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Abstract. We discuss different descriptions of Rijndael and its compo-
nents and how to find them. The fact that it is easy to find equivalent
descriptions for the Rijndael transformations, has been used for two dif-
ferent goals. Firstly, to design implementations on a variety of platforms,
both efficient and resistant against side channel analysis. Secondly, to an-
alyze the security of the cipher We discuss these aspects, give examples,
and present our views.

1 Introduction

In this paper, we give an overview of recent developments in the study of Rijn-
dael security and efficient Rijndael implementations. Central to many of these
developments is the technique of changing representations, and therefore we take
this as the central theme of our treatment here.

When we look at what has been published about Rijndael in the last couple
of years, we see that most authors restrict in their studies the possible changes
of representation to the set of polynomial bases in a finite field, e.g. selection
of a different base element or the selection of a different reduction polynomial.
However, finite fields have a much richer structure, e.g. they can also be described
as vector spaces over the ground field. It is our belief that exploration of the
vector space representation can bring us to new insights in both security and
efficient implementation of the Rijndael.

We start this paper by setting the framework to study different represen-
tations and the resulting equivalent descriptions for Rijndael. Afterwards, we
present the overview of recent results and place them in our framework.

2 Change of Representation: An Old Mathematical
Technique

It is well-known that the choice of representation influences the complexity of
most problems related to algebra. One example with application in cryptography
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is given by elliptic curves. An arbitrary elliptic curve has a defining equation of
the following form:

Ay2 + Byx + Cy = Dx3 + Ex2 + Fx + G. (1)

By choosing another representation, the defining equation can be transformed
into the following form:

y2 = x3 + ax + b . (2)

For all defining equations of the form (1), there is an equation of the form (2)
defining an elliptic curve with the same mathematical properties, although both
curves contain different points (x, y).

A second example is the gate complexity of a circuit that implements the
squaring operation in a finite field with characteristic two. If the elements of the
field are represented by their coordinates with respect to a normal basis, then
the squaring operation corresponds to a simple rotation of the coordinates. In
other representations, the squaring operation corresponds to a more complicated
linear transformation of the coordinates.

The problem we address in this paper, is exactly the opposite problem. When
given a Boolean transformation with fixed ‘points’ (x, S(x)), we want to find a
simple algebraic description for this Boolean transformation.

3 Boolean Transformations and Algebras

In order to improve understanding of the issues related to equivalent descriptions,
it is important to clearly define the terminology. We make a distinction between
two mathematical concepts that are often used as synonyms. These concepts are
an abstract element of an algebra on the one hand, and the representation of the
element on the other hand. We start with a definition for an algebra.

An algebra consists of one or more sets of elements and one or more operations
between the elements. We will consider here algebras that contain only one set
of elements, denoted by A. Furthermore, we will assume that the cardinality of
A equals 2n for some integer value n.

An m-ary operation b maps an input consisting of m elements of A to an
output, which is also in A.

b : Am → A : (x1, x2, . . . , xm) �→ b(x1, x2, . . . , xm) = y (3)

A 1-ary operation is also called an (algebraic) function.
A Boolean vector is a one-dimensional array of bits. By Boolean transfor-

mation, we mean a function S that maps a Boolean vector to another Boolean
vector. For sake of simplicity, we will assume that the input and output vectors
have equal size.

S : Zn
2 → Zn

2 : x �→ y = S(x) (4)

A representation ρ maps the elements of A to n-bit Boolean vectors.

ρ : A → Zn
2 : x → ρ(x) = x (5)
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The inverse map of a representation is called a labeling map. A representation,
or labeling, defines a map from the algebraic functions to the Boolean transfor-
mations:

R(b) = Sb ⇔ ∀x ∈ A : ρ(b(x)) = Sb(ρ(x)) . (6)

Algebra elements �
�

Boolean vectors

representation

labeling

Operations � Boolean transformations

description

Fig. 1. Terminology w.r.t. algebra elements and Boolean vectors

3.1 Finding Descriptions

Finding an algebraic description for a Boolean transformation S can be done in
three steps.

Initialization: Decide on an algebra to be used.
Labeling: Define a labeling map from the Boolean vectors to elements of the

algebra.
Describing: Compute the description of the Boolean transformation S.

Before describing the steps in some more detail, we briefly return to the previ-
ous example. Suppose we have a Boolean transformation S that implements a
rotation of the bits: S(x) = x ≪ 1. Suppose further that we have chosen to use
the finite field GF (2n) as the algebra to work in. Since S is linear over this field,
it can always be described with a linear polynomial l(x):

l(x) =
n−1∑

i=0

aix
2i

, (7)

where the ai are some constants. If the Boolean vectors x are considered as the
representation of the coordinates of the elements x with respect to a normal
basis, then the polynomial describing S can be as simple as l(x) = x2.

Selecting an Algebra. For the values of n that are of practical importance,
the number of algebras that can be defined, is very large: (2n)2

2n

different bi-
nary operations can be defined. However, the requirement to obtain a ‘simple’
description in practice limits the number of interesting algebras. The most natu-
ral choices are perhaps the vector space (GF(2))n or the field GF(2n). However,
other algebras can be used as well, e.g. the algebra < Z2n+1\{0},× > as used
in IDEA.
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Selecting a Labeling. Once an algebra has been selected, the elements of the
algebra have to be assigned to the Boolean vectors. We call this the labeling of
the Boolean vectors. Let the labeling map be denoted by m:

m : (Z2)n → A. (8)

The number of labeling maps equals (2n!). Note that this is more general than
a change of basis in a finite field.

Computing the Representation. Once the algebra and the labeling map are
defined, the input-output tuples of the transformation S can be translated into
tuples of the algebra:

(x, S(x)) → (a, b) = (m(x),m(S(x))). (9)

The functional description of S in the new representation can be derived from
the input-output tuples, using for instance the Lagrange interpolation formula,
if it can be applied in the algebra selected.

4 Rijndael Descriptions

Equivalent descriptions can be investigated for any block cipher. Indeed, al-
ready in the 1980’s, several results appeared about equivalent descriptions for
the DES [6]. Afterwards, the topic seems to have died out in the field of sym-
metric cryptography. The selection of Rijndael to become the AES has triggered
new research in this direction.

4.1 Number of Equivalent Descriptions

The design of Rijndael was made in the field GF(256). All design criteria were
made and the selection of components was done with this field in mind. In order
to be able to define the input-output behavior uniquely, one specific representa-
tion of the field elements had to be chosen. The choice was made to use a binary
polynomial basis, with irreducible polynomial p(t) = t8 + t4 + t3 + t + 1.

In [2], it was observed that 240 equivalent ciphers (i.e. alternative descrip-
tions) can be generated by choosing one of the 30 irreducible binary polynomials
of degree 8 and by choosing one of the 8 roots of this polynomial as generator.

However, there are many more alternative representations possible. The field
GF(256) is isomorphic to the field (GF (2))8, which is also an 8-dimensional
vector space. In this vector space, there are

7∏

i=0

(28 − 2i) ≈ 262 (10)

different bases. Each base leads to a different labeling of bytes and hence a differ-
ent description of Rijndael. In [3], 2040 bases with a special property are derived.
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The authors combine these 2040 bases with the 30 irreducible polynomials in or-
der to define 61200 equivalent cipher descriptions.

Equivalent descriptions can also be constructed by defining an arbitrary bi-
jective labeling map m. There are 256! different such labeling maps and at least
as many different descriptions. Finally, observe that labeling maps don’t have
to be bijective. Also injective maps can be used (cf. infra), and hence there are
infinitely many labeling maps.

4.2 Useful Representations

The vast majority of the 256! equivalent descriptions of Rijndael will not result in
any new insights. Indeed, only the 262 descriptions that are constructed following
a change of basis in the vector space (GF (2))8, have the property that ‘addition’
corresponds to binary exclusive-or. In all other descriptions, the specification of
addition will require the use of tables without any apparent structure.

The transformations MixColumns and AddRoundKey can be described by
very simple operations when the default representation is used. This is a second
reason to look for new representations ‘close’ to the default representation.

5 Descriptions Assisting Implementations

Alternative descriptions facilitating implementations are used mostly on con-
strained platforms: hardware and small processors. In environments with little
constraints, the default description of Rijndael seems to be as good as any other
one.

The addition of side-channel attack countermeasures usually decreases the
performance and/or increases the cost of an implementation. Hence, the tech-
niques developed to improve the performance of ordinary implementations in
constrained environments, are usually also of use in side-channel attack resisting
hardware.

5.1 Hardware Efficient Descriptions

As explained before, the use of alternative finite field representations in order
to reduce the gate count of a circuit is a well-established technique. Several
alternative representations have been proposed in the cryptographic literature,
mainly in order to improve the implementation of the SubBytes transformation.

The first type of alternative representation is to label bytes as polynomials
of degree smaller than 2, with coefficients in GF(16):

m : Z8
2 → GF (16)[t]/(t2 + At + B) : x �→ m(x) = at + b, (11)

with a = m1(x), b = m2(x). The maps m1,m2 have to satisfy some conditions
and the coefficients A,B are chosen such that the polynomial t2 +At+B is irre-
ducible. Then, the transformation SubBytes can be described by one nonlinear
formula of the form



Representations and Rijndael Descriptions 153

(at + b)−1 = (b2B + baA + a2)−1(bt + a + bA), (12)

combined with linear and affine operations, which depend on the choice for A,B
and the details of the maps m1(x),m2(x). Descriptions of this type have been
proposed in [12, 13, 14, 16].

The alternative representations mainly improve the gate complexity of the
SubBytes step, while the complexity of the other steps remains the same, or
deteriorates slightly. This results in different approaches. In the first approach,
the SubBytes is implemented in the representation that is best for that step, and
the other steps are implemented using another representation. This approach
necessitates changes of representation in between steps [14, 16].

In the second approach, frequent changes of representation are avoided by
adopting a ‘compromise’ representation, which improves the complexity of Sub-
Bytes, and doesn’t increase the complexity of other steps too much [13].

In the third approach, an alternativ representation, which is best for the
SubBytes step, is combined with an equivalent AES [17].

5.2 Representations Assisting SCA Countermeasures

Side-channel attacks are used to extract secret key material from real systems. It
has been observed that computing hardware and software often leak information
about secret keys used in cryptographic algorithms. This leakage comes from
variations in execution time, power consumption, radiation, etc.

Many proposals for hardware designs that resist side-channel attacks, are
based on masking techniques: the sensitive values are never manipulated directly,
but only in blinded, or masked, form. The mask is a random value, which needs to
be processed separately. Such a masking scheme can also be described as a secret
sharing scheme, where the masked and the masked value are two shares. Hence,
a masking scheme by itself can already be seen as an expanding alternative
representation.

For linear operations, it is well-known what masking schemes to use and how
to implement them. For the non-linear operation of Rijndael, there are several
proposals.

5.3 Additive Split

In order to implement a linear operation L(x), the input x is represented by a
tuple (p, q) with p + q = x. We call this the additive split of sensitive variables.
In order to compute the tuple corresponding to L(x), the linear operation is
performed separately on each share. Indeed, we have that if x = p + q, then
L(x) = L(p) + L(q), and hence L(x) is represented by (L(p), L(q)).

The addition of two sensitive variables can also be protected using the addi-
tive split. The result can be computed in a secure way by simply adding the co-
ordinates of the corresponding tuples: if x is represented by (p, q) and y by (r, s),
then x + y can be represented by (v, w) = (p + r, q + s) or (v, w) = (p + s, q + r).
In both representations, v and w are completely uncorrelated to the values of x
and y.
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The SubBytes step in the Rijndael round transformation consists of an affine
operation and the multiplicative inverse map, or, more accurately, the power
function map x254. Protecting non-linear maps by means of an additive split is
not a straightforward process.

In order to implement this map, two functions f, g are required, such that
x254 = f(p) + g(q) (where x = p + q). In order to have security against first-
order side-channel attacks, the implementation of maps f(p) and g(q) should
not produce intermediate results which correlate with p + q. It remains an open
problem whether such maps can be defined.

As an alternative solution, other types of split have been proposed in the
literature and we describe them in Section 5.4. In Section 5.5, we describe a re-
cently developed method. By using a special representation of the field elements,
it becomes possible to protect also the power function by means of an additive
split.

5.4 Multiplicative Split

A multiplicative split was proposed in [1]. A byte x is mapped to (p, q) with
x = pq254. It can be seen that the tuple corresponding to x254 can be computed
as (p254, q254) = (q, p). Hence this representation would allow to implement the
power function with a simple swap of registers. Alas, it seems from [1] that the
requirement to change the representation from additive split to multiplicative
split and vice versa, makes it necessary to compute the power functions of the
two shares explicitly.

A more important disadvantage is the so-called zero multiplication problem,
which refers to the fact that a multiplicative split fails to hide the zero value:

x = 0 ⇔ (p = 0 or q = 0). (13)

One approach to fix this problem is to introduce a second injective map, that
maps the elements of GF(256) to a larger ring containing zero divisors [9].

5.5 Additive Split in Tower Fields

This technique has been described in [11]. It builds on the techniques explained
in [16]. During all operations, the variables are protected by means of an additive
split. In [4], an alternative method was developed, based on the same principles.

In the tower field representation, bytes are labeled as polynomials of degree
smaller than 2. The two coefficients of the polynomials are elements of GF(16).
For some of the computations, these coefficients in turn are labeled as polyno-
mials of degree 2, with coefficients in GF(4).

m : Z8
2 → GF (16)[t]/(t2 + At + B) : x �→ m(x) = at + b, (14)

m′ : GF (16) → GF (4)[u]/(u2 + Cu + D) : y �→ m′(y) = cu + d, (15)

with a = m1(x), b = m2(x), c = m′
1(y), d = m′

2(y). The maps m1,m2,m
′
1,m

′
2

have to satisfy some conditions and the coefficients A,B,C,D are chosen such
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that the polynomials t2 + At + B and u2 + Cu + D are irreducible over GF(16),
respectively GF(4), and lead to efficient arithmetic. Note that the labeling maps
are all linear and hence they can be protected as explained in Section 5.3. The
multiplicative inverse map can be described in two steps, which are explained
below.

Step 1: GF(16). Firstly, (12) is used to describe the map using only the fol-
lowing operations: addition, multiplication and taking the multiplicative inverse.
All these operations are in GF(16). The implementation of the multiplicative in-
verse is done in Step 2. The additions in GF(16) are protected as explained in
Section 5.3.

The multiplication of two sensitive variables a and b, that are represented
by (p, q) and (r, s), is implemented by multiplying the coordinates p and r, and
adding so-called correction terms ci. The correction terms are defined in such
a way that they can be computed without producing intermediate results that
correlate to a, b, ab, a+ b, a2, b2, or any other value that could leak information
about the sensitive variables to the attacker. The result is a representation of
the following form:

(v, w) = (pq +
∑

i

ci, q). (16)

Step 2: GF(4). The second step is similar to the first step, but operating on
smaller fields. A formula very similar to (12) describes how the multiplicative
inverse in GF(16) can be computed using operation in GF(4) only.

Addition and multiplication in GF(4) are implemented and protected as de-
scribed for Step 1. For the implementation of the multiplicative inverse, the
following fact is used.

For all x ∈ GF(4), it holds that x−1 = x2, hence taking the multiplicative
inverse is a linear operation, that can be protected by means of an additive split,
as described in Section 5.3.

6 Representations Assisting Cryptanalysis

Several alternative descriptions have been derived, showing that more elegant,
more structured and more simple sets of equations defining Rijndael can be
constructed. Although several of them seem a promising start for an attack, no
breakthrough has been demonstrated yet.

6.1 BES

Murphy and Robshaw [10] define the block cipher BES, which operates on data
blocks of 128 bytes instead of bits. According to Murphy and Robshaw, the
algebraic structure of BES is even more elegant and simple than that of Rijndael.
Furthermore, Rijndael can be embedded into BES. There is a map φ such that:

Rijndael(x) = φ−1 (BES (φ(x))) . (17)
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The map φ can also be seen as an injective labeling of the inputs of Rijndael.
Murphy and Robshaw proceed with some observations on the properties of

BES. However, these properties of BES do not apply to Rijndael.

6.2 Redundant S-Boxes

Any 8 × 8-bit S-box can be considered as a composition of 8 Boolean functions
sharing the same 8 input bits. J. Fuller and W. Millan observed that the S-box
of Rijndael can be described using one Boolean function only [8]. The 8 Boolean
functions can be described as

fi(x1, . . . , x8) = f(gi(x1, . . . , x8)) + ci, i = 1, . . . , 8, (18)

where the function f is the only nonlinear function, the gi are affine functions
and the ci are constants.

6.3 Continued Fractions

Ferguson, Schroeppel and Whiting [7] derive a closed formula for Rijndael that
can be seen as a generalization of continued fractions. Any byte of the interme-
diate result after 5 rounds can be expressed as follows.

x = K +
∑ C1

K∗ +
∑ C2

K∗ +
∑ C3

K∗ +
∑ C4

K∗ +
∑ C5

K∗ + p∗∗

(19)

Here every K is some expanded key byte, each Ci is a known constant and each
∗ is a known exponent or subscript, but these values depend on the summation
variables that enclose the symbol.

A fully expanded version of (19) has 225 terms. It is currently unknown what
a practical algorithm to solve this type of equations would look like.

6.4 XL and XSL Methods

XL and XSL are new methods to solve nonlinear algebraic equations [5, 15]. The
effectiveness and efficiency of these methods remain a topic of debate. It seems
plausible that the complexity of the methods is influenced by the description that
is chosen. For instance, the authors of [10] claim that using their representation,
the complexity of the XSL method decreases significantly. More details about
the methods can be found elsewhere in these proceedings.

7 Conclusions and Perspective on the Future

Compared with other symmetric ciphers, the design of Rijndael shows a remark-
able level of mathematical abstraction. The rich structure, and in particular the
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ease with which equivalent descriptions can be constructed, on the one hand has
caused worries with some people fearing for its long-term security. On the other
hand, the presence mathematical structure has certainly greatly facilitated the
development of efficient implementations on constrained environments and envi-
ronments where protection measures against side-channel attacks are required.

We expect that the continuation and generalization of this research will lead
to better insights in the security of Rijndael and even more efficient implemen-
tations. Furthermore, we expect that many results will be applicable to other
ciphers as well, leading to an increased understanding about the process of de-
signing secure symmetric primitives.
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