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Abstract— A brain-computer interface (BCI) can be used to
control a limb neuroprosthesis with motor imaginations (MI)
to restore limb functionality of paralyzed persons. However,
existing BCIs lack a natural control and need a considerable
amount of training time or use invasively recorded biosignals.
We show that it is possible to decode velocities and positions of
executed arm movements from electroencephalography signals
using a new paradigm without external targets. This is a
step towards a non-invasive BCI which uses natural MI.
Furthermore, training time will be reduced, because it is not
necessary to learn new mental strategies.

I. INTRODUCTION

A brain-computer interface (BCI) [1] measures biosignals
originating in the brain and uses them to control devices.
One important application of a BCI is the restoration of
upper limb functionality of paralyzed persons [2]. The ideal
solution is to detect natural movement imaginations in a
non-invasive way and continuously control an arm neuro-
prosthesis. Here, natural means that the actually imagined
arm movement (in a certain direction with a certain speed)
is also executed by the arm neuroprosthesis. Thus, there
exists a direct-link between motor imagination (MI) and arm
neuroprosthesis movement. In this work, we assume that an
arm neuroprosthesis capable of executing natural movements
exists and face the problem of detecting natural movements.

Sensorimotor rhythms (SMR) [3] based BCIs detect power
modulations in certain frequency bands in electroencephalog-
raphy (EEG) signals [4] induced by MI. In [5] imaginations
of foot movements were used for closing and opening
the right hand of a patient with tetraplegia. The switching
between different phases of the lateral grasp with left hand
MI was shown in [2]. SMR based BCIs have the advantage
of operating non-invasively, but MIs are artificially assigned
to neuroprosthesis movements. Thus, MIs are not natural.

Gratifyingly, there are evidences that low frequency sig-
nals measured from cortex carry valuable information regard-
ing arm movement trajectories. It was shown in [6] that it is
possible to decode two-dimensional movement trajectories
when controlling a joystick. Signals were recorded with
electrocorticography (ECoG). A low frequency time-domain
signal was found which correlates with movement trajecto-
ries. This signal component was referenced as local motor
potential (LMP). In [7] it was shown that the arm movement
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direction of subjects performing a center-out task can be
decoded from ECoG. Decoding information was carried by
movement-related potentials as well as spectral amplitude
modulations in low frequencies (< 2 Hz) and in the high
gamma band. [8] successfully decoded arm movement trajec-
tories from subjects using low frequency components from
ECoG signals. There, subjects performed two-dimensional
movements to random targets.

[9] proofed that three-dimensional executed arm move-
ments can also be decoded from EEG, probably paving
the way to a new generation of BCIs which decode non-
invasively natural arm movement imaginations. In [9] low-
pass filtered (< 1 Hz) signals were used to decode arm
velocities during a center-out reaching task. It is probable
that these low frequency components measured from EEG
are the same as those measured from the ECoG, although
yet a proof remains.

In this work we were basing on the approach from [9]
and investigated if it is possible to decode arm movements
from EEG (velocities and positions) using a new paradigm
without external targets.

II. METHODOLOGY

A. Subjects

Five healthy right-handed subjects (3 females) participated
in the experiment. Subjects s1, s2 and s3 had prior experience
with BCI measurements. Subjects were seated in an armchair
with their left forearm fully supported by the armrest.

B. Paradigm

Subjects moved their right arm continuously and self-
chosen in front of the body in all three dimensions. We call
this a continuous and self-chosen movement task. The hand
was closed and the thumb was on the upside. Subjects were
instructed to perform natural, round (not jaggy) and in speed
varying arm movements when a trial started. To suppress
eye movements, subjects were asked to fixate their gaze
on a cross presented on a screen in front of them. Further
restrictions were not imposed. We recorded ten trials, each
lasted 65 s. For further analysis, we only used the last 60 s
of a trial to exclude movement onset effects. Thus, in total
we obtained 10 min movement data from each subject. The
start of a trial was indicated by a short beep tone. Breaks
were inserted between trials with a subject specific duration
(usually around 1 min) to avoid fatigue of arm and shoulder
muscles. No feedback was provided.



C. Signal recording

Forty-nine Ag/AgCl electrodes spread over sensorimotor
and frontal areas were used to record EEG signals from
the scalp. Three electrooculography (EOG) electrodes were
positioned above the nasion, and below the outer canthi of
the eye. Reference was placed on the left ear, ground on
the right ear. All electrode impedances were below 5 kΩ.
After band-pass filtering between 0.01 Hz and 200 Hz with
an eighth-order Chebyshev filter and applying a notch filter
at 50 Hz, signals were sampled with 512 Hz using four
g.USBamp amplifiers (g.tec, Graz, Austria). x/y/z coordi-
nates of the right hand of the subjects were tracked with the
Kinect sensor device (Microsoft, Redmond, USA) using the
OpenNI framework (http://www.openni.org) and the NiTE
middleware (PrimeSense, Tel-Aviv, Israel). We rotated the
coordinate system so that the x-axis was going from right
to left, the y-axis from down to up and the z-axis from
front to back relative to the subject. EEG, EOG and hand
positions were recorded with a customized TOBI Signal
Server [10] and Matlab (MathWorks, Massachusetts, USA).
After recording, we removed linear trends from raw EEG
signals per trial. We filtered signals with a 100 Hz zero-phase,
fourth order, low-pass Butterworth filter and down sampled
to 256 Hz to reduce computational effort.

D. Decoder

1) Velocity: The velocity decoder was originally described
in [9] and is only summarized here. It transforms EEG
signals into instantaneous velocity signals of the (right) hand.
In a preprocessing step, we low-pass filtered with a fifth-
order Butterworth filter with a cutoff frequency of 1 Hz.
Then, we calculated time differences of the filtered signals
and normalized to a mean value of 0 and a standard deviation
of 1. The resulting signals are referenced as Sn[t], where n
is the EEG channel number and t is the time step. The actual
decoder comprises three linear models:

vx = ax +

N∑
n=1

L∑
k=0

bnkxSn[t− kT ] (1)

vy = ay +

N∑
n=1

L∑
k=0

bnkySn[t− kT ] (2)

vz = az +

N∑
n=1

L∑
k=0

bnkzSn[t− kT ] (3)

vi is the velocity of the hand in the i-th dimension, N is
the number of EEG channels, L is the number of time lags
used for decoding. T is the interval between two time lags
and was set to 11.7 ms, which is 3 times the smallest time
step when using a sampling rate of 256 Hz. ai and bnki are
the weights of the linear models. The weights were found
with multiple linear regressions. As dependent variables we
used 1 Hz low-pass filtered and differentiated measured x/y/z
coordinates of the hand.

2) Position: Here we present an adaption of the velocity
decoder which decodes directly hand positions of executed

movements from EEG. The differentiation of the position
yields the velocity. Thus, one can suppose removing the
differentiation step in the velocity decoder described above
would give us the actual position of the hand. We found that
frequencies below 0.5 Hz negatively influence correlations.
Therefore, instead of just removing the differentiation, we
replaced the low-pass filter and the differentiation with a
band-pass filter with cutoff frequencies at 0.5 Hz and 2 Hz.
The output of the three linear models is now the position of
the hand. To compute the model weights with multiple linear
regressions, the band-pass filtered (0.5 Hz - 2 Hz) measured
coordinates of the hand were used as dependent variables.

E. Analysis
To assess the quality of the velocity decoder we calculated

for each subject Pearson correlation coefficients (r) between
decoded x/y/z velocities and 1 Hz low-pass filtered measured
x/y/z velocities from the Kinect. We used a 30-fold cross-
validation, that means we tested against 20 s of data. For the
position decoder, measured hand positions were band-pass
filtered from 0.5 to 2 Hz and correlated with the decoded
positions. To exclude a possible decoding of eye movements
instead of brain activity, we also decoded velocities and
positions from EOG.

Each channel at each time lag has three weights (bnkx,
bnky , bnkz , corresponding to the x/y/z coordinates). These
weights form a vector contributing (weighted with the EEG
signal) to the final velocity or position, respectively. To assess
the contribution from each channel at each time lag, we
computed the euclidean norm over these weight-vectors and
averaged over cross-validation folds.

III. RESULTS
A. Velocity Decoder

For each subject, the mean value and standard deviation of
r over all 30 cross-validation folds, when decoding velocity
from EEG, are shown in Table I. The mean value and
standard deviation of r over all subjects in x, y and z axis are
0.70/0.77/0.62 ± 0.13/0.11/0.15. Decoding from normally
distributed random data yield maximal absolute r values of
0.03/0.12/0.07. Table II shows r when decoding from EOG.
Here, the mean value and standard deviation of r over all
subjects are 0.35/0.33/0.23 ± 0.22/0.20/0.16.

TABLE I
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING VELOCITY FROM EEG

s1 s2 s3 s4 s5
vx 0.53±0.09 0.71±0.08 0.79±0.07 0.74±0.11 0.73±0.10
vy 0.84±0.06 0.78±0.09 0.71±0.09 0.78±0.09 0.71±0.13
vz 0.71±0.08 0.54±0.16 0.67±0.06 0.50±0.16 0.67±0.12

A common weight pattern between equivalent time lags
was not found across subjects. Subjects show basically at
least a contribution from premotor/supplementary motor area
or primary motor/sensory area. All subjects show contribu-
tion peaks at time lags 35 ms and 82 ms and a high contribu-
tion plateau between. The same contribution distribution over



TABLE II
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING VELOCITY FROM EOG

s1 s2 s3 s4 s5
vx 0.27±0.17 0.46±0.17 0.15±0.18 0.44±0.20 0.42±0.19
vy 0.42±0.12 0.28±0.18 0.13±0.14 0.48±0.18 0.33±0.18
vz 0.25±0.17 0.17±0.16 0.20±0.14 0.18±0.16 0.33±0.15

time lags can be observed when decoding from random data
drawn from the standard normal distribution. Exemplarily,
Fig. 1 shows the contribution of each EEG channel at each
time lag averaged over cross-validation folds for subject s3.

Fig. 1. Velocity decoder: Qualitative contribution of each channel at each
time lag for s3. The largest contribution is colored red, the smallest blue.

An example of decoded and low-pass filtered measured
velocities for subject s3 are shown in Fig. 2. The decoder
was tested on run 1 and trained on runs 2 to 10.

B. Position Decoder

For each subject, the mean value and standard deviation of
r over all 30 cross-validation folds, when decoding position
from EEG, are shown in Table III. The mean value and
standard deviation of r over all subjects in x, y and z axes are
0.70/0.78/0.62 ± 0.12/0.09/0.14. Decoding from normally
distributed random data yield maximal absolute r values of
0.01/0.07/0.04. Table IV shows r when decoding from EOG.
Here, the mean value and standard deviation of r over all
subjects are 0.33/0.32/0.22 ± 0.22/0.19/0.14.

A common weight pattern between equivalent time lags
was not found across subjects. Contributions from the 105 ms
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Fig. 2. Decoder example: Measured and decoded velocities (left) and
positions (right) from subject 3 in the time domain.

TABLE III
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING POSITION FROM EEG

s1 s2 s3 s4 s5
x 0.52±0.08 0.71±0.06 0.79±0.08 0.75±0.09 0.73±0.10
y 0.84±0.04 0.81±0.05 0.73±0.08 0.80±0.09 0.74±0.11
z 0.71±0.08 0.54±0.16 0.66±0.07 0.54±0.17 0.64±0.11

time lag were similar to contributions from the 35 ms time
lag of the velocity decoder. All subjects show contributions
peaks at time lags 12 ms and 105 ms and low contribu-
tions otherwise. The same contribution distribution can be
observed when decoding from normally distributed random
data. Exemplarily, Fig. 3 shows the contributions for sub-
ject s3.

An example of decoded and band-pass filtered measured
positions for subject 3 are shown in Fig. 2.

IV. DISCUSSION

In this paper we proofed that velocity and position de-
coding from executed arm movements in three dimensions
without external targets is possible from EEG. r values
were reasonable high. In [9] r values for x/y/z-axes were
0.19/0.38/0.32, which are two to almost four times smaller
than correlations measured in this work. The coordinate
systems were comparable, only the x and z axes were
inverted. Reasons for this discrepancy could be that we did
not presented targets – movements were self-chosen – and
we omitted the first 5 s of runs to exclude possible existing

TABLE IV
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING POSITION FROM EOG

s1 s2 s3 s4 s5
x 0.23±0.13 0.45±0.17 0.10±0.21 0.43±0.15 0.42±0.18
y 0.40±0.12 0.27±0.15 0.11±0.13 0.49±0.17 0.32±0.16
z 0.22±0.14 0.20±0.16 0.17±0.12 0.23±0.13 0.31±0.14



Fig. 3. Position decoder: Qualitative contribution of each channel at each
time lag for s3. The largest contribution is colored red, the smallest blue.

movement onset effects. However, in the center-out reaching
task used in [9] it is likely that movements were completed
within 5 s. In [11] similar low r values (0.37/0.24 for x/y-
axes) were obtained when decoding hand velocities from
EEG during a drawing task restricted to left/right/up/down
movements. Movement trajectories were self-chosen as in
our work. However, because of the restriction to only four
movement directions, it is obvious that executed movements
were jerky and not continuous. Thus, it is possible that our
relative high correlations are due to continuous movements
(instead of “stop-and-go” movements).

The risk that our promising results are due to eye ac-
tivity can be neglected, because the gaze of subjects was
controlled, and decoding from EOG yield lower correlations
than decoding from EEG. However, it is interesting that EOG
based correlations were not close to 0. One reason could be
that subjects moved their eyes correlated with movements
over a short period of time. Another explanation is that we
measured brain activity even perhaps at EOG electrodes.
Low frequency biosignals are conducted better over the head
than high frequency biosignals. Thus, low frequency EEG
components are widespread over the scalp, and therefore
even EOG electrodes could contain decodable movement
information.

A common weight pattern between equivalent time lags
was not observable across subjects. Weights probably include
a spatial filter – in addition to the actual decoder part –
to reduce the signal-to-noise ratio of the measured veloc-
ity/position coding sources. If this spatial filter is highly

tuned to the head properties of a person (e.g. geometry,
conductivity), each person would have an individual weight
pattern. If there is more than one area on the cortex cod-
ing velocity/position information, the weight pattern dif-
ferences between subjects would be even more distinct.
Subjects show basically at least a contribution from pre-
motor/supplementary motor area or primary motor/sensory
area. This is similar to [9] where high contributions from
precentral gyrus, postcentral gyrus, and inferior parietal
lobule were found, and to [11] where premotor, posterior
parietal and occipital areas showed the largest contributions
(using low frequency signals for decoding). Interestingly, the
contribution course over time lags can also be obtained when
decoding from random data. Thus, the contribution course
over time lags has to be attributed to general properties of
the multiple linear regression.

A non-invasive position decoding could be the basis to
control an arm neuroprosthesis in a natural manner. The
position of the hand is controlled by the user with natural
MI, and inverse kinematics is used to move the joints of the
arm neuroprosthesis in their proper position. Furthermore,
the training time will be formidable reduced, because it is
not necessary to learn new mental strategies.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and
T. M. Vaughan, “Brain-computer interfaces for communication and
control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002.

[2] G. R. Müller-Putz, R. Scherer, G. Pfurtscheller, and R. Rupp, “EEG-
based neuroprosthesis control: a step towards clinical practice,” Neu-
roscience Letters, vol. 382, pp. 169–174, 2005.

[3] G. Pfurtscheller, C. Neuper, G. R. Müller, B. Obermaier, G. Krausz,
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