
Step-wise Development of Provably Correct
Actor Systems

Bernhard K. Aichernig[0000−0002−3484−5584] and
Benedikt Maderbacher[0000−0002−5834−352X]

Graz University of Technology, Austria

Abstract. Concurrent and distributed software is widespread, but is in-
herently complex. The Actor model avoids the common pitfall of shared
mutable state and interprocess communication is done via asynchronous
message passing. Actors are used in Erlang, the Akka framework, and
many others. In this paper we discuss the formal development of actor
systems via refinement. We start with an abstract specification and in-
troduce details until the final model can be translated into an actor pro-
gram. In each refinement, we show that the abstract properties are still
preserved. Agha’s classical factorial algorithm serves as a demonstrating
example. To the best of our knowledge we are the first who formally
prove that his actor system computes factorials. We use Event-B as a
modelling language together with interactive theorem proving and SMT
solving for verification.
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1 Introduction

Modern computer systems rely heavily on concurrent and distributed software.
Classic techniques using shared mutable state and explicit synchronization mech-
anisms are not ideal for these tasks. Instead, many systems are written using
techniques that are designed to handle the challenges inherent to concurrent pro-
grams. A model that is widely used in this area are actor systems [19]. They are
based on asynchronous communication via message passing. Each actor has its
own memory and state that is isolated from the rest of the world. All interaction
is done by sending messages between actors. This concept has been implemented
in various programming languages such as Erlang [6,5] as well as in frameworks
for other languages such as Akka [21] for Scala [27] and Java [7]. Many well-
known distributed systems use various actor implementations in their backend.
This includes network infrastructure by Cisco [9] and Ericsson’s telecommunica-
tion systems [18]. The messenger WhatsApp uses Erlang on its servers [31,24].
Other usages of actors include various online games, for example LeagueOfLe-
gends [11]. Actor systems can also be used to describe other distributed systems
such as IoT devices.
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Actor systems by design help to prevent many common bugs in concurrent
programming, such as data races and many forms of deadlocks, but they do not
guarantee that the software is correct. There are still many possibilities to intro-
duce errors in software written with actors. The usage of such systems in critical
areas such as communication systems makes them an attractive target for for-
mal methods. Formal methods use mathematics and logic to model and analyse
hardware and software. They aim to find errors or certify the conformance to
a specification. This techniques help to create software with fewer errors. Large
companies, such as Amazon [26] and Microsoft [8], use formal methods to im-
prove the quality of their software. In this paper we will explore how the formal
method Event-B [1] can be used to verify actor systems. Here, we will focus on
one classical example, further examples can be found in Maderbacher’s master
thesis [23].

Actor Systems. The main component of the actor systems concurrency model
are so called actors. These are similar to processes or threads but they cannot
access any shared memory. Each actor can have its own local memory. Actors
communicate by sending messages. An actor who receives a message can do three
kinds of actions: (1) it can send messages to other actors, (2) create new actors,
or (3) change its own state or behaviour. A behaviour defines how an actor reacts
to messages. While an actor performs computations triggered by one message,
no other message can interrupt it. This allows actors to avoid the classic data
race problem [28,10].

Event-B. Event-B is a modelling language and formal method based on set the-
ory. One writes a model that captures the important behaviours of a system,
instead of directly verifying a computer program. An Event-B model contains
machines and contexts. A machine has a set of variables that define the state and
guarded events that can change this state. An initial event defines the initial val-
ues of the variables. Contexts contain the static definitions of a model, including
carrier sets, constants, and axioms. The models represent a discrete transition
system: the initial state is defined via the initial event. The transitions are formed
by enabled events with their guard expression evaluating to true in the current
state. If more than one guard is enabled, the choice is non-deterministic. If no
guard is enabled the system terminates or deadlocks depending on the interpre-
tation. A model is developed by using step-wise refinement. At each step a new
machine is created that is a refinement of the previous one. It is a more concrete
version that contains more details and is closer to the modelled system. For
each step a formal proof is required to demonstrate that this refinement relation
holds. The Rodin Platform [2], an Event-B IDE based on Eclipse, supports the
development and refinement of models with automatic generation and partial
discharging of mathematical proof obligations.

Next, we introduce our demonstrating example in Section 2. Then, in Sec-
tion 3 we discuss the modelling of actors in Event-B. Section 4 presents our
formal development starting from the mathematical definition of the problem
and ending in a correct actor system. Next, in Section 5 we briefly discuss a
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Listing 1: Factorial with Scala’s actor library Akka Typed.

1 final case class Request(value: Int, replyTo: ActorRef[Result])

2 final case class Result(value: Int)

3
4 val fact: Behavior[Request] = Behaviors.receive { (c, m) =>

5 m.value match {

6 case 0 => m.replyTo ! Result(1)

7 case n =>

8 val cont = c.spawnAnonymous(cont(m.value, m.replyTo))

9 c.self ! Request(m.value - 1, cont)

10 }

11 Behaviors.same }

12
13 def cont(i:Int, cust:ActorRef[Result]): Behavior[Result] =

14 Behaviors.receive { (c, m) =>

15 cust ! Result(i * m.value)

16 Behaviors.same }

truly concurrent extension of the previous actor system. Section 6 surveys re-
lated work. Finally, in Section 7 we discuss the results and draw our conclusions.

2 Demonstrating Example

As a demonstrating example we will develop Agha’s classical factorial algorithm
with actors [3]. The algorithm works recursively, but the computation is not
solely done by one function. Instead, it works by creating continuations for each
step. Each of these continuations is represented as its own actor. Additionally,
there is one actor called fact that receives requests by customers, to calculate
the factorial for a certain number. In response to these requests, it starts the
continuation actors to do the actual work.

An implementation of this algorithm, using Scala [27] and Akka Typed [22],
can be seen in Listing 1. The program contains two types of behaviours, fact and
cont. There exists exactly one actor with the behaviour fact, therefore we will
also refer to it as fact. It receives as a request the value that shall be processed
and the address of the recipient of the result. If the number is 0, it will imme-
diately send the result 1 to the recipient, otherwise it creates a new actor with
the cont behaviour. This new actor keeps as state the value and the recipient of
the request. After the new actor is created, fact sends itself an updated request,
containing the decremented value and the newly created continuation as recip-
ient. The cont actors await the result of the factorial of the number below the
one stored by them. Once this is received, it is multiplied by the stored number
and the result is sent to the stored recipient.

Figure 1 shows a sequence diagram computing the factorial of 3. At first,
only the actor Factorial exists. It receives a request with the number 3 and the
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recipient address c. As a result the continuation actor m is created with the
state 3 and c. The actor Factorial also sends itself the new request message
containing 2 and the address of m. This is repeated two more times and the
actors m’ and m” are created. When Factorial receives the request with the
value 0, it responds to the newest actor m” with the result 1. This triggers a
chain of result messages. The actor m” computes the value 1 and sends it to
m’. This continues till m sends the final result 6 to the customer who sent the
original request.

Fig. 1: Sequence diagram computing the factorial of 3 with actors.

Computing the factorial function in this way is not more efficient than using
a sequential program. It might even consume more memory because the number
of actors is linear in the size of the problem. One possible advantage of this
program is that it can distribute the computation of multiple calls to factorial
over multiple processors, instead of doing them one after another. In this case the
factorial actor receives not only a single request, but multiple requests over time.
The created continuation actors are distributed and can do all computations
independently. The general pattern of using actors to represent continuation
can also be used for more complicated computations. Thus, the techniques used
to verify this case study, might be applied to other more complex distributed
applications.

3 Modelling Actor Systems

To model actor systems in Event-B [1], it is necessary to define when a model
represents an actor system. This requires us to assign Event-B constructs to all
components of an actor system, we want to study. The two most important of
these components are actors and messages.
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Actors have unique identifiers. Hence, we define an Event-B context with
a carrier set ACTOR ID. It contains identifiers for dynamically created actors,
represented as natural numbers, and two special identifiers. The first one is
final id for the customer (main) actor who is outside the modelled system and
who, in our example, should receive the final result. To simplify computations,
it is represented by the number −1. In addition, we use invalid id if a variable of
type ACTOR ID is not used at some point in time. These identifiers are formally
defined as Event-B constants with the following axioms:

axm 0: ACTOR ID = N ∪ {−1, invalid id}
axm 1: final id = −1

axm 2: invalid id /∈ N
axm 3: final id 6= invalid id

To represent the actors, multiple new variables are introduced into an Event-
B machine: num actors stores the number of existing actors and actor id is a
set that stores all actor identifiers which are currently in use. These variables
are defined by these invariants:

inv 1: num actors ∈ N
inv 2: actor id = 0 .. (num actors− 1)

Meaning that exactly the actor identifiers from 0 to num actors − 1 are valid
and a newly created actor will get the next larger number as its identifier.

Actors may have a state. For example, the continuation actors in our example
store their value and the target actor who will receive their response. Both of
these state variables are represented as functions from actor id to their respective
types:

inv 3: cont actors target ∈ actor id→ (actor id ∪ {final id})
inv 4: cont actors value ∈ actor id→ N1

Actors communicate asynchronously via message queues. Hence, the most
general model would map actor ids to sequences (arrays) of messages. However,
we may postulate assumptions in order to simplify the model and consequently
verification. For example, for proving that the actor model computes the re-
cursive definition of a factorial function, we may (initially) assume a slow envi-
ronment, where a new request is only issued after a response has been received.
With such a synchronized behaviour, at most one message at a time can exists in
our factorial actor system. Hence, it is sufficient to use a single set of variables
for all components of messages. The Boolean variable msg exists stores if an
unprocessed message exists. The variables msg content and msg recipient store
the values of a message. If no message exists, the value of msg recipient will be
invalid id. The variable active actor stores the actor which receives the current
message if a message exists. Otherwise, it is the identifier of the last actor that
was created. We give the formal definition of these variables:

inv 5: msg exists ∈ BOOL



6 B. K. Aichernig, B. Maderbacher

inv 6: msg recipient ∈ actor id ∪ {final id, invalid id}
inv 7: msg content ∈ N1

inv 8: msg exists = FALSE ⇔msg recipient = invalid id

inv 9: active actor = num actors− 1

Note, that we prefer to decompose a message into separate variables over defining
a composite message type. Naturally, one would describe a message as a tuple
of its fields, e.g., the pair msg ∈ (actor id ∪ {final id, invalid id}) × N1. The
reason for our flat encoding is that the provers tend to have less difficulties with
basic data types.

In contrast, in a fully concurrent model, we need to keep track of individual
computation requests via a REQUEST ID . Hence, we model the message queues
of the continuation actors as follows1:

invC 1: cont mail msg content ∈ (ACTOR ID × REQUEST ID) 7→ N1

This is the most general model, where each actor has a set of messages to be
processed. In this model, too, it is beneficial to split the message queue of an
actor into separate queues per message type.

Having discussed the representation of actors in Event-B, we are going to
develop the actor model of the factorial.

4 Step-wise Development

In this section we detail the development of the sequential actor model where
the environment issues the next computation requests after receiving the result
of the previous one. Our formal development of the provably correct factorial
actor system follows a refinement strategy. We start with the standard recursive
definition of factorial. Then, in five refinements, the details necessary for an actor
system are added.

The initial model consists of an event that computes the factorial in one
step. The first refinement changes the one step computation into an iterative
algorithm. In the second refinement the used memory is made explicit in the form
of a stack. We also separate the creation of the memory cells from performing
the computation. Refinement 3 is the first one that resembles an actor system.
At that point the stack elements are replaced by actors and the computations
are triggered by messages. However, the process of creating the actors is still
controlled by an iterative program. Refinement 4 turns this last part into an
actor, controlled by sending updated messages to itself. Refinement 5 changes
the shared mailbox to one mailbox per actor.

4.1 Specification

The specification is captured in an initial model comprising a context that defines
the function fact and a machine (Figure 2) that uses this function. The context
defines two constants, the recursive factorial function fact and the input :

1 An arrow with a vertical bar is Event-B’s notation for a partial function.



Step-wise Development of Provably Correct Actor Systems 7

axm0 0: fact ∈ N→ N1

axm0 1: fact(0) = 1

axm0 2: ∀n·n ∈ N⇒ fact(n+ 1) = (n+ 1) ∗ fact(n)

axm0 3: input ∈ N

The initial machine has only a single variable result of type N. This variable is
used to store the final result of the computation. For brevity, we do not display
the variable definitions in the model listings, but show events only. There are
two events:

The Initialisation event sets the value of result to 0.
The Finish event contains one action

act0 0: result := fact(input)

that assigns result to the result computed by the fact function. This event
contains no guard and may be repeated.

This model is sequential as it assumes that one factorial is computed after each
other. A simulation consists of the execution of the Initialisation event followed
by an unrestricted number of computation steps without any effect. Execution
of the Finish event computes the factorial in one step. For simplicity, the input
is a constant as we are only interested to prove that the refined actor system
computes a factorial of an arbitrary input.

4.2 Refinement 1

The first refinement (Figure 3) splits the computation into multiple steps. The
new variables tmp result and val are introduced to hold the intermediate state.
The result variable stays part of the machine. The algorithm will do the cal-
culation beginning with the smallest number 1. In each consecutive step the
next factorial number is calculated based on the previous one which is stored
in tmp result. The number of remaining steps is stored in val. The types of this
new variables are N for val and N1 for tmp result.

MACHINE m0
EVENTS
Initialisation
begin

act0 0: result := 0
end
Finish 〈ordinary〉 =̂
begin

act0 0: result := fact(input)
end
END

Fig. 2: Events of the Specification.
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MACHINE m1
EVENTS
Initialisation
begin

act1 0: result := 0
act1 1: val := input
act1 2: tmp result := 1

end
ComputeStep 〈convergent〉 =̂
when

grd1 0: val > 0
then

act1 0: val := val − 1
act1 1: tmp result := tmp result ∗ (input− val + 1)

end
Finish 〈ordinary〉 =̂
refines Finish
when

grd1 0: val = 0
then

act1 0: result := tmp result
end
END

Fig. 3: Events of Refinement 1.

The Initialisation assigns the variable val to input. We need to do as many steps
as the value of the input. To start the computation properly, tmp result is
initialised to 1 the multiplicative identity. As in the previous machine, result
is set to 0.

The event ComputeStep is new and we have to show that it is convergent. This
means that the event must not be enabled infinitely often possibly preventing
the other events. The guard states that this event can only be executed if val
is not 0, meaning that there is still work to do. The two actions decrement
val and update tmp result to the next factorial number.

The event Finish refines the event of the same name. It now contains a guard.
Also, instead of assigning the final result directly, the variable tmp result is
assigned to result. This event can now only be executed if there are no more
computations to do and instead of doing the computation itself, the result
is just copied.

In order to demonstrate that this machine is indeed a refinement of the
previous machine, we need to confirm that all events refine their corresponding
abstract event. It is also required to show that all convergent events are really
convergent. That is, there exists a variant, an expression bounded from below
which is decreased by every execution of the convergent event.
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The event ComputeStep is new and the refinement relation is thus trivially
satisfied, if we can shown convergence. The variant for this machine is the vari-
able val. It is a natural number and thus cannot get infinitely small and it is
decremented in ComputeStep. Thus, it turns out that ComputeStep is indeed
convergent.

To justify that Finish refines its predecessor event, we need to demonstrate
that whenever val is 0, the value in tmp result is the correct final result. We can
prove this with the following invariants added to the model:

inv1 2: val ≤ input
inv1 3: tmp result = fact(input− val)

We need to prove that these invariants are preserved by all events. The
initialisation satisfies both invariants. More interesting is the event ComputeStep.
Before the event is executed tmp result = fact(input − val) and afterwards
tmp result′ = fact(input− val) ∗ (input− val + 1) = fact(input− val′) which
proves that the invariant inv1 3 is preserved. Here, we use standard notation:
primed variables refer to values after event execution while unprimed variables
denote values before execution. Constants are always unprimed. The proof of
inv1 2 follows from the observation that val is only decremented and input is a
constant.

Finally, we prove deadlock freedom. The corresponding theorem states that at
least one event must always be enabled, or expressed differently, the disjunction
of all guards must be a valid expression:

thm DLF: 〈theorem〉 (val > 0) ∨ (val = 0)

This theorem follows directly from the type definition invariant of val, stating
that val ∈ N. All proof obligations for this refinement can be discharged by the
included automatic solvers [17,14]. No manual proofs are required.

4.3 Refinement 2

In the second refinement (Figure 4) the computation is split into two phases.
First, all numbers are pushed on a stack, afterwards they are multiplied. This
brings us one step closer to the actor system, where first actors are created, then
they process messages to perform the actual computation.

For this stack-based model, we need to introduce several new variables:
counter tracks how many more elements need to be pushed, stack is a func-
tion that models the stack and stack pointer is the current size of the stack.
They are defined by the following invariants:

inv2 1: stack ∈ N 7→ N1

inv2 2: stack pointer ∈ N
inv2 3: 0 .. (stack pointer − 1) ⊆ dom(stack)

inv2 4: counter ∈ N
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MACHINE m2
EVENTS
Initialisation
begin

act2 0: result := 0
act2 1: counter := input
act2 2: stack := ∅
act2 3: stack pointer := 0
act2 4: tmp result := 1

end
Call 〈convergent〉 =̂
when

grd2 0: counter > 0
grd2 1: tmp result = 1

then
act2 0: counter := counter − 1
act2 1: stack pointer := stack pointer + 1
act2 2: stack(stack pointer) := counter

end
Return 〈convergent〉 =̂
refines ComputeStep
when

grd2 0: counter = 0
grd2 1: stack pointer > 0

then
act2 0: tmp result := tmp result ∗ stack(stack pointer − 1)
act2 1: stack pointer := stack pointer − 1

end
Finish 〈ordinary〉 =̂
refines Finish
when

grd2 0: counter = 0
grd2 1: stack pointer = 0

then
act2 0: result := tmp result

end
END

Fig. 4: Events of Refinement 2.

In inv2_3 the dom function is used to get the domain of a function. It means
that stack is defined for all N up to, but not including stack pointer which points
to the next free space in the stack. The variables result and tmp result are the
same as in the previous machine. The variable val is no longer visible.

The event Initialisation sets counter to input, stack to an empty set, stack pointer
to 0. The old variables result and tmp result are initialised as before to 0
and 1.
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The event Call is a new convergent event. It is responsible for pushing the
numbers on the stack. The guard states that there are numbers left and that
the computation has not started. This is needed to satisfy some invariants.
The actions push the value of counter and decrement it. To establish that
this event is convergent, the variant counter is used.

The event Return is a refinement of ComputeStep. Its guard requires that all
elements are pushed and that the stack is non-empty. When executed, it
pops one element and multiplies it with tmp result. The value of tmp result
is the same as in the previous refinement. The difference is that now it is
computed based on a stack element and not based on a simple variable.

The event Finish is almost the same as in the previous refinement. Only the
guard is slightly different.

To establish the refinement relationship, we need to relate the new variables to
the old ones of the more abstract model. This relation is defined in so called
gluing invariants as follows:

inv2 5: ∀n·n ∈ dom(stack)⇒ stack(n) = input− n
inv2 6: stack pointer + counter = val

inv2 7: counter = 0⇒ val = stack pointer

inv2 8: counter 6= 0⇒ val = input

The invariant inv2_5 allows us to know the value on the stack, which is im-
portant for the proof obligations related to the return event. The other three
invariants state how counter, stack pointer, and val are related. While the event
Call is executed, the value of val stays at input. At the same time counter and
stack pointer are decremented and incremented, but always both. Once counter
is 0 and the execution of return starts, the stack pointer takes the role of val. The
invariant inv2_7 follows directly from inv2_6, it could be marked as a theorem.
Using these invariants, all proof obligations can be discharged by the automatic
solvers [17,14]. The deadlock freedom theorem

thm DLF: 〈theorem〉 (counter > 0 ∧ tmp result = 1) ∨
(counter = 0 ∧ stack pointer > 0) ∨ (counter = 0 ∧ stack pointer = 0)

is also proven automatically.

MACHINE m3
EVENTS
Create 〈convergent〉 =̂
refines Call
when

grd3 0: counter > 0
then

act3 0: counter := counter − 1
act3 1: actor id := 0 .. num actors
act3 2: cont actors target(active actor + 1) := active actor
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act3 3: cont actors value(active actor + 1) := counter
act3 4: active actor := active actor + 1
act3 5: num actors := num actors+ 1

end
Created 〈convergent〉 =̂
when

grd3 0: counter = 0
grd3 1: msg exists = FALSE
grd3 2: active actor = input− 1

then
act3 0: msg exists := TRUE
act3 1: msg recipient := active actor
act3 2: msg content := 1

end
Compute 〈convergent〉 =̂
refines Return
when

grd3 1: msg exists = TRUE
grd3 2: msg recipient 6= final id
grd3 3: msg recipient = active actor

then
act3 0: msg recipient := cont actors target(msg recipient)
act3 1: msg content := msg content ∗ cont actors value(msg recipient)
act3 2: num actors := num actors− 1
act3 3: actor id := 0 .. num actors− 2
act3 4: cont actors target := {msg recipient}C− cont actors target
act3 5: cont actors value := {msg recipient}C− cont actors value
act3 6: active actor := cont actors target(msg recipient)

end
Finish 〈ordinary〉 =̂
refines Finish
when

grd3 1: msg exists = TRUE
grd3 2: msg recipient = final id
grd3 3: msg recipient = active actor

then
act3 0: result := msg content

end
END

Fig. 5: Events of Refinement 3.

4.4 Refinement 3

With the third refinement (Figure 5), we start to introduce actors. The stack,
used in the previous refinement, is now represented as actors and the computa-
tion phase is controlled by messages sent between these actors. Actor identifiers
and the number of existing actors are defined as described in Section 3.
In this refinement step only the memory for the computation is represented as
actors. This corresponds to the behaviour cont in Listing 1. The state of these
actors consists of value and target as defined in Section 3. Also the simplified
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model for messages for these actors has been presented in Section 3. Furthermore,
the two variables result and counter are taken from the previous refinement. The
machine consists of five events, one more than in the previous refinement.

In the Initialisation event most variables are set to empty or default values.
The variable active actor is set to −1, meaning that no dynamic actor exists
at that point. For brevity the initialisation event is not shown in Figure 5.

The event Create refines the event Call. It creates continuation actors. The
guard is a subset of the guard of Call. When executed, the counter is decre-
mented and a new continuation actor is created. To create this new actor the
num actors variable is incremented, the actor id variable is extended, and
the state is added to cont actors target and cont actors value. Additionally,
the active actor variable is set to the id of the newly created actor.

The newly introduced event Created is enabled when the counter reaches zero,
but no message was sent to a continuation actor. It is responsible for starting
the computation by sending the first message to the continuation actor that
was created last. To do so, the msg exists flag is set to true and the other msg
variables are filled. This event is introduced in this refinement and marked
as convergent. So we need to provide a suitable variant. We know that this
event is only executed once and it is the only event that changes msg exists.
To build a variant out of this Boolean variable, we need an auxiliary function
that turns the Boolean value into an integer and decreases when the input
changes from false to true. The following definition is part of the context:

axm3 4: boolToNat ∈ BOOL→ N
axm3 5: boolToNat(TRUE) = 0

axm3 6: boolToNat(FALSE) = 1

By using it, the variant can be defined as boolToNat(msg exists).
The event Compute is the receive function of the continuation actors. It is en-

abled whenever there exists a message for one of these actors. It also contains
two additional guards to keep the system synchronized. When the event is
executed, a message is sent to the stored target. The message contains the
product of the stored value and the value received via the latest message.
This corresponds to the cont behaviour in the actor algorithm in Listing 1.
Additionally, the actor who processed the message is deleted, as there will
be no more messages for it to process. This is done by removing it from the
cont actors functions and from the actor id set.

The Finish event corresponds to the customer who receives the final result. It
is enabled if a message arrives at this customer. When executed, the variable
result is set to the received result in the message.

In order to demonstrate that this third machine is a refinement of the second
machine, we need to provide some gluing invariants. These relate the now in-
visible variables of the stack system, to the new variables of the actor system.
The roles of tmp result and stack pointer are now taken by msg content and
num actor. In fact, these variables are equivalent to its predecessors, they are
just renamed to be a better fit for describing an actor system. The content of
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the continuation actors is equivalent to stack frames in the second refinement.
The gluing invariants are formally stated as:

inv3 8: msg exists = TRUE ⇒ counter = 0

inv3 11: msg content = tmp result

inv3 12: num actors = stack pointer

inv3 14: ∀x·x ∈ dom(cont actors value)⇒ stack(x) = cont actors value(x)

inv3 15: ∀x·x ∈ dom(cont actors target)⇒ cont actors target(x) = x− 1

As for all the previous machines, we need to provide a deadlock freedom theorem.
In this case we need to provide additional invariants to prove it because our
existing invariants are not strong enough. The value of msg recipient needs to
be derived correctly from the other information known in a guard. There is no
way to guarantee its values independently.

inv3 16: msg exists = TRUE ⇒msg recipient = active actor

inv3 17: (counter = 0 ∧msg exists = FALSE)⇒ active actor = input− 1

With this additional invariants the deadlock freedom theorem, i.e. the disjunc-
tion of all guards equals true, can be proven. The proof obligations from the
invariants and the deadlock freedom theorem are all automatically discharged
by the solvers [17,14]. The only manual intervention was the creation of the two
additional invariants for deadlock freedom.

4.5 Refinement 4

In the fourth refinement (Figure 6), we replace the counter variable by a message.
This message is sent by the factorial actor to itself. It corresponds to the Request
message and the fact actor in Listing 1. To model this message, we introduce
a new channel consisting of the variables msgC exists and msgC content. The
msgC prefix expresses that these variables belong to the message that sends the
counter. The variable counter from the previous refinement is removed, all other
variables stay the same. The variables are defined, including the gluing invariant,
as follows:

inv4 0: msgC exists ∈ BOOL
inv4 1: msgC content ∈ N
inv4 2: msgC content = counter

The number and names of the events are unchanged, compared to the previous
refinement.

The Initialisation is the same as before, except for the new variables.
The event Create is modified to handle the new message. Instead of checking

the value of the counter, the existence of the message and its value are
checked. The decremented counter is not updated directly, but instead sent
as a message. The msgC exists flag is already true, thus unchanged, and the
message content is written to msgC content.
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MACHINE m4
EVENTS
Create 〈convergent〉 =̂
refines Create
when

grd3 0: msgC exists = TRUE
grd3 1: msgC content > 0

then
act3 0: msgC content := msgC content− 1
act3 1: actor id := 0 .. num actors
act3 2: cont actors target(active actor + 1) := active actor
act3 3: cont actors value(active actor + 1) := msgC content
act3 4: active actor := active actor + 1
act3 5: num actors := num actors+ 1

end
Created 〈convergent〉 =̂
refines Created
when

grd3 0: msgC exists = TRUE
grd3 1: msgC content = 0
grd3 2: msg exists = FALSE
grd3 3: active actor = input− 1

then
act3 0: msg exists := TRUE
act3 1: msg recipient := active actor
act3 2: msg content := 1
act3 3: msgC exists := FALSE

end
END

Fig. 6: Events of Refinement 4. The events Compute and Finish are the same as
in Figure 5.

The event Created is also modified to work with the counter message. The
guard now checks the existence of the message and whether its content is
0. An additional action supplements the actions of the event. After the last
counter message was handled, the channel will be empty, as this event does
not create a new one. Thus, the value of the msgC exists flag needs to be
changed.

The events Compute and Finish are the same as in the previous refinement.

The proofs for refinement and deadlock freedom are done automatically [17,14].
To establish the deadlock freedom theorem, we need this additional invariant:

inv4 3: msgC exists = FALSE ⇒msg exists = TRUE
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4.6 Refinement 5

The fifth and last refinement (see Appendix) changes the mailboxes to arrays and
uses separate ones for each actor. This follows the technique for truly concurrent
systems described in Section 3 and gives a model that better resembles an actor
system.
We introduce the new variables for the mailboxes of the fact and cont actors.
They replace the variables msg exists, msg content, active actor, msgC exists
and msgC content. Their types are defined by the following invariants:

inv5 0: fact mail msgC content ∈ N 7→ N
inv5 3: fact index msgC ∈ N
inv5 4: cont mail msg content ∈ (ACTOR ID × N) 7→ N
inv5 6: cont index msg ∈ N

The state variables as well as the result and actor id variables are unchanged
compared to the previous refinement. The events are adapted to the new message
encoding in a relatively straightforward way. There is no change in the processing
logic.
To satisfy the refinement condition, we need gluing invariants to link the old
mailbox variables to the new ones. Note that the model still adheres to the
restriction that there can be only one message in all the continuation actor
mailboxes. This message must be in the mailbox of the actor identified by the
now hidden active actor variable. The Boolean exists flags are replaced by using
an empty set instead. This gives us these gluing invariants:

inv5 1: msgC exists = TRUE ⇔
ran(fact mail msgC content) = {msgC content}

inv5 2: msgC exists = FALSE ⇔ fact mail msgC content = ∅
inv5 7: msg exists = TRUE ⇔ ran(cont mail msg content) = {msg content}
inv5 8: msg exists = FALSE ⇔ cont mail msg content = ∅
inv5 9: ∃n·msg exists = TRUE ⇒
dom(cont mail msg content) = {active actor 7→ n}

Again, with these invariants all proofs are found fully automatically.

5 Concurrent Version

The previous model has one major limitation: it can only perform the computa-
tion once and, hence, behaves like a sequential program. Even though the actor
program in Listing 1 can compute the solution for multiple requests, these re-
quests can also occur while the previous computation is still running. In that
case the two computations are performed concurrently and can be interleaved. In
this section we adapt our previous factorial model to handle concurrent requests
like the Scala version.
It is not possible to realize this as a refinement of the previous machine. Instead
we create a new specification machine and refine it to an actor system as in
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MACHINE m0c
EVENTS
Initialisation
begin

act0 0: tasks := ∅
act0 1: results := ∅

end
Start 〈ordinary〉 =̂
any

input
task

where
grd0 0: input ∈ N
grd0 1: task /∈ dom(tasks)

then
act0 0: tasks(task) := input

end
Finish 〈ordinary〉 =̂
any

task
where

grd0 0: task ∈ dom(tasks)
grd0 1: task /∈ dom(results)

then
act0 0: results(task) := fact(tasks(task))

end
END

Fig. 7: Events of the concurrent specification.

the previous section. The concurrent machines follow the same structure as be-
fore, but we introduce a task identifier to associate each continuation actor and
message with a task.
The concurrent specification (Figure 7) contains variables for tasks and for
results. The start event expects as parameters an input and a unique task
identifier, it adds these to the set of tasks. Analogue to the Finish event in the
previous section the Finish event here calculates the factorial number in one
step. Instead of accessing the constant input it processes one of the tasks that
do not yet have an associated result. The newly computed number is inserted
into the results. That way the model is able to handle arbitrary many requests
instead of only one.
All refinements closely follow the ones from the previous section. The events
are similar, but they all expect a task parameter to know which task is pro-
cessed. Variables and invariants need to be lifted to the set of tasks. An in-
variant that previously had the form ϕ(input, result) becomes in this model
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∀task : ϕ(tasks(task), results(task)). Except for the newly added Start event
all machines contain the same events as in the sequential case.
Changing all of the variables to functions leads to some proofs requiring manual
intervention. Table 1 shows how many proof obligations where generated for
each refinement and how many of them where done automatically. We can see
that 29 out of 305 proof obligations required interactive proof. This is contrast
to the sequential actor model where all proofs were done automatically. This
demonstrates the effect of more complex data structures (here functions) to
proof automation.

Element Total Auto Manual

ctx0c 2 1 1
ctx3c 0 0 0
m0c 8 8 0
m1c 26 24 2
m2c 50 47 3
m3c 129 110 19
m4c 33 33 0
m5c 57 53 4

Σ 305 276 29

Table 1: Proof statistics for the concurrent model.

6 Related Work

Type systems have been used in conjunction with actors. Charalambides et al.
[12] apply session types to actor systems. This has been extended to also prove
liveness properties of actor systems [13]. Our method on the other hand uses re-
finement to develop a model in multiple steps. The specification is built gradually
and the model is separate from a possible program.
Rebeca is a modelling language and model checker for actor systems [30,29].
However, Rebeca cannot deal with the dynamic creation of actors necessary for
the factorial case study. Another actor modelling language is ABS [20]. It is an
executable and formally specified language based on the active object variant of
actor systems. ABS has been used in large industrial case studies [4]. KeY-ABS
[15,16] allows tool-based reasoning about ABS specifications. However, ABS does
not support refinement.
Musser and Varela [25] developed an actor theory in the Athena proof assistant.
Using Athena, they proved properties about actor systems like uniqueness of
addresses or fairness. Their theory supports the creation of actors and the ex-
change of actor identifiers. Another implementation of actor systems was done
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in the Coq proof assistant by [32]. They also modelled Agha’s factorial example
[3] but without a complete correctness prove. Their system can export Erlang
code and they proved uniqueness for their address generation and fairness. Both
of these works use correctness properties as theorems. However, they do not use
stepwise refinement or any other iterative process to develop the final program
from the specification.

7 Conclusion

In this paper we studied the formal development of actor systems in Event-B
using refinement. Starting from a mathematical recursive specification, we have
proven with five refinement steps that Agha’s classical factorial actor system is
correct. We have also proven deadlock-freeness and convergence from which the
termination of a single computation follows. With the assumption that requests
are issued synchronously, we could keep the actor model flat and all proofs could
be resolved automatically — once the necessary invariants have been added. Our
actor models use a naming scheme and actor code could be generated from it,
in principle, although this has not been implemented.
To the best of our knowledge, we are the first who formally verified that Agha’s
factorial actor system implements its recursive definition. Furthermore, we think
that we are the first who developed actor systems in Event-B. The example might
be simple, but it shows how recursive definitions can be turned into actor sys-
tems. Furthermore, the case study demonstrates the proof power of the available
provers. The key to this high automation is to keep the actor model as simple
as possible: we exploited the synchronous nature of the recursive definition and
kept the actor model flat, avoiding composite data structures.
The full development of the truly concurrent factorial model discussed in Sec-
tion 5 can be found in [23]. It uses the insights from the synchronous development
and shows that with the more involved data structures we loose proof automa-
tion: 9.5% of the 305 proof obligations needed manual intervention, which is still
acceptable. Maderbacher also develops a messaging client-server system which
demonstrates the applicability of the method beyond the factorial example.
We strongly believe that abstract models and refinement are essential to the
development of dependable distributed systems. An abstract model provides the
necessary global view and complexity needs to be added incrementally. Starting
at the actor or code level is too late and one has difficulties in stating the
correctness properties. This is demonstrated by the observation that we seem to
be the first who formally proved the correctness of the classical factorial actor
system — which was quite surprising to us.
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Appendix

The complete model of the final actor model computing a factorial number (Re-
finement 5).

MACHINE m5
REFINES m4
SEES ctx5
VARIABLES
result
num actors
actor id
cont actors target
cont actors value
fact mail msgC content
fact index msgC
cont mail msg content
cont index msg

INVARIANTS
inv5 0: fact mail msgC content ∈ N 7→ N
inv5 1: msgC exists = TRUE ⇔ ran(fact mail msgC content) =
{msgC content}

inv5 2: msgC exists = FALSE ⇔ fact mail msgC content = ∅
inv5 3: fact index msgC ∈ N
inv5 4: cont mail msg content ∈ (ACTOR ID × N) 7→ N
inv5 6: cont index msg ∈ N
inv5 7: msg exists = TRUE⇔ran(cont mail msg content) = {msg content}
inv5 8: msg exists = FALSE ⇔ cont mail msg content = ∅
inv5 9: ∃n·msg exists = TRUE ⇒ dom(cont mail msg content) =
{active actor 7→ n}

EVENTS
Initialisation
begin

act5 0: result := 0
act5 5: num actors := 0
act5 6: actor id := ∅
act5 7: cont actors target := ∅
act5 8: cont actors value := ∅
act5 9: fact mail msgC content := {0 7→ input}
act5 10: fact index msgC := 1
act5 11: cont mail msg content := ∅
act5 13: cont index msg := 0

end
Create 〈convergent〉 =̂
refines Create
any

content
index

where
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grd5 0: index ∈ dom(fact mail msgC content)
grd5 1: fact mail msgC content(index) = content
grd5 2: content > 0

then
act5 0: fact mail msgC content := {fact index msgC 7→ content− 1}
act5 1: fact index msgC := fact index msgC + 1
act5 2: actor id := 0 .. num actors
act5 3: cont actors target(num actors) := num actors− 1
act5 4: cont actors value(num actors) := content
act5 6: num actors := num actors+ 1

end
Created 〈convergent〉 =̂
refines Created
any

index
where

grd5 0: {index} = dom(fact mail msgC content)
we need to guarante that there is only one msg, because of the previous
machines

grd5 1: fact mail msgC content(index) = 0
grd5 2: cont mail msg content = ∅
grd5 3: num actors = input

then
act5 0: cont mail msg content := {(num actors−1 7→ cont index msg) 7→ 1}
act5 3: fact mail msgC content := {index}C− fact mail msgC content

end
ContCompute 〈ordinary〉 =̂
refines Compute
any

actor
index

where
grd5 0: {actor 7→ index} = dom(cont mail msg content)
grd5 1: actor 6= final id

then
act5 1: cont mail msg content := {(cont actors target(actor) 7→
cont index msg) 7→ (cont mail msg content(actor 7→ index) ∗
cont actors value(actor))}

act5 2: num actors := num actors− 1
act5 3: actor id := 0 .. num actors− 2
act5 4: cont actors target := {actor}C− cont actors target
act5 5: cont actors value := {actor}C− cont actors value

end
Finish 〈ordinary〉 =̂
refines Finish
any

actor
index

where
grd5 0: {actor 7→ index} = dom(cont mail msg content)
grd3 1: actor = final id



22 B. K. Aichernig, B. Maderbacher

then
act3 0: result := cont mail msg content(actor 7→ index)

end
END
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