
Boomerang Distinguisher for the SIMD-512
Compression Function

Florian Mendel and Tomislav Nad

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria.

Tomislav.Nad@iaik.tugraz.at

Abstract. In this paper, we present a distinguisher for the permutation
of SIMD-512 with complexity 2226.52. We extend the attack to a distin-
guisher for the compression function with complexity 2200.6. The attack
is based on the application of the boomerang attack for hash functions.
Starting from the middle of the compression function we use techniques
from coding theory to search for two differential characteristics, one for
the backward direction and one for the forward direction to construct
a second-order differential. Both characteristics hold with high proba-
bility. The direct application of the second-order differential leads to a
distinguisher for the permutation. Based on this differential we extend
the attack to distinguisher for the compression function.

Keywords: SHA-3, SIMD, cryptanalysis, higher-order differentials, hash
function, distinguisher

1 Introduction

Recently, the NIST hash function competition [21] has started. In this public
competition to find an alternative hash function to replace the SHA-1 and SHA-2
hash functions, many new designs have been proposed. In November 2008, round
one has started and in total 51 out of 64 submissions have been accepted. In De-
cember 2009 the 14 round 2 candidates and in December 2010 the final five were
announced. During the competition distinguishing attacks on hash functions and
their building blocks are getting more attention. In such attacks an adversary
utilizes specific properties of a hash function to define a distinguishing property
such that one can distinguish the output of a hash function from a random func-
tion. Usually, the existence of such properties is not intended by the designers.
However, as shown in [4] for wide-pipe designs the impact of distinguishers is
limited.

In this paper, we present a distinguisher for the compression function of
SIMD-512. SIMD, designed by Leurent et al. [13], was submitted to the NIST
competition and was one of the second round candidates. It is an iterative hash
function based on the Merkle-Damg̊ard design principle [5,18]. It is a wide-pipe
design [14] producing a hash value up to 512 bits, denoted by SIMD-n, where
n is the output length. The design of the compression function is similar to the

D.J. Bernstein and S. Chatterjee (Eds.): INDOCRYPT 2011, LNCS 7107, pp. 255–270, 2011.
The original publication is available at http://www.springerlink.com/content/b620800886557568/
c© Springer-Verlag Berlin Heidelberg 2011

http://www.springerlink.com/content/b620800886557568/

256 Florian Mendel and Tomislav Nad

MD4 family. For the remainder of this paper wherever we mention SIMD we
refer to SIMD-512.

We will show how one can use the boomerang attack on a hash function to
construct a distinguisher with high probability. The first result is a distinguishing
attack for the full permutation of SIMD-512 with complexity ≈ 2226.52. Next we
show how this distinguisher can be extended to the full compression function
of SIMD-512. with complexity ≈ 2200.6. The strategy to construct such second
order differentials is based on the recently proposed cryptanalysis of reduced
SHA-2 [12] and Blake [3].

The structure of this paper is as follows. In Section 2, we recall the basic defi-
nitions needed for the attack and give an overview how higher-order differentials
can be used to attack hash functions. A short description of SIMD is given in
Section 3. Section 4 presents the application on the permutation of SIMD-512. In
Section 5, we show how the attack can be extended to the compression function
of SIMD-512. Finally, we discuss the results in Section 6.

1.1 Related Work

The amount of available cryptanalysis of SIMD is low compared to other candi-
dates. Mendel and Nad presented the first attack on the full SIMD-512 compres-
sion function [15]. They used techniques from coding theory to find a differential
characteristic that holds with probability 2−507. Based on this characteristic and
the differential multicollision distinguisher introduced by Biryukov et al. [1] they
constructed a distinguishing attack for the SIMD-512 compression function. Us-
ing IV/message modification the attack complexity was reduced to 2427. The
differential path used some unwanted properties in the permutation of SIMD.
Therefore, the designers tweaked the hash function by changing the permutations
and round constants of SIMD to prevent the attack.

A round reduced version of tweaked SIMD was attacked by Nikolić et al. [8].
They presented distinguishers for the compression function of SIMD-512 reduced
to 24 round with a linearized message expansion and SIMD-512 reduced to 12
rounds with unmodified message expansion. Both are based on rotational proper-
ties of the compression function. The success probabilities for the distinguishers
are 2−497 and 2−236, respectively.

Later Yu and Wang [27] presented a free-start near-collision attack for SIMD-
256 reduced to 20 rounds and for SIMD-512 reduced to 24 rounds. The attack
complexities are 2107 and 2208, respectively. Furthermore, they showed a distin-
guisher for the full compression function with complexity 2398.

Finally, the designers [4] published a free-start distinguisher for the compres-
sion function exploiting the existence of symmetric states. Furthermore, they
showed that distinguishers without differences in the message have only a mini-
mal impact on the security of the hash function.

Higher-order differentials have been introduced by Lai in [11] and first applied
to block ciphers by Knudsen in [10]. The application to stream ciphers was
proposed by Dinur and Shamir in [6] and Vielhaber in [23].

Boomerang Distinguisher for the SIMD-512 Compression Function 257

Recently, Lamberger and Mendel [12] showed how higher-order differentials
can be used to attack SHA-256 and presented a distinguisher for 46 The at-
tack stands between the boomerang attack and the inside-out attack which were
both introduced by Wagner in the cryptanalysis of block ciphers [24]. A previ-
ous application of the boomerang attack to hash functions is due to Joux and
Peyrin [9], who used the boomerang attack as a neutral bits tool to speed-up
existing collision attacks. Another similar attack strategy for hash functions is
the rebound attack introduced by Mendel et al. [17] and its extensions [7,16].
Furthermore, Biryukov et al. [3] presented a boomerang attack on the SHA-3 fi-
nalist Blake resulting in a distinguisher for 7 rounds of the Blake-32 compression
function with a complexity of 2232.

Notation. For the remainder of this paper we use the notation presented in
Table 1.

Table 1. Notation

notation description

¬X inversion of X
X ⊕ Y bit-wise XOR of X and Y
X + Y modular addition of X and Y
X ≪ n bit-rotation of X by n positions to the left
X ≫ n bit-rotation of X by n positions to the right
X � n bit-shift of X by n positions to the left
X � n bit-shift of X by n positions to the right

2 Higher-order Differentials and Hash Function

In order to find a distinguishing property we construct a second order differ-
ential collision for the compression function. In this section we recall the basic
definitions and give a high level description of the attack strategy.

While a standard differential attack exploits the propagation of the difference be-
tween a pair of inputs to the corresponding outputs, a higher-order differential
attack exploits the propagation of the difference between differences. Higher-
order differential cryptanalysis was introduced by Lai in [11] and subsequently
applied to block ciphers by Knudsen in [10]. We recall the basic definitions that
we will need in the subsequent sections.

Definition 1. Let (S,+) and (T,+) be Abelian groups. For a function F : S →
T , the derivative at a point a ∈ S is defined as

∆aF (x) = F (x+ a)− F (x) . (1)

258 Florian Mendel and Tomislav Nad

The i-th derivative of F at (a1, a2, . . . , ai) is then recursively defined as

∆(i)
a1,...,ai

F (x) = ∆ai(∆
(i−1)
a1,...,ai−1

F (x)) . (2)

When applying differential cryptanalysis to a hash function, a collision for the
hash function corresponds to a pair of inputs with output difference zero. Sim-
ilarly, when using higher-order differentials we define a higher-order differential
collision for a function F as follows.

Definition 2. An i-th order differential collision for a function F is an i-tuple
(a1, a2, . . . , ai) together with a value x0 such that

∆(i)
a1,...,ai

F (x0) = 0 . (3)

Note that the common definition of a collision for hash functions corresponds to
a higher-order differential collision of order i = 1.

From (3) we see that we can freely choose i + 1 of the input parameters,
i.e. x0 and a1, . . . , ai, which then fix the remaining input. Hence, the expected
number of solutions to (3) is one after choosing 2n/(i+1) values for the inputs
and the query complexity is:

≈ 2n/(i+1) (4)

In the following, we will only consider the case i = 2 for which the query com-
plexity of the attack is 2n/3.

In order to construct a second-order differential collision for the function F ,
we use a strategy recently proposed in cryptanalysis of reduced SHA-2 in [12].
The idea of the attack is quite simple. Assume we are given two differentials for
F0 and F1 with F = F1 ◦ F0, where one holds in the forward direction and one
in the backward direction. To be more precise, we have

F−1
0 (y + β)− F−1

0 (y) = α

and
F1(y + γ)− F1(y) = δ

where the differential in F−1
0 holds with probability p0 and in F1 holds with

probability p1. Using these two differentials, we can now construct a second
order differential collision for F . This can be summarized as follows (see also
Figure 1).

1. Choose a random value for X and compute X∗ = X + β, Y = X + γ, and
Y ∗ = X∗ + γ.

2. Compute backward from X,X∗, Y, Y ∗ using F−1
0 to obtain P, P ∗, Q,Q∗.

3. Compute forward from X,X∗, Y, Y ∗ using F1 to obtain R,R∗, S, S∗.
4. Check if P ∗ − P = Q∗ −Q and S −R = S∗ −R∗ is fulfilled.

Since

P ∗ − P = Q∗ −Q = α, resp. S −R = S∗ −R∗ = δ, (5)

will hold with probability at least p20 in the backward direction, resp. p21 in the
forward direction and assuming that the differentials are independent the attack
succeeds with a probability of p20 · p21. Hence, the expected number of solutions
to (5) is 1, if we repeat the attack about 1/(p20 · p21) times.

Boomerang Distinguisher for the SIMD-512 Compression Function 259

F1

F−1
0

F1

F−1
0

P P ∗

R R∗

X X∗

S S∗

Y Y ∗

δ δ

F1

F−1
0

F1

F−1
0

Q Q∗

γ

α

β
γ

α

β

Fig. 1. Schematic view of the attack.

3 Description of SIMD

SIMD is an iterative hash function that follows the Merkle-Damg̊ard design.
The main component of a Merkle-Damg̊ard hash function is the compression
function. In the case of SIMD-512 to compute the hash of a message M , it
is first divided into k chunks of 1024 bits. By the use of a message expansion
one block is expanded to 8192 bits. Then the compression function is used to
compress the message chunks and the internal state. The padding rule to fill
the last blocks is known as the Merkle-Damg̊ard strengthening. The initial value
of the internal state is called IV and is fixed in the specification of the hash
function. The output of the hash function is given by computing a finalization
function on the last internal state, which is a truncation for SIMD. The internal
state of SIMD contains 32 32-bit words and is therefore twice as large as the
output. SIMD consist of 4 rounds where each round consist of 8 steps. The
feed-forward consists of four additional steps with the chaining value as message
input. Since we inject differences only in the state variables and not in the
message, our attack is independent from the message expansion and works for
any given message. Therefore, we omit the description of the message expansion.
For a detailed description of the hash function we refer to [13].

3.1 SIMD Step Function

The core part of SIMD is the step function of the state update. Figure 2 il-
lustrates the step function at step t. The state update consists of eight step
functions in parallel. To make the step function dependent from each other,

260 Florian Mendel and Tomislav Nad

(At−1
pt(i) ≪ rt) is included in a modular addition, where pt(i) is a permutation,

which is different for each step.

At−1
i Bt−1

i Ct−1
i Dt−1

i

At
i Bt

i Ct
i Dt

i

≪ rt

≪ st

wt
i

Φt

At−1
pt(i) ≪ rt

Fig. 2. Update function of SIMD at step t. i = 0, · · · , 7.

Equation (6) is the formal definition of the step function, where ’+’ denotes
the addition modulo 232.

At
i = (Dt−1

i + wt
i + Φ(At−1

i .Bt−1
i , Ct−1

i)) ≪ st + (At−1
pt(i) ≪ rt)

Bt
i = At−1

i ≪ rt

Ct
i = Bt−1

i

Dt
i = Ct−1

i

(6)

The permutation p for SIMD-512 is given by:

p0(x) = x⊕ 1

p1(x) = x⊕ 6

p2(x) = x⊕ 2

p3(x) = x⊕ 3

p4(x) = x⊕ 5

p5(x) = x⊕ 7

p6(x) = x⊕ 4

The permutation used at step t is pt mod 7. As mentioned before, the 32 steps of
SIMD are divided into 4 rounds, each consisting of 8 steps. The boolean function
Φ and the rotation constants (s and r) for a round are given in Table 2. The

Boomerang Distinguisher for the SIMD-512 Compression Function 261

Table 2. Φ and rotation constants for a round.

step Φ r s

0 IF π0 π1

1 IF π1 π2

2 IF π2 π3

3 IF π3 π0

4 MAJ π0 π1

5 MAJ π1 π2

6 MAJ π2 π3

7 MAJ π3 π0

Boolean functions IF and MAJ are defined as follows:

fIF (x, y, z) = (x ∧ y)|(¬x ∧ z)
fIF (x, y, z) = (x ∧ y)|(x ∧ z)|(y ∧ z).

In Table 3 the rotation constants for each round are given. The feed-forward

Table 3. Rotation constants for each round.

round π0 π1 π2 π3

0 3 23 17 27

1 28 19 22 7

2 29 9 15 5

3 4 13 10 25

consist of four steps using the same step function. Table 4 lists the used Boolean
function and the rotation constants for the feed-forward. In the feed-forward the

Table 4. Φ and rotation constants for the feed-forward of SIMD

step Φ r s

0 IF 4 13

1 IF 13 10

2 IF 10 25

3 IF 25 4

chaining value is used as message input. In the first step A0
i , in the second step

B0
i , in the third C0

i and in the fourth D0
i for i = 0, . . . , 7 are used.

262 Florian Mendel and Tomislav Nad

4 Application on SIMD-512

In this section we will show how to construct a second order differential collision
which suits as a distinguishing property for the full permutation (compression
function without feed-forward) of SIMD-512. For the permutation of SIMD-512
the attack strategy can be directly applied using a good differential character-
istic for the forward and backward direction. We show how we construct such
differential characteristic and compute the complexities. In contrast to the at-
tack on SHA-256 [12], where the second-order collision for the internal block
cipher immediately transfers to the compression function, we need to overcome
the feed-forward which performs 4 additional steps with the chaining value as
message input. In Section 5 we show how the attack can be extended to the
compression function using a weaker attack scenario.

4.1 Searching for Characteristics

A common approach to construct differential characteristics, which have a high
probability, is to use a linearized approximation of the attacked hash function.
As observed by Rijmen and Oswald [22], all differential characteristics for a
linearized hash function can be seen as the codewords of a linear code. To find
good differential characteristics we used the same technique as Mendel and Nad
in the cryptanalysis of the first version of SIMD [15]. The procedure can be
described in the following way:

– Linearize the step function of SIMD, i.e. replace all nonlinear operations
with linear ones.

– Construct a generator matrix.

– Use a probabilistic algorithm from coding theory to search for codewords
with low Hamming weight.

The nonlinear parts of the step function are the modular additions and the
Boolean function IF and MAJ. In the attack, we replace all modular additions
by XORs. Since we aim for a characteristic with low Hamming weight, we replace
the Boolean functions with the 0-function, i.e. we block each input difference in
Φ such that the output difference is always zero. This has probability 1/2 in most
cases. Note that there is exactly one input difference for IF and one for MAJ
where the output difference is always one. Such characteristics are discarded.

For the search we used the CodingTool Library [20], which is an open-source
implementation of the needed coding theoretic algorithms and data structures.
We searched for good differential characteristics for the backward and forward
direction with no differences in the message. Moreover, we also searched for a
good starting step. One would expect that starting from the exact middle (round
16) would result in the best probability, but it turns out that moving the starting
step two steps further, results in a better overall probability.

Boomerang Distinguisher for the SIMD-512 Compression Function 263

Differential Characteristics. The complete differential characteristics are
given in Appendix A. To describe the differential characteristics we used signed-
bit differences introduced by Wang et al. [26] in the cryptanalysis of MD5. The
advantage of using signed-bit differences is that there exists a unique mapping
to both XOR and modular differences.

The characteristic for the backward direction consists of the first 18 steps of
the permutation and has Hamming weight 72. The characteristic for the forward
direction consists of the last 14 steps of the permutation and has Hamming
weight 52.

To estimate the success probability of each characteristic we used the same
heuristic as in [15]. The probability for blocking a difference in one bit at the
input of IF or MAJ is 1/2 or 0 for some cases, but then the characteristic is
discarded. Hence, the total probability is determined by the sum of all differences
at the input. Differences at the same bit positions are counted only once. For the
modular additions carries are not prevented for each bit difference. By allowing
carries in the first addition, one can compensate them at the second addition.
However, the rotation after the first modular addition needs to be considered.
Therefore, the probability in this part is slightly decreased, but results in a overall
increase. Table 5 summarizes the overall probability of each characteristic.

Table 5. Summary of the success probabilities.

characteristic Hamming weight probability

backward 72 2−72.04

forward 52 2−51.4

4.2 Independency of the Characteristics

The assumption on independent characteristics is quite strong (cf. [19]). Never-
theless, one can check this property easily for few steps in both directions, which
was done for the presented characteristics. Furthermore, the used characteristics
have a low Hamming weight, which makes it very unlikely that they interfere
with each other.

4.3 Complexity of the Attack

As described in Section 2 the generic complexity for the attack is 2n/3. For
the SIMD compression function n is 1024 bits. Hence, the generic complexity
is ≈ 2342. The total complexity of the attack based on the presented charac-
teristic is (272.04 · 251.4)2 ≈ 2247 which can be improved by ignoring conditions
at the end. As was already observed by Wang et al. [25] in the cryptanalysis

264 Florian Mendel and Tomislav Nad

of SHA-1 conditions resulting from the modular addition in the last steps of
the differential characteristic can be ignored, due to the fact that carries can be
ignored since the modular difference at the output stays the same. This reduces
the complexity by a factor 28.24 in the backward direction and 22 in the forward
direction which improves the overall complexity by a factor of 22·10.24 resulting
in 2226.52.

Remark: Note that we also have the freedom to choose the actual values for
the state (at the beginning of each characteristic) and for the message. Mes-
sage/chaining input modification can be used to improve the attack complexities
further.

5 Extending the Attack to the Compression Function

In contrast to SHA-2 it is not easy to extend the second-order differential colli-
sion to the compression function since the feed-forward of SIMD is non-linear.
However, the first step of the feed-forward is almost linear and therefore we
can show non-random properties in the output of the state variables Di for
i = 0, . . . , 7.

In the feed-forward 4 additional steps with the initial value as message input
are performed. This destroys the distinguishing property at the output of the
permutation. However, the values of D36

i for i = 0, . . . , 7 (output of the feed-
forward) are determined already in the first step of the feed-forward and not
modified in the other three steps. By considering only D36

i for i = 0, . . . , 7 and
accordingly only A0

i for i = 0, . . . , 7 of the initial value the attack complexity
is only slightly increased. Consequently, the dimension of the input and output
space for the distinguisher is reduced to 256 bits (8 · 32). However, by fixing
the differences in the rectangle in the middle of the second-order differential
characteristic one can construct a distinguisher for the compression function.

5.1 Distinguisher for the Compression Function

For the feed-forward of SIMD we extend the scheme shown in Figure 1 to the
one shown in Figure 3. The function F2 takes two inputs, namely the state of
the last step and the chaining value. As mentioned before we consider only A0

i

in the initial value and D36
i at the output which is denoted by the quartets

{PAi
, P ∗

Ai
, QAi

, Q∗
Ai
} and {R̃Di

, R̃∗
Di
, S̃Di

, S̃∗
Di
}, respectively.

So far we have considered the inputs X, β and γ to be unrelated. Due to
the way we build the second-order collisions, we can see that they are the inputs
to a rectangle, hence they are related in the middle of the rectangle (gray layer
in Figure 3). Therefore, we can extend the attacks by fixing β and γ, since the
complexity of the generic case for this type of attacks is 2n (or 2t) [3]. Since we
show non-randomness only in part of the output, namely Di for i = 0, . . . , 7,
the generic complexity of the attack becomes 2t = 28·32 = 2256. Hence, by using
the second-order differential characteristic from Section 4.1 one can construct a

Boomerang Distinguisher for the SIMD-512 Compression Function 265

distinguisher for the compression function of SIMD. Note that the distinguisher
becomes even more powerful if the attacker can find several of the above quartets
with the same difference.

To summarize, the algorithm works as follows:

1. Use the differential from Section 4.1
2. Choose a random value for X and compute X∗ = X + β, Y = X + γ, and
Y ∗ = X∗ + γ.

3. Compute backward fromX,X∗, Y, Y ∗ using F−1
0 to obtain PAi , P

∗
Ai
, QAi , Q

∗
Ai

.
4. Compute forward from X,X∗, Y, Y ∗ using F1 and F2 to obtain
R̃Di

, R̃∗
Di
, S̃Di

, S̃∗
Di

.
5. Check if P ∗

Ai
−PAi

= Q∗
Ai
−QAi

and S̃Di
−R̃Di

= S̃∗
Di
−R̃∗

Di
and therefore

P ∗
Ai
− PAi −Q∗

Ai
+QAi + S̃Di − R̃Di − S̃∗

Di + R̃∗
Di = 0 is fulfilled.

F1

F−1
0

F2

F1

F−1
0

F2

PAi
P ∗
Ai

R R∗

X X∗

S̃Di S̃∗
Di

δ̃Di δ̃Di

R̃Di R̃∗
Di

S S∗

Y Y ∗

δ δ

F1

F−1
0

F2

F1

F−1
0

F2

QAi
Q∗

Ai

γ

αAi

β
γ

αAi

β

Fig. 3. Extending the attack to the compression function.

5.2 Complexity of the Attack

As mentioned before the attack complexity is increased slightly by the feed-
forward. In fact using the backward and forward characteristics from Table 6

266 Florian Mendel and Tomislav Nad

and Table 7 the additional costs are negligible. In backward direction we have at
the end only a difference in ∆A−1

6 which needs to be considered. This difference is
rotated to the left by s bits. In the forward direction we have differences in ∆B31

0

and ∆A31
3 . Both are input to the Boolean IF function. Blocking each difference

at the input of the IF function costs 22 for both differences. Additionally, ∆A31
3

is used to compute ∆A32
6 in the following way:

∆A32
6 = (∆D31

6 +∆A−1
6 +IF (∆A31

6 , ∆B
31
6 , ∆C

31
6)) ≪ s32+(∆A31

3 ≪ r32) (7)

In Equation (7) only ∆A−1
6 and ∆A31

3 have differences. Only the rotation to the
left by s32 bits adds a complexity about 21 [15].

Finally, we can ignore the costs of the last three steps in the backward
(28.24+7+5) and forward (21+1.4+2) direction since we only consider the state
variables Ai and Di for i = 0, . . . , 7 respectively. The differences in these vari-
ables do not change in the last three steps. Therefore, the total complexity is
(272.04−20.24 · 251.4−4.4)2 · 21 · 22 ≈ 2200.6.

Hence, one can distinguish the compression function of SIMD from a random
function with a complexity of about 2200.6. Note that the generic complexity for
this attack is 2256.

6 Conclusions and Discussion

In this paper, we present a distinguisher for the full permutation of SIMD-512
by an application of the boomerang attack on hash functions. Starting from the
middle of the compression function we used techniques from coding theory to
search for two differential characteristics, one for the backward direction and one
for the forward direction, which hold with high probability. Then we construct a
second-order differential and define a distinguishing property such that we can
distinguish the permutation from a random permutation with a complexity of
2226.52.

Furthermore, we extend the attack to the full compression function of SIMD-
512. By fixing the differences in the rectangle we can distinguish the output of
the compression function from a random function with a complexity of 2200.6

compression function evaluations. This is a significant improvement to the cur-
rent best known distinguisher with complexity 2398 [27].

However, our attack does not invalidate the security claims of the designers
since it seems difficult to extend such an attack to the hash function and most of
the security comes from the message expansion. In [4] the designers presented a
more detailed analysis of SIMD regarding differential paths without differences
in the message and are claiming that such characteristics does not affect the
security of the SIMD hash function. Nevertheless, the results presented in this
paper show how boomerang like attacks can be effectively used on compression
functions. Furthermore, the results contribute to a better understanding of the
security margin of SIMD.

Boomerang Distinguisher for the SIMD-512 Compression Function 267

Acknowledgments

The work in this paper has been supported by the European Commission un-
der contract ICT-2007-216646 (ECRYPT II) and by the Austrian Science Fund
(FWF, project P21936).

References

1. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and Related-
Key Attack on the Full AES-256. In Shai Halevi, editor, CRYPTO, volume 5677
of LNCS, pages 231–249. Springer, 2009.

2. Alex Biryukov, Mario Lamberger, Florian Mendel, and Ivica Nikolic. Second-Order
Differential Collisions for Reduced SHA-256. In ASIACRYPT, 2011. Io appear.

3. Alex Biryukov, Ivica Nikolic, and Arnab Roy. Boomerang Attacks on BLAKE-32.
In Antoine Joux, editor, FSE, volume 6733 of LNCS, pages 218–237. Springer,
2011.

4. Charles Bouillaguet, Pierre-Alain Fouque, and Gatan Leurent. Security Analysis
of SIMD. Cryptology ePrint Archive, Report 2010/323, 2010.

5. Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 416–427. Springer, 1989.

6. Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials.
In Antoine Joux, editor, EUROCRYPT, volume 5479 of LNCS, pages 278–299.
Springer, 2009.

7. Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks
for AES-Like Permutations. In Seokhie Hong and Tetsu Iwata, editors, FSE, vol-
ume 6147 of LNCS, pages 365–383. Springer, 2010.

8. Przemyslaw Sokolowski Ivica Nikolić, Josef Pieprzyk and Ron Steinfeld. Rotational
Cryptanalysis of (Modified) Versions of BMW and SIMD. Available online, 2010.

9. Antoine Joux and Thomas Peyrin. Hash Functions and the (Amplified) Boomerang
Attack. In Alfred Menezes, editor, CRYPTO, volume 4622 of LNCS, pages 244–
263. Springer, 2007.

10. Lars R. Knudsen. Truncated and Higher Order Differentials. In Bart Preneel,
editor, FSE, volume 1008 of LNCS, pages 196–211. Springer, 1994.

11. Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Richard
Blahut, Daniel Costello Jr., Ueli Maurer, and Thomas Mittelholzer, editors, Com-
munications and Cryptography, pages 227–233. Kluwer, 1992.

12. Mario Lamberger and Florian Mendel. Higher-Order Differential Attack on Re-
duced SHA-256. Cryptology ePrint Archive, Report 2011/037, 2011.

13. Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD Is a Message
Digest. Submission to NIST (Round 2), September 2009. Available online: http:
//csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html.

14. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal K.
Roy, editor, ASIACRYPT, volume 3788 of LNCS, pages 474–494. Springer, 2005.

15. Florian Mendel and Tomislav Nad. A Distinguisher for the Compression Func-
tion of SIMD-512. In Bimal K. Roy and Nicolas Sendrier, editors, INDOCRYPT,
volume 5922 of LNCS, pages 219–232. Springer, 2009.

16. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Im-
proved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Per-
mutation and AES Block Cipher. In Michael J. Jacobson Jr., Vincent Rijmen,
and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867
of LNCS, pages 16–35. Springer, 2009.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html

268 Florian Mendel and Tomislav Nad

17. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr
Dunkelman, editor, FSE, volume 5665 of LNCS, pages 260–276. Springer, 2009.

18. Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor,
CRYPTO, volume 435 of LNCS, pages 428–446. Springer, 1989.

19. Sean Murphy. The return of the cryptographic boomerang. IEEE Transactions on
Information Theory, 57(4):2517–2521, 2011.

20. Tomislav Nad. The CodingTool Library. Workshop on Tools for Crypt-
analysis 2010, 2010. http://www.iaik.tugraz.at/content/research/krypto/

codingtool/.
21. National Institute of Standards and Technology. Cryptographic Hash Algorithm

Competition, November 2007. Available online: http://csrc.nist.gov/groups/
ST/hash/sha-3/index.html.

22. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes,
editor, CT-RSA, volume 3376 of LNCS, pages 58–71. Springer, 2005.

23. Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential
Attack. Cryptology ePrint Archive, Report 2007/413, 2007.

24. David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume
1636 of LNCS, pages 156–170. Springer, 1999.

25. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of LNCS, pages 17–36.
Springer, 2005.

26. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35.
Springer, 2005.

27. Hongbo Yu and Xiaoyun Wang. Cryptanalysis of the Compression Function of
SIMD. In Udaya Parampalli and Philip Hawkes, editors, ACISP, volume 6812 of
LNCS, pages 157–171. Springer, 2011.

A Differential Characteristics for the Forward and
Backward Direction

http://www.iaik.tugraz.at/content/research/krypto/codingtool/
http://www.iaik.tugraz.at/content/research/krypto/codingtool/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Boomerang Distinguisher for the SIMD-512 Compression Function 269

T
a
b

le
6
.

B
a
ck

w
a
rd

ch
a
ra

ct
er

is
ti

c.
T

h
e

st
a
te

a
t

st
ep
−

1
is

th
e

ch
a
in

in
g

va
lu

e.

st
e
p

st
a
te

p
ro

b
a
b
il
it
y

−
1

∆
D

0
:
−

2
8
,∆
D

3
:
−

7
,∆
B

5
:
−

1
2
,∆
C

5
:
+

4
,∆
A

6
:
+

3
,∆
C

6
:
+

2
5
,∆
C

7
:

+
5
,∆
D

7
:
−

1
5

0
∆
A

0
:
−

1
9
,∆
A

3
:
−

3
0
,∆
C

5
:
−

1
2
,∆
D

5
:
+

4
,∆
B

6
:
+

6
,∆
D

6
:
+

2
5
,∆
D

7
:
+

5
2
−
8
.2
4

1
∆
B

0
:
−

1
0
,∆
B

3
:
−

2
1
,∆
D

5
:
−

1
2
,∆
C

6
:

+
6
,∆
A

7
:

+
2
2

2
−
7

2
∆
C

0
:
−

1
0
,∆
C

3
:
−

2
1
,∆
D

6
:
+

6
,∆
B

7
:

+
7

2
−
5

3
∆
D

0
:
−

1
0
,∆
D

3
:
−

2
1
,∆
A

6
:

+
9
,∆
C

7
:

+
7

2
−
4

4
∆
A

0
:
−

1
,∆
B

6
:

+
1
2
,∆
D

7
:
+

7
2
−
4

5
∆
B

0
:
−

2
4
,∆
C

6
:
+

1
2

2
−
3

6
∆
C

0
:
−

2
4
,∆
D

6
:
+

1
2

2
−
2

7
∆
D

0
:
−

2
4
,∆
A

6
:
+

1
5

2
−
2

8
∆
B

6
:
+

1
1

2
−
2

9
∆
C

6
:
+

1
1

2
−
1

1
0

∆
D

6
:
+

1
1

2
−
1

1
1

∆
A

6
:
+

7
2
−
1

1
2

∆
A

1
:
+

3
,∆
B

6
:

+
3

2
−
2

1
3

∆
B

1
:
+

2
2
,∆
A

5
:
+

2
2
,∆
C

6
:

+
3

2
−
3

1
4

∆
C

1
:
+

2
2
,∆
A

4
:
+

1
2
,∆
B

5
:

+
1
2
,∆
D

6
:
+

3
2
−
4

1
5

∆
D

1
:
+

2
2
,∆
A

2
:

+
1
9
,∆
B

4
:

+
1
9
,∆
C

5
:
+

1
2
,∆
A

6
:
+

3
1

2
−
5
.4

1
6

∆
A

0
:

+
1
6
,∆
A

1
:
+

3
1
,∆
B

2
:
+

1
6
,∆
A

4
:
+

2
8
,∆
C

4
:

+
1
9
,∆
D

5
:
+

1
2
,∆
B

6
:
+

2
8

2
−
7
.4

1
7

∆
B

0
:

+
2
5
,∆
B

1
:
+

8
,∆
A

2
:

+
8
,∆
C

2
:
+

1
6
,∆
A

3
:
+

2
5
,∆
B

4
:
+

5
,∆
D

4
:
+

1
9
,∆
A

5
:
+

2
7
,∆
C

6
:

+
2
8
,∆
A

7
:
+

5
2
−
1
0

270 Florian Mendel and Tomislav Nad

T
a
b

le
7
.

F
o
rw

a
rd

ch
a
ra

ct
er

is
ti

c.

st
e
p

st
a
te

p
ro

b
a
b
il
it
y

1
7

∆
B

0
:

+
2
4
,∆
D

0
:
+

3
2
,∆
C

2
:
−

2
9
,∆
D

3
:

+
1
,∆
C

4
:
−

7
,∆
A

6
:
−

2
3
,∆
B

6
:

+
1
4
,∆
B

7
:

+
3
,∆
C

7
:
−

1
3

1
8

∆
A

0
:

+
5
,∆
C

0
:
+

2
4
,∆
D

2
:
−

2
9
,∆
D

4
:
−

7
,∆
B

6
:
−

6
,∆
C

6
:
+

1
4
,∆
C

7
:

+
3
,∆
D

7
:
−

1
3

2
−
9

1
9

∆
B

0
:
+

1
0
,∆
D

0
:

+
2
4
,∆
A

2
:
−

2
6
,∆
A

4
:
−

4
,∆
C

6
:
−

6
,∆
D

6
:
+

1
4
,∆
D

7
:
+

3
2
−
8

2
0

∆
C

0
:
+

1
0
,∆
B

2
:
−

2
3
,∆
B

4
:
−

1
,∆
D

6
:
−

6
,∆
A

7
:
+

1
2

2
−
7

2
1

∆
D

0
:
+

1
0
,∆
C

2
:
−

2
3
,∆
C

4
:
−

1
,∆
B

7
:

+
2
1

2
−
5

2
2

∆
A

0
:
+

1
5
,∆
D

2
:
−

2
3
,∆
D

4
:
−

1
,∆
C

7
:

+
2
1

2
−
4

2
3

∆
B

0
:
+

2
0
,∆
A

4
:
−

3
0
,∆
D

7
:
+

2
1

2
−
4

2
4

∆
C

0
:
+

2
0
,∆
B

4
:
−

2
2
−
3

2
5

∆
D

0
:

+
2
0
,∆
C

4
:
−

2
2
−
2

2
6

∆
A

0
:

+
1
3
,∆
D

4
:
−

2
2
−
2

2
7

∆
B

0
:
+

6
2
−
2

2
8

∆
C

0
:
+

6
2
−
1

2
9

∆
D

0
:
+

6
2
−
1

3
0

∆
A

0
:

+
3
1

2
−
1
.4

3
1

∆
B

0
:

+
2
4
,∆
A

3
:
+

2
4

2
−
2

	Introduction
	Related Work
	Notation.

	Higher-order Differentials and Hash Function
	Description of SIMD
	SIMD Step Function

	Application on SIMD-512
	Searching for Characteristics
	Differential Characteristics.

	Independency of the Characteristics
	Complexity of the Attack

	Extending the Attack to the Compression Function
	Distinguisher for the Compression Function
	Complexity of the Attack

	Conclusions and Discussion
	Differential Characteristics for the Forward and Backward Direction

