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Abstract—Autonomously driving vehicles require higher safety
and reliability standards than traditional human-driven vehicles
as they need to be able to handle safety-critical situations on
their own. Therefore, these systems needs to demonstrate fail-
operational behavior to ensure safety of the passengers by basic
car controls. Especially silent failures of semiconductor devices
can be critical from a safety point of view. Semiconductor devices
fail abruptly and cannot be detected in advance.

This paper presents a novel sensor approach to detect those
kind of silent failures ahead of time and to ensure safety
for future advanced driver-assistance systems (ADAS) such as
LiDAR (Light Detection and Ranging). We have evaluated the
design of our novel sensor concept in SystemC which will be
implemented in a LiDAR system to mitigate silent failures as
well as enable dynamic safety contracts.
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I. INTRODUCTION

Autonomous driving is one of the next big steps of our

society and is the key enabler of Smart Mobility [1]. Smart

Mobility reinvents the urban environment by connecting in-

frastructure, vehicles and people to allow better quality of life,

efficient energy usage and reduced costs for everyone. As a

result, this era will disruptively change the daily routines of

individuals as well as urban life [2]. 50 years ago, the idea

of Smart Mobility started in Germany when Continental, a

leading German automotive manufacturing company, tested

tires on their test track Contidrom. Continental wanted to

ensure constant conditions for testing and developed a self-

driving car for this purpose [3]. This marked the beginning

Fig. 1. PRYSTINE’s concept view of a fail-operational urban surround
perception system [1].

of autonomous driving. Nowadays, self-driving cars have

already made their way to public streets. Tesla was the first

company to release a semi-autonomous driving function called

“Autopilot” [4]. Past accidents showed that it is hard to

ensure safe semi-autonomous driving in urban environments

by traditional methods [5]–[7]. Consequently, new Advanced

Driver-Assistance Systems (ADAS) such as LiDAR (Light

Detection and Ranging) need to be developed and combined

with established systems. This is also the PRYSTINE (Pro-

grammable Systems for Intelligence in Automobiles“ project’s

focus which aims at developing a comprehensive environment

perception system by using LiDAR, radar and vision cameras

as shown in figure 1 [1]. One of the key challenges of

autonomous driving is safety and reliability of before men-

tioned systems. Traditional human-driven vehicles are fully -

or supported by ADAS almost fully - controlled by the driver.

Therefore, the system can return control and responsibility to

the driver in critical situations. In future, vehicles with fully

autonomous driving functionality will not have this possibility

and need to be able to deal with critical situations on their

own. That’s one of the reasons why the impact of safety and

reliability in the automotive domain is steadily increasing [8].

Nowadays, safety-critical automotive systems are developed

in compliance with the ISO 26262 standard. This standard

covers the development of electrical and electronic compo-

nents for the automotive domain with a special focus on safe

hardware and software components [9]. The standard added

a guideline especially for semiconductor devices but does not

support or cover dynamic safety functions such as ”Conserts

M“ or ”Ontology-Based-Run-time-Reconfiguration“. Dynamic

safety functions are necessary to establish resilience and

flexibility to complex cyber-physical systems (CPS) [10].

Especially for future ADAS, such as the fail-operational urban

surround perception system of the PRYSTINE project, this

concept is vital to ensure fail-operational behavior during run-

time.

Fail-operational systems require information about the com-

mon reliability and safe state of each system. Up to now, there

is no possibility to retrieve live information about component

reliability. Usually, components are designed for a specific

utilization profile and safety is dimensioned for this profile.

If there are substantial deviations to this profile, components

could be undersized from a safety point of view [9]. It



would be beneficial to enable live monitoring of semiconductor

devices’ component reliability to communicate the state-of-

health of individual components.

This paper will address the following research questions:

• Is it possible to detect component reliability of semi-

conductor systems during run-time?

• How can component reliability be measured for semi-

conductor devices?

II. RELATED WORK

In general, detecting safety-related issues of mechanical

components is rather trivial as it often involves vibration or

noise during the operation [11]. For electrical or electronic

components, detecting safety-related issues is much more com-

plex. These systems fail silently and abruptly [9]. Especially

for fully-autonomous vehicles, this fact poses a substantial risk

as these systems need to handle every safety-critical situation

on their own and any failure could trigger fatal road accidents.

If we consider tucks carrying ecologically harmful substances,

accidents may also lead to environmental disasters.

In general, designers of safety-critical semiconductor de-

vices construct and dimension components for specific utiliza-

tion profiles. These profiles cover the worst case utilization of

the component to ensure component reliability during lifetime.

Especially for semiconductor companies that design “Safety

Elements out of Context”, this design philosophy is difficult

as they need to find the best compromise between cost and

reliability. Overdimensioning hardware leads to higher costs,

which may be the decisive factor for making business or not.

Nowadays, every semiconductor device contains additional

safety-related monitoring circuits. For digital circuits, common

monitors are error correction codes (ECC) or Built-In-Self-

Test (BIST), analog circuits use monitors such as the Built-

In-Current Sensor (BICS). These monitors mitigate specific

problems: For instance, ECC control single event upsets

(SEU), BIST checks correct functionality [9]. Shaheen et

al. [12] describe common ECC practices in the automotive

domain such as Parity Bit, Single Error Correction, Single

Error Correction and Detection to detect and correct SEU

during run-time [12]. Sargsyan [13] describes different BIST

technologies that ensure correct functionality of digital semi-

conductor devices such as Production Mode Testing, Power-

on Mode Testing and Mission Mode Testing. These tests are

executed at startup or during idle time and compare the result

with deposited patterns [13]. For analog circuits, Smith et al.

describe the BICS that can detect current leakage [14]. Beckler

et al. [15] introduce the On-Chip Diagnosis for early life and

wear-out failures [15]. All these approaches only focus on

testing the specific circuit’s functionality in a specific moment

and can not give any information on the current state-of-

health. Therefore, it is necessary to have historical data about

the device such as temperature, for instance. Szekely et al.

[16] introduce a sensor for on-line temperature monitoring of

safety-critical Integrated Circuits (IC). However, this sensor

focuses on observing and communicating current temperature

to external systems but does not cover temperature history

[16]. Especially temperature history has a big impact on

component reliability and needs to be considered from a safety

point of view because higher temperature relates to higher

component stress and this negatively influences the reliability.

Component reliability is one of the key requirements for

safety-critical hardware devices. Nowadays, the automotive

industry’s approved safety methods are compiled in the ISO

26262 standard [9]. In general, these methods quantify hard-

ware devices’ component reliability in the failure in time

(FIT) Rate. The FIT Rate represents the amount of failures

that statistically arises within one billion operating hours. The

FIT Rate is calculated or statistically determined by specific

standards such as the IEC TR 62380 [17]. Usually, each

semiconductor manufacturer publishes the specific FIT Rates

for their devices in the component reliability data sheet [18].

These data sheets usually provide the FIT Rate for a specific

test temperature which can be used to calculate equivalent FIT

Rates for specific temperatures using the Arrhenius equation

as seen in (1).

DF = e
Ea
k

·( 1
Tuse

−
1

Tstress
))

(1)

where:

DF is Derating Factor

Ea is Activation Energy in eV

k is Boltzmann Constant (8.167303 x 10-5 ev/K)

Tuse is Use Junction Temperature in K

Tstress is Stress Junction Temperature in K

The Derating Factor (DF) represents the positive or negative

feedback of the specific temperature on the semiconductor

device and depends on the Junction Temperatures that need

to be determined with equation (2).

Tj = Tamb + Pdis · θja (2)

where:

Tamb is Ambient Temperature

Pdis is Power Dissipation

θja is Package Thermal Resistance Value

Equation (2) shows that the component reliability depends on

the power dissipation as well as on the ambient temperature

of the integrated circuit. The Derating Factor can be used for

calculating the specific FIT Rate for a specific temperature as

seen in (3).

FITBase = DF · FITDS (3)

where:

DF is Derating Factor as seen in (1)

FITDS is Base FIT Rate of Component Reliability Data

sheet

The idea of Beckler et al. [15] and Szekely et al. [16] with

these equations could be used for live component reliability

monitoring.

Therefore, this paper’s contribution to existing research is:

• Developing a novel method for enabling live safety

monitoring of safety-critical automotive systems.



• Implementing the novel method in SystemC to prove

feasibility.

• Describing the integration of the novel method in a safety-

critical LiDAR sensor system for autonomous driving.

III. USE CASE OVERVIEW

Self-driving vehicles handle safety-critical situations on

their own without any control of a driver. Consequently, a

high safety and reliability standard is necessary to ensure

fail-operational behavior. In the next few years LiDAR will

become common in middle-class cars and will be an im-

portant part of self-driving functionality [19]. LiDAR is an

environment perception systems in combination with Radar

and Vision [1].

The 1D MEMS LiDAR system of Druml et al. [19] is

a novel approach to develop an inexpensive ADAS that is

suitable for the mass. Novel technologies are always related

to unknown failures [11]. Especially in the domain of self-

driving cars, these failures are not tolerable because they result

in severe road accidents.

To increase the learning curve and to evolve safer and

more reliable LiDAR systems as fast as possible, component

reliability should be monitored live to get real-time data of a

single vehicle as well as of a complete fleet. This will enable

functions that increase the overall safety level of an individual

driver as well as the overall road safety. Both scenarios will

be described in our use case that is divided into two sections:

• Live Reliability Data for Customers

• Live Reliability Data for Original Equipment Manufac-

turer (OEM)/Suppliers

A. Live Reliability Data for Customers

The reliability data of a single vehicle can be used to

determine the overall usage level of a specific system as well as

of the complete car. This could be used for enabling predictive

maintenance like in the aircraft industry. If a specific FIT Rate

is reached and the safety-critical device is dropping in the

Automotive Safety Integrity Level (ASIL), this could trigger

the replacement of the specific device. Especially for self-

driving cars this approach could ensure a specific safety level

of all self-driving road vehicles.

Another use case is the review of the complete car if

individual maintenance repairs are worth to accomplish. If a

certain amount of systems has reached a specific FIT Rate, this

would suggest that these systems will also fail in the next few

months. This will support the customer during his decision, if

a repair is useful or not.

B. Live Reliability Data for OEM/Supplier

For OEMs and suppliers, the reliability data is valuable to

understand whether the systems are designed for their use

cases and whether there are any problems that could arise

during warranty time. By using real-time data, suppliers can

interfere to adapt the software parts of the devices to ensure

a specific FIT Rate until the end of lifetime.

Especially software updates are changing the behavior of
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Fig. 2. Use case overview of the live FIT Monitor for safety-critical LiDAR
sensor systems.

devices and may have a big impact on the overall safety level.

By collecting reliability data of these live monitors, it will be

possible to investigate and evaluate changes of these updates

from a safety point of view.

IV. RETROFIT - LIVE SAFETY MONITORING SENSOR

DF = e

Ea
k

·( 1
Tuse

−
1

Tamb+Pdis·θja
))

(4)

By combining both equations of the Related Work on com-

ponent reliability, it becomes obvious that it is possible to

calculate the theoretical FIT Rate for a specific temperature

as seen in (3). However, component temperature is changing

over time which results in different FIT Rates. Therefore,

considering these temperature profiles as a time slice in a

whole mission profile [9] will be used and integrated in our

novel approach of live safety monitoring.

The idea behind our novel approach is to sample the power

dissipation and the actual case temperature at a specific time

interval. The power dissipation measurements are averaged

and saved in a register which represents the average power

dissipation of the whole lifetime. The temperature values are

classified in a specific temperature range and integrated in a

histogram. This histogram represents the whole temperature

history of the integrated circuit during lifetime and can be

used for further component reliability computations.

For calculating the FIT Rate at a specific time, the following

steps are necessary:

1) Calculate FIT Rate for each Histogram Bin

2) Determine the time span percentage of each Histogram

Bin

3) Calculate the FIT Rate for each Histogram Bin



4) Sum up each individual Bin FIT Rates to the overall FIT

Rate

5) Determine and check with theoretical lifetime FIT Rate

A. Calculate FIT Rate for each Histogram Bin

Each Histogram Bin represents a specific temperature. In

our case, we chose a temperature range between 0◦C and

140◦C. For each Bin, the specific FIT Rate can be calculated

by using equation (3) and (4). These FIT Rates represent the

statistical lifetime FIT Rate assuming this device would run

on this specific temperature for the whole lifetime.

B. Determine the time span percentage of each Histogram Bin

As a first step, the run-time of the device until this moment

is determined. For this purpose, all samples of the whole

Histogram are summed up as seen in (5).

TOR =

∑
n · TSR

3600
(5)

where:

TSR is sampling rate of the measurements.

The overall run-time can be used to determine the specific

amount of run-time for each Histogram Bin as seen in (6).

TRun =
TSR

3600 · TOR

· n (6)

where:

TSR is sampling rate of the measurements.

TOR is the whole run-time of the device as calculated in

(5).

The equation (6) is used to calculate the run-time for each His-

togram Bin. In the next step, the specific FIT Rate considering

the specific run-time is calculated.

C. Calculate the FIT Rate for each Histogram Bin

In the next step, the FIT Rate of the whole lifetime of each

Histogram Bin is calculated.

FITBin =
FITRB

TEL

· TRun (7)

where:

FITRB is FIT Rate of the specific temperature of the Bin as

calculated in (4).

TRun is the whole run-time of the device as calculated in

(5).

TEL is the expected lifetime of the semiconductor device

that has been selected during design phase.

D. Sum up each individual Bin FIT Rates to the overall FIT

Rate

In the last step, all individual FIT Rates of the Bins are

summed up to an overall FIT Rate.

FITTS =

∑
FITBin (8)

where:

FITBin is FIT Rate of each Bin as calculated in (7).

This value represents the FIT Rate to this specific timestamp

and can be compared to the theoretical FIT Rate up to this

timestamp as well as the theoretical FIT Rate until the end of

the expected lifetime.

E. Determine and check with theoretical lifetime FIT Rate

In the last step, we observe if the FIT Rate of the current

timestamp exceeds the theoretical FIT Rate that was chosen

during design phase.

FITTTS = FITDS ·
TOR

TEL

(9)

where:

FITDS is theoretical FIT Rate for a specific temperature as

seen in (4).

TOR is run-time of the device until this timestamp as seen

in (6).

TEL is the expected lifetime of the semiconductor device

that has been selected during design phase.

The ratio between the theoretical FIT Rate and the calculated

FIT Rate gives a tendency about the usage of the device and

whether there should be any concern due to predicted over-

stress until the end of the lifetime.

FITRatio =
FITTS

FITTTS

(10)

Ratios that are greater than one indicate that the device was

used too extensively and that there could be over-stress until

the end of the expected lifetime. This also increased the

theoretical amount of failures until the end of the lifetime. The

amount of statistical failures can be determined with equation

(11).

FITLT = FITTS ·
TEL

TOR

(11)

where:

FITTS is the calculated FIT Rate for a specific timestamp

as seen in (8).

TOR is run-time of the device until this timestamp as seen

in (6).

TEL is the expected Lifetime of the semiconductor device

that has been selected during design phase.

V. RESULTS

We will implement the “RetroFIT” method in a LiDAR

system as seen in Figure 3. To evaluate the functionality and

behavior of this methodology we implemented this approach

in SystemC.

In Figure 4 the architecture of the implemented FIT Monitor

can be seen. The architecture consists of the “Environmental

and Integrated Circuit Simulation Model” that contains the

temperature profile (as seen in Figure 5) curve that will

stimulate the FIT Monitor. The histogram will save each

sampled value of the temperature as well as the average power

dissipation. The last part is the signal processing where the FIT

Rates are calculated as described in Section IV. In Figure 5 the

upper diagram is showing temperature profile that have been
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Fig. 3. Live FIT Monitor integration into the safety-critical LiDAR sensor
system to enable live safety monitoring [19].

used for our simulation. The lower diagram shows the specific

temperature values for each sampling point. In our simulation

we have sampled with a frequency of 0.05 Hertz. The related

Histogram of our simulation can be seen in Figure 6. Each

Histogram Bin represents a 1◦C and is distributed on the x-

Axis. The amount of samples can be read out on the y-Axis.

In our simulation the most samples could be found between

100◦C and 110◦C. Compared with the temperature profile of

Figure 5 this looks plausible.

TABLE I
FIT RESULTS OF OUR SYSTEMC MODEL SIMULATION WITH

TEMPERATURE PROFILE INPUT AS SEEN IN FIGURE6.

FITTS FITTTS FITLT FITRB FITRatio

FIT

in [1]
2.36E-9 2.111E-9 8.5 7.6 1.118
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Fig. 4. SystemC model overview of the “RetroFIT” methodology to enable
live safety monitoring for safety-critical LiDAR sensor systems.
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Fig. 6. Histogram results of the “RetroFIT” monitor.

In Table I the FIT results of our SystemC simulation can be

seen. The device has an FITRB value of about 7.6 in 1 Billion

operating hours at 100◦C. The provided temperature profile,

as seen in 5, over-stresses the component and this results in

a higher FITLT of about 8.5. As a result the device has been

over-stressed by 11.8%. Consequently, a continuously operated

device with this temperature profile would result in a higher

FIT Rate than from the designer of the device expected.

VI. SUMMARY

In Section IV, this paper introduces the novel “RetroFIT”

sensor to support live safety monitoring of electrical and

electronic devices. Nowadays, electronic components such as

sensors and micro-controllers fail without any prior indication.

Especially for fully automated driving, this circumstance may

cause disastrous consequences such as deadly accidents. For

future autonomous driving vehicles, our novel method can

communicate the actual component reliability.

To give an overview about the application of our novel

sensor, we have introduced two common use cases from the

customer point of view as well as from the OEM/Supplier

point of view. Both cases show that “RetroFIT” has a big

impact on the overall road safety as the sensor may for instance

trigger component replacement. The values could be obtained



by qualified car repair shops as well as displayed inside the

driver’s cabin including service deactivation.

In section V, we prove that the sensor concept is feasible

and that it is possible to live monitor component reliability for

electronic devices.

Fail-operational systems become increasingly essential. Our

novel “RetroFIT” sensor enables dynamically changing con-

tracts during run-time. This concept is one of the key enablers

of advanced fail-operational systems. Our sensor enables the

communication of the actual ASIL level of components and

communicates these values to other systems. This will detect

ASIL degradation during run-time and trigger safety related

functions to increase the overall system safety.
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