Passive RFID Devices. In Proceedings of the 14th
Euromicro Conference on Digital System Design Architectures, Methods
and Tools (DSD 2011). Proceedings, pages 293–300. IEEE Computer
Society, August 2011. ISBN 978-1-4577-1048-3.

[42] B. Poettering. AVRAES: The AES block cipher on AVR controllers,
March 2007. Available online at http://point-at-infinity.org/avraes/.

[43] P. Rakers, L. Connell, T. Collins, and D. Russell. Secure Contactless
Smartcard ASIC with DPA Protection. IEEE Journal of Solid-State
Circuits, 36(3):559–565, March 2001. ISSN 0018-9200.

[44] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978. ISSN 0001-0782.

[45] G. Roland. Efficient Implementation of the Grøstl-256 Hash Function
on an ATmega163 Microcontroller. Master’s thesis, Institute for Applied
Information Processing and Communications (IAIK), Graz University of
Technology, Inffeldgasse 16a, 8010 Graz, Austria, June 2009.

[46] K. Rudolph, J. Wunsch, E. Weddington, and J. Sherrill. Simulavr: an
AVR simulator, November 2011. Available online at http://http://www.
nongnu.org/simulavr/.

[47] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab.
NanoECC: Testing the Limits of Elliptic Curve Cryptography in Sensor
Networks. In R. Verdone, editor, Wireless Sensor Networks 5th European
Conference, EWSN 2008, Bologna, Italy, January 30-February 1, 2008.
Proceedings., volume 4913 of Lecture Notes in Computer Science, pages
305–320. Springer, 2008.

[48] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck,
M. Mühlberghuber, G. Neubauer, A. Reiter, A. Köfler, and
M. Mayrhofer. Compact Hardware Implementations of the SHA-3
Candidates ARIRANG, BLAKE, Grøstl, and Skein. Cryptology ePrint
Archive, Report 2009/349, 2009.

[49] J. Wolkerstorfer. Is Elliptic-Curve Cryptography Suitable for Small
Devices? In Workshop on RFID and Lightweight Crypto, July 13-15,
2005, Graz, Austria, pages 78–91, 2005.

356647647

