

LEIDENSCHAFT

WISSEN

TECHNIK

Driver Drowsiness Classification Using Data Fusion of Vehicle-based Measures and ECG Signals

Sadegh Arefnezhad^a, Arno Eichberger^a, Matthias Frühwirth^b, Clemens Kaufmann^c, Maximilian Moser^b

^aInstitute of Automotive Engineering, Graz University of Technology, Graz, Austria

^bHuman Research Institute of Health Technology and Prevention Research, Weiz, Austria

^cApptec Ventures Factum, Vienna, Austria

Contents

IFTG

2

- Motivation
- Experimental Setup
- Testing Procedure
- Machine Learning Methodology
- Results and Discussion
- Conclusion

Motivation

IFTG

3

- Drowsiness is an intermediate vigilance state between alertness and sleep, which may increase the reaction time in driving and lead to impaired driving performance.
- National Highway Traffic Safety Administration (NHTSA) reported that yearly, about 83000 traffic accidents and 900 fatalities are connected to drowsy driving in the United States.
 - The probability of crashes in drowsy driving is 4-6 times higher than in alert driving.

• The goal of designing a driver drowsiness detection system is to warn drivers and to alert them when a dangerous level of drowsiness has been detected and also to use it for informative driver state monitoring in automated driving.

Experimental Setup

IFTG

The Automated Driving Simulator of Graz (ADSG) is a modified production car, here pictured without the external housing that separates the whole simulator from the environment during the tests (left). The test track from the driver's view simulated a night drive on a highway (middle) and four different views from the drivers that are gathered using installed cameras inside the simulator (right).

Testing procedure

IFTG

5

- Data were collected from 93 driving tests, using 47 different subjects.
- Two age groups are considered including younger than 40 years (G1) and older than 40 years (G2).

The distribution of driving tests based on age and gender of participants (including G1: younger than 40 and G2: older than 40).

Drivers' groups	No. of tests
G1-males	17
G2-males	30
G1-females	19
G2-females	27
	Sum = 93

The test track of driving tests.

Testing procedure

IFTG

6

- Manual driving tests were performed in two driver's vigilance states: rested and tired.
- In the rested state, drivers were supposed to be alert, and they had no deviations from their usual circadian cycle.
- In the tired state, drivers were requested either to be awake for at least 16 h continuously before starting the test and to take the test at their usual bed-time or to have spent the previous night with 50% sleep restriction.
- Every driving test takes 30 minutes, and there is no traffic event to simulate a monotonous driving.
- The driven track is a closed path simulating a three lane motorway that has some smooth turns, and participants drive about 50 km during the test.
- Three levels of drowsiness, including alert, moderately drowsy, and extremely drowsy, are reported by video
 observing as ground truth for classification. An expert on driving observations noted different signs of sleepiness
 and rated the level of driver drowsiness in four levels: alert, moderately drowsy, extremely drowsy, and sleeping. For
 this study, the fourth level was merged to the third level

Machine Learning Methodology

Vehicle-based signals:

- Lateral acceleration
- Steering wheel angel
- Lateral deviation from lane centerline

ECG-based signal:

RR Intervals (time period between two consecutive R-peaks in ECG signals)

IEEE SMC 2020, IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS Oct 11-14, 2020

8

IFTG

Machine Learning Methodology

- **1. Feature extraction**
- A 40 s Hamming sliding window with the 30 s overlap between two adjacent windows is used to extract features from input data.

Vehicle-based features; 13 features from each signal, overall 39 features.

Signal length
Skewness
Dominant Frequency
Maximum of Spectrum
Spectral centroid
Spectral spread

9

IFTG

Machine Learning Methodology

1. Feature extraction

ECG-based features; 10 features from RR interval (RRI) signal

Avg: Average heart rate	SDNN: Standard deviation of RRI
MeanNN: Mean of RRI	Total Power (TP): Variance of RRI.
RMSSD: Root mean square of the difference of adjacent RRI	LF: Power of low-frequency band (0.04 Hz-0.15 Hz)
NN50: The number of pairs of adjacent RRI whose difference is more than 50ms	HF: Power of high-frequency band (0.15 Hz-0.40 Hz)
NN50: The percentage of NN50 in all RR intervals	LF/HF: Ratio of LF to HF.

10

IFTG

Machine Learning Methodology

2. Feature selection

• Neighborhood Component Analysis (NCA) has been applied to select the most important features.

3. Classification

- Ground truth: Three levels derived from the video observations; Alert, Moderately drowsy, Extremely drowsy
- The extreme level of sleepiness was much less frequent than the two other levels → Imbalanced dataset → Biased classifier

ГЕТС 11

Machine Learning Methodology

3. Classification

- The Adaptive Synthetic Sampling Approach (ADASYN) was exploited to overcome the imbalanced classification problem.
- ADASYN is an upsampling method to generate synthetic data from the minority class (extremely drowsy) that reduces the bias introduced by the imbalanced dataset.
- The dataset has been randomly separated into the training set (75%) and test set (25%).
- K-nearest neighbors (KNN) and Random Forest (RF) are applied as two classifiers.
- Bayesian optimization method is employed to optimize their hyperparameters.

Numbers of observations for drowsiness levels

Drowsiness levels	No. of observations
Alert	11290
Moderately drowsy	4536
Extremely drowsy	15884
	Sum = 31170

¹² Results and Discussion

Feature selection results

IFTG

Twenty features that their weights are higher than 1 have been chosen by the NCA method.

Feature weights calculated by the Neighborhood Component Analysis (NCA) method.

IEEE SMC 2020, IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS Oct 11-14, 2020

Selected features from vehicle data and ECG signals

Data	Selected feature	
ECG	NN50, Avg, HF, LF/HF	
Steering wheel angle	Dominant frequency, Signal length, Shannon entropy, Spectral centroid, Slope sign change rate, Mean	
Lateral accelerationDominant frequency, Signal length, Max of Spectrum, Shannon entropy, Mean, 2 crossing rate, Standard deviation		
Lateral deviation	Shannon entropy, Energy, Spectral flux	

Results and Discussion

IFTG

13

Classification Results: ECG-based features and Vehicle-based features are used together.

Confusion matrices of classifiers for the whole of the feature set (ECG and vehicle data together). AL: alert, MD: moderately drowsy, ED: extremely drowsy.

		KNN-True Class		RF-	True C	Class	
		AL	MD	ED	AL	MD	ED
Duadiated	AL	2185	60	64	2195	47	39
class	MD	17	862	38	14	885	28
01855	ED	15	17	3084	8	7	3119

Classification Results show that RF detects all three levels of drowsiness with higher accuracy than KNN.

Results and Discussion

IFTG

14

Classification Results: ECG-based features and Vehicle-based features are used separately.

Data set	RF Accuracy%	KNN Accuracy%
ECG-based features	88.5	86.2
Vehicle-based features	82.8	80.8
ECG-based and Vehicle-based feature	s 91.2	90.3

Classification results show that data fusion of ECG and Vehicle data outperforms the accuracy about 3%.

Results and Discussion

IFTG

15

Classification Results: Considering the human factors and by using all features.

Younger than 40		Older than 40		
KNN Accuracy %	RF Accuracy %	KNN Accuracy %	RF Accuracy %	
88.4	87.7	91.1	89.1	

• Classification results show better performance (about 1.5%) for older-than-40 than for younger-than-40 participants.

Male participants		Female participants		
KNN Accuracy %	RF Accuracy %	KNN Accuracy %	RF Accuracy %	
89.2	90.6	90.1	90.7	

Classification results show slightly better performance (about 0.5%) for female than for male participants.

Conclusion

IFTG

16

- Extracted features from ECG signals and vehicle-based measures were fused to improve the performance of the driver drowsiness system in comparison with using each data source individually.
- KNN and RF were employed as two traditional classification methods when the Bayesian optimization method
 optimized the hyperparameters of classifiers. Results showed that RF outperforms the KNN for the classification
 of all drowsiness levels and signal sources.
- According to the results, data fusion improved the performance by about 3% accuracy in comparison to ECG signals only and by about 8% in comparison to vehicle-based measures only.
- Two human factors of age and gender also were considered in the classification process. Results showed that the method obtained a slightly better performance for older than for younger drivers.

Acknowledgment

IFTG

17

http://humanresearch.at/

TU Graz

https://tugraz.at/

AVL 000

https://avl.com/

FACTUM MOBILITY · RESEARCH · INNOVATION

https://factum.at/

Thanks for your attention!

If you have any question, please do not hesitate to contact me: <a>s.arefnezhad@tugraz.at

	Herr	Arefnezhad, Sadegh, Fogh-lis. Lis.
	E-Mail Homepage	s.arefnezhad(at)tugraz.at https://www.linkedin.com/in/sadegh-arefnezhad-a66770b1/
Here is my visit Card.	Telefon TU Graz	+43 (316) 873 - 35270
	Sprechstunde	Mon-Fri, 9:00-16:00
•	Zusatzinfo	Working on driver drowsiness detection using multi-sensor data fusion algorithms
	Postadresse	3310 Institut für Fahrzeugtechnik 8010 Graz, Inffeldgasse 11/II (Institut für Fahrzeugtechnik FTG)
	Dienstort	[3310] 8010 Graz, Inffeldgasse 11/I, Raum FS01002

