Florian Reimair, Peter Teufl, Thomas Zefferer - "WebCrySIL - Web Cryptographic Service Interoperability Layer",
11th International Conference on Web Information Systems and Technologies (WeblIST), 2015

WebCrySIL
Web Cryptographic Service Interoperability Layer

Florian Reimair!, Peter Teufl' and Thomas Zefferer!

Vnstitute for Applied Information Processing and Communications, Graz University of Technology, Inffeldgasse 16a, Graz,

Keywords:

Abstract:

Austria
{florian.reimair, peter.teufl, thomas.zefferer} @iaik.tugraz.at

cloud security, central cryptographic solutions, advanced cryptographic protocols, heterogeneous applications,
mobile devices

Today’s applications need to work with a heterogeneous collection of platforms. Servers, desktops, mobile
devices, and web browsers share data and workload. Many of these applications handle sensitive data or even
have security as their core feature. Secure messaging, password storage, encrypted cloud storage applications
or alike make use of cryptographic algorithms and protocols. These algorithms and protocols require keys.
The keys in turn have to be provisioned, securely stored, and shared between various devices. Unfortunately,
handling the keys and the availability of cryptographic APIs evokes non-trivial challenges in current hetero-
geneous platform environments. Also, the implementation of APIs supporting cryptographic protocols on
arbitrary platforms require significant effort, which is a major challenge when new cryptographic protocols
become available. Our approach, the Crypto Service Interoperability Layer (CrySIL), enables applications to
securely store/use/share key material and supports a wide range of cryptographic protocols and algorithms on
heterogeneous platforms. CrySIL complements existing solutions that mitigate the aforementioned problems
through central services by allowing for more flexible deployment scenarios. In this work, we explain the mo-
tivation of CrySIL, describe its architecture, highlight its deployment in a typical heterogeneous application

use case and reflect on achievements and shortcomings.

1 INTRODUCTION

In recent years, a highly heterogeneous platform
landscape has become the standard scenario for the
development and deployment of applications. Espe-
cially mobile device platforms introduced an unprece-
dented level of architectural heterogeneity. Modern
web browsers support rich HTML5-based applica-
tions, well known mobile devices are here to stay,
new wearable computing systems claim their place in
the world and classic desktop operating systems still
stand their ground.

Applications present the user with use cases that
became available only recently. Developing appli-
cations for today’s and tomorrow’s diverse environ-
ments boosts complexity of the development pro-
cesses significantly. Especially security-related as-
pects — the deployment of cryptographic algorithms
and protocols to offer confidentiality, integrity and
authenticity for the processed data — suffer from this
complexity in several ways: First, cryptographic algo-
rithm and protocol implementations are not available
on every platform. Second, the capabilities of differ-

ent platforms to handle the required key material in a
secure way strongly deviates. Third, the high level of
complexity causes implementation mistakes that lead
to significant security issues (Egele et al., 2013; Fahl
etal., 2012).

While existing and well-established solutions,
such as smart cards and cryptographic tokens offer a
way to solve the challenge of key storage, distribu-
tion, and handling, they are only available on limited
platforms and cause additional cost and usability is-
sues when being integrated in heterogeneous applica-
tions. Platform-based systems, i. e. TPMs (Trusted
Computing Group, 2011), mobile TPMs, or propri-
etary solutions offer reasonable security, given that
the security features are activated and configured ac-
cordingly. These system seldom share common con-
figuration and features and therefore have to be con-
figured and used one by one. The challenge is to get it
right, every time. The challenge becomes even greater
when multiple platforms with different hardware or
software-based encryption systems are to protect sen-
sitive data. These examples represent only a small ex-
cerpt of the entire problem space and are augmented



by the fact that the availability of cryptographic APIs
is strongly platform-dependent. E.g. when consider-
ing the web browser within an application scenario,
one has to keep in mind that hardly any cryptographic
API nor a secure key storage component is available.

While it might seem reasonable to hold confiden-
tial and secret cryptographic material directly at the
user’s device and refrain from storing these data on a
central server, a severe drawback emerges: If stored
locally, cryptographic material is not available every-
where and at any time. For instance, access to e-
government services is infeasible in case the solicited
smart card-based user authentication is impossible be-
cause the end-user device does not provide appropri-
ate card-reading capabilities. In times, in which mo-
bile and wearable devices are of growing importance,
this is becoming a significant issue.

The industry created central cryptographic service
to meet the anywhere and at-any-time requirements.
We reviewed some solutions and found that their lim-
ited scope make them only suitable for specific use
cases and deployment scenarios. For example, the
Austrian Mobile Phone Signature solution is limited
to the creation of electronic signatures, but does not
feature cipher operations. The CloudHSM solution
provided by Amazon is limited in terms of possible
deployment scenarios. In particular, this solution is
tied to a Public Cloud solution and to one specific
Cloud provider. Similar limitations apply to com-
parable server-based solutions that offer storage of
cryptographic material and central provision of cryp-
tographic services. Furthermore, these solutions do
not use or include locally available key material and
cryptographic functions, which still might play an im-
portant role in many use cases.

To overcome limitations of existing solutions and
to further improve the availability of cryptographic
services everywhere and at any time, we propose
the Crypto Service Interoperability Layer (CrySIL).
CrySIL provides a flexible architecture to use crypto-
graphic protocols and algorithms in a heterogeneous
environment and provides secure key storage and key
handling capabilities. It features build-in authenti-
cation as well as transparent off-device key storage.
When used as central service CrySIL can also be
seen as a cryptographic platform for the rapid de-
ployment of new cryptographic protocols, which are
not yet supported by hardware and software solutions.
This feature is especially important for upcoming ad-
vanced cryptographic protocols that will play an im-
portant role in cloud computing security.

The remainder of this paper is organized as fol-
lows. In Section 2, the motivation for CrySIL is out-
lined by discussing the current deployment of cryp-

tographic algorithms and functions in heterogeneous
application environments. Related work in Section 3
is followed by a detailed description of the CrySIL ar-
chitecture in Section 4. Subsequently, in Section 5 the
functionality and security challenges of CrySIL are
explained by investigating the prototype of browser
application for platform-independent file-encryption.
Finally, the work is concluded by giving an outlook
on future CrySIL plans and deployment scenarios.

2 BACKGROUND

The following deployment scenarios and applica-
tion categories highlight the manifold use of crypto-
graphic algorithms and protocols and the associated
problems of deploying such technologies in heteroge-
neous application environments.

In recent years mobile platforms have provoked
a rush to applications that allow users to access and
process their data on a wide range of devices. Nowa-
days a heterogeneous application comes in versions
for desktop-based systems, different mobile device
platforms and web browsers. In addition, specific en-
vironments, such as the Chrome Apps platform’, fur-
ther specific mobile environments (e.g., tablets, ph-
ablets, smartphones) and vendor-specific aspects need
to be covered. In recent years the first mass mar-
ket wearable devices have been released and are ex-
pected to gain significant usage numbers in the near
future (IDC, 2014). While this heterogeneous device
landscape offers significant new opportunities for cus-
tomers, it comes with a major price tag — complex-
ity. Developing for so many platforms requires differ-
ent user experience design (UXD) strategies, different
platform-specific programming-language and archi-
tecture skills and — especially important for the scope
of this work — in depth knowledge on how to provide
confidentiality, integrity and authenticity for the pro-
cessed data. Protecting the application data is espe-
cially relevant in the context of exchanging this data
via cloud infrastructures to provide instant access on
heterogeneous application platforms. Noteworthy ex-
amples for such applications are note-taking applica-
tions, messengers, applications for collaborative doc-
ument processing, or cloud storage providers. Obvi-
ously, the secure handling of this data needs to be con-
sidered in the local environment as well as when the
data is transferred and stored at the cloud provider. To
offer the required level of protection, cryptographic
algorithms and protocols are deployed.

Ihttps://developer.chrome.com/apps/app_

architecture



In a similar way, applications that advertise secu-
rity features as core functionality require the deploy-
ment of cryptographic algorithms and protocols. Ex-
amples for this application category are secure mes-
sengers, encrypted cloud storage solutions or pass-
word managers. On a high-level view those applica-
tions face the same challenges as the heterogeneous
applications described above. However, the security
requirements for those applications are typically more
complex due to the higher likelihood of targeted at-
tacks.

Security and especially the deployment of crypto-
graphic functions are core aspects of enterprise-level
applications. VPN solutions based on IPSEC or TLS
are widely deployed to guard network communica-
tions, S/MIME or PGP are required to ensure the
confidentiality, authenticity and integrity of emails.
While these communication systems are based on
well established protocols, a rather new concept —
digital signatures to create authentic documents — is
not. Legal frameworks (e.g., (Parliament and Coun-
cil, 2000)) have established the basis for the legally
binding use of digital signatures. The applications of
advanced digital signatures within private and corpo-
rate perspectives are manifold: signing legally bind-
ing documents (e.g. contracts), automatically sign-
ing documents (e.g. invoices), or providing authen-
ticity and integrity for stored documents in general.
The security requirements for enterprise-level appli-
cations mostly exceed the requirements for applica-
tions for personal use due to much higher security re-
quirements.

All in all, the wide deployment of cloud comput-
ing in recent years has brought up many issues in re-
lation to security, privacy and data protection laws.
E.g. using U.S. cloud computing resources in Eu-
rope is linked to significant legal issues (van Hoboken
et al., 2012). One technical approach to stand these
challenges is to deploy data encryption mechanisms.
However, when using current cryptographic schemes,
data needs to be encrypted directly at the client be-
fore it is stored at the cloud service provider. That, in
fact, keeps the data protected while at rest but makes
one of the main advantages of cloud computing — on-
line data processing — much harder. Current research,
however, focuses on new cryptographic protocols and
algorithms capable of processing encrypted data in
the cloud. The required functionality is brought —
among others — by new cryptographic protocols and
algorithms in the areas of homomorphic encryption
(Naehrig et al., 2011), searchable encryption (Bel-
lare et al., 2007), verifiable encryption (Camenisch
and Shoup, 2003), proxy re-encryption schemes (Ate-
niese et al., 2006) or redactable signature schemes

(e.g, (Hanser and Slamanig, 2013)). There is a high
variety in the applicability of these new protocols in
production environments. While in certain cases the
schemes are not yet suited for practical applications
(e.g. homomorphic encryption), other schemes such
as proxy-re-encryption have already reached a proto-
typical stage (e.g., the NICS CRYPT Library?). How-
ever, even protocols from the latter category cannot
yet be efficiently deployed in existing applications
due to the lack of compatibility with current high level
standards and the lack of hardware and software sup-
port on various platforms.

By considering the current challenges related to
platform support and secure key storage facilities, the
following conclusions on using cryptography in het-
erogeneous applications can be drawn: Due to the
presence of these challenges, heterogeneous applica-
tions either do not support cryptographic functions,
face usability issues, or suffer from implementation
weaknesses due to the wrong use of cryptographic
primitives and methods. Furthermore, certain plat-
forms currently do not have any reasonable support
for cryptographic algorithms and key storage facilities
at all. And that is where novel solutions are needed.

3 RELATED WORK

A number of server-based cryptographic services
have been implemented by the industry. This sec-
tion gives an overview and functional evaluation of
selected cryptographic services that can be integrated
into cloud-based environments.

SigningHub? offers the creation of advanced digi-
tal signatures with unique cryptographic keys for dif-
ferent users. As a cloud-based service, it provides
centrally-stored keys as well as signature creation us-
ing keys stored on smart cards or soft tokens. Signed
documents are stored and managed on servers pro-
vided by SigningHub. The service can be easily in-
tegrated into applications and web services using a
simple REST-based interface.

Dictao* and Cryptomathic® support digital sig-
natures for transaction security and user authentica-
tion. Both services facilitate key access by authenti-
cating clients using simple credentials, such as user-
name/password schemes, or credentials that feature
higher strength (eID cards, OTPs, mobile devices etc).
While SigningHub and Cryptomathic are deployed

2https://www.nics.uma.es/dnunez/nics-crypto
3http://www.signinghub.com
“https://www.dictao.com
5http://www.cryptomathic.com



as cloud services, Dictao requires integration into an
enterprise IT infrastructure. Basically, the provided
functionality is limited to user authentication and sig-
nature creation.

The Austrian citizen card (Leitold et al., 2002),
which represents the official eID in Austria, is a
technology-neutral concept for unique citizen identi-
fication and secure qualified signature creation. Aside
from smart card-related implementations, a cloud-
based service is operational. The so-called Austrian
Mobile Phone Signature® is operated in a private
cloud and uses a hardware security module (HSM)
to store the private signature keys of all Austrian
citizens. Access to these keys is protected by a
strong two-factor authentication mechanism, involv-
ing a password as well as an OTP being sent to the
citizen’s mobile phone. Applications can access the
Austrian Mobile Phone Signature and its signature
creation functionality through a well-defined XML-
based interface. Although the Austrian Mobile Phone
Signature meets the demands of the law, the currently
deployed implementation fails to support use cases
other than signature creation and user identification.

With AWS CloudHSM’, Amazon feeds the de-
mand of integrating secure cryptographic operations
into deployed applications without requiring an HSM
available on premise. To meet regulatory require-
ments for data security, customers are able to acquire
sole access to appliances on a dedicated HSM and
therefore retain full control of the keys and the cryp-
tographic operations of the HSM. The offered func-
tionality of the HSM can be integrated into applica-
tions that are deployed within the Amazon Virtual Pri-
vate Cloud (Amazon VPC) via the provided Java or
C programming APIL. As AWS CloudHSM can only
be used in conjunction with Amazon VPC, customers
are bound to Amazon and a migration to other cloud
providers is infeasible.

The content delivery network CloudFlare® elabo-
rated a solution that enables website visitors to estab-
lish a TLS connection with a Cloudflare server while
retaining the private key on the server of a customer.
The technique, entitled Keyless SSL, is transparent to
a website visitor and takes place between a Cloudflare
server, acting as a reverse proxy, and the key server
where the private key resides. The Cloudflare server
is fully capable of negotiating the TLS connection but
shifts the generation of the signatures for the client
random, server random, and public key certificate to
the customer side. While this concept ascertains that
Cloudflare servers have no access to the private key,

6https://www.handy—signatur.at
Thttps://aws.amazon.com/cloudhsm/
8https://www.cloudflare.com

they still know the negotiated session keys and are
thus able to read and write any data flowing between
the website visitor and a target web server. As a con-
sequence, end-to-end security is undermined and the
overall benefit derogates to having out-sourced all op-
erations involving the private key.

4 CRYPTO SERVICE
INTEROPERABILITY LAYER

Motivated by the unsolved challenges and already
available solutions, we have created the Crypto Ser-
vice Interoperability Layer (CrySIL). CrySIL creates
an interoperability framework that allows the user ac-
cess to his key data regardless where the key resides.

In short, the user takes one of her devices and
launches an application to perform some crypto-
graphic task. The application interfaces with the in-
teroperability layer, CrySIL, which connects to an-
other device. This other device has access to the ac-
tual cryptographic primitive, creates and validates au-
thentication challenges if required and performs the
requested operation. The result is returned to the in-
teroperability layer and back to the application run-
ning on the device of the user. A graphical illustration
of the workflow is given in Figure 1.

Device Device

@
Application

T i

Figure 1: CrySIL’s basic architecture

<

The flexible design of CrySIL allows for numer-
ous deployment scenarios. First and foremost, the de-
vice having access to the key material can be the very
same device the user interfaces with. Thus, CrySIL
fulfils the use case requirements of using local cryp-
tographic services — as provided by smart cards. Fur-
ther, the device can be a cloud service provider offer-
ing the service to a broad range of users. This scenario
reflects the central service paradigm as seen in in-
dustry solutions. A rather novel deployment scenario
possible with CrySIL is to move the central cloud-
based service to a user’s mobile device. This scenario
is motivated by the relative high level of security that
can be offered by a mobile device when encryption
systems and access protection systems are activated
and correctly configured.



CrySIL Node

@

Receiver Router Actor

|—| Authentication H Communication |J

other CrySIL nodes

o

Figure 2: CrySIL node architecture overview

4.1 Interoperability Layer Node

The heart of our CrySIL approach is the interoper-
ability layer node (denoted as IL in Figure 1). The
modular node design enables the flexibility and ex-
tensibility of our approach while keeping the overall
architecture simple.

Most  conventional  cryptographic  service
providers receive commands, perform the required
actions, and return the result to the caller. To achieve
CrySIL’s interoperability goal, CrySIL breaks the
classic cryptographic provider apart. The resulting
modules have different jobs and work together to
form the actual cryptographic service provider. The
most visible modules are command receivers and
the modules which act on cryptographic primitives
— actors. Another crucial module is responsible for
connecting receivers and actors. Other modules
handle inter-node communication, protocol map-
pings, advanced crypto and authentication. All are
considered as building blocks and are not restricted to
any technology, platform, or programming language.
An illustration of modules and their interconnections
is given in Figure 2.

A receiver offers a set of cryptographic functions
to the application developer. Being a design concept,
a receiver can be implemented to run on any device,
any platform, and any technology. A receiver does
not perform any cryptographic operations but inter-
faces with the routing module after having the com-
mand encoded as interoperability protocol command.
A realisation of a receiver can be cryptographic APIs
on a programming language level like JCE, CSP, or
the W3C Web Cryptography APIL. Another realisa-
tion can serve as a web-service providing a SOAP-
based cryptographic interface. Having a realisation
that interfaces with clients of the PKCS#11 standard
or PC/Smart Card daemons (PCSCd) can bring re-
mote key storage capabilities to existing applications.

An actor makes the contents of a specific key
provider available to the interoperability layer. A
key provider hosts key material and performs the
actual cryptographic operation. The acfor can be
implemented to connect arbitrary key providers to

CrySIL. Sample key providers are smart cards at-
tached to a PC, USB-Tokens, Software Security Mod-
ules (SSMs), as well as Hardware Security Modules
(HSMs). An actor+ might provide high-level crypto-
graphic methods such as CMS encryption or XMLD-
SIG signatures while using the cryptographic primi-
tives of other actors.

The central routing module — the router — re-
ceives commands from the receiver modules and as-
signs them to the appropriate actor modules. CrySIL
supports a many-to-many relationship between actors
and receivers in a completely transparent way.

4.2 Inter-Node Communication

The use cases ask for cryptographic primitives and
services to be available anywhere and at any time.
CrySIL’s answer is transparent off-device cryptogra-
phy, which mandates inter-node communication. Off-
device cryptography allows a device that is not capa-
ble of doing a certain cryptographic operation on its
own to use the cryptographic engine of a remote ser-
vice. The device therefore can do the operation at the
cost of having to trust the remote service.

The communication modules are in charge of
inter-node communication. They simply take a re-
quest and send it to another off-device communi-
cations module. The most basic implementation is
HTTP(s). Yet, arbitrary transport protocols, such
as HTMLS PostMessage, Web-sockets, or IPSec are
suitable.

Putting the pieces together, CrySIL renders off-
device crypto completely transparent to the user, the
developer, and to the application while maintaining a
simple architecture. With inter-node communcation,
there can be one or multiple nodes per device. The
resulting architecture is depicted in Figure 3. Our

Receiver

Receiver

Receiver

Figure 3: Interoperability architecture view

approach enables almost complete key flexibility. A
user benefits from her ability to use a variety of dif-
ferent keys provided by different key providers from
a variety of applications on different devices.



4.3 Authentication

Whenever cryptographic keys are used by an applica-
tion, there must be access and usage policies in place.
For local deployments, the simplest policy is that ev-
eryone can use the key. Similarly, a policy might re-
quire a PIN code for a local smart card. Such rather
simple policies can be enforced by the device or the
operating system. However, the cross-device/inter-
node key access feature of CrySIL asks for a policy
enforcement system that meets the requirements be-
yond in-device solutions.

As CrySIL can interface with key providers that
may already require for authentication information,
CrySIL has to collect and provide the authentication
data. Within CrySIL only the actor knows about the
authentication requirements of its key provider and
has to challenge the user accordingly. CrySIL can
support simple PIN challenges over external identity
providers (OAuth, OpenID Connect) to multi-factor
authentication methods. As for standing the above
mentioned challenges, the CrySIL infrastructure gath-
ers authentication data from the user as well.

The authentication modules offered by CrySIL are
organized in a flexible and extensible manner. Differ-
ent authentication modules can handle different au-
thentication concepts from a simple PIN query over
OpenlD Connect to strong two-factor authentication
systems. A developer can use any service with any
authentication mechanism but does not have to bother
with authentication concerns. Applications can there-
fore offer strong authentication mechanisms with lit-
tle extra effort. Furthermore, authentication modules
are designed to keep sensible credentials away from
the receiver and therefore from the application. A ma-
licious application therefore might have a harder time
to eavesdrop or attack the credentials which results in
an overall security boost.

Last but not least, the interoperability layer proto-
col foresees the use of session information. The ses-
sion feature allows an actor to create one of the es-
tablished session management systems to allow ses-
sions with lifetime exceeding that of a single request.
An application can therefore use an authorized key
a number of times before he has to re-authenticate
again. That might enable the user to accept stronger
authentication as a hurdle during the key unlocking
procedure.

S EVALUATION

In order to demonstrate and evaluate our approach,
we have implemented a number of prototypes in the

course of our research. The focus lies on evaluating
the flexibility and combinability of the CrySIL build-
ing blocks in order to solve different use cases.

In this section, we will describe our protected-
data-at-rest prototype in terms of features, deploy-
ment scenarios, practical applicability, and benefits
over other solutions. The prototype addresses the sce-
nario where a user gets some data from a friend and
wants to use the data on multiple devices. The objec-
tive is that the data is encrypted whenever it is not on
a device owned by the user or the friend. The sce-
nario is depicted in Figure 4. The setup is done with
state-of-the-art communication and crypto. Trust re-
lationships as well as attack vectors are well known
from any hardware security module deployment sce-
nario. Therefore, a thorough security analysis would
not yield new information on security and trust issues,
and is therefore omitted.

5.1 Deployment Scenario

The users, denoted as user 1 and user 2, have no pro-
found understanding of cryptography and are using
web browsers on PCs and mobile devices. It is as-
sumed that for users who are no experts in the field
of IT security, it is too much of a hurdle to perform
manual key exchange in a secure way.

The storage solution used in the scenario is de-
fined to be some shared storage solution with instant
sharing. For example, a public cloud storage service
like Dropbox®. This solution solicits no manual ex-
change of the data like it would be when using tech-
nologies like instant messaging or electronic mail and
therefore keeps the prototype clean and easy to under-
stand.

@
Browser
Web
~1 Service
Mobile
Phone
: =
1|I PC |

Figure 4: Prototype: protected-data-at-rest deployment sce-
nario

On either device, be it the phone, the tablet, or the
PC, a web browser runs an HTMLS5 and JavaScript
browser application. The application encrypts arbi-
trary data before it submits the data to the shared stor-
age service with the help of the W3C Web Cryptog-

9https://dropbox.com



raphy APL In this case, the API is implemented by
JavaScript version of a CrySIL node. This node is
referred to as the application’s CrySIL node later on.
Hiding behind the Web Crypto API, the application’s
CrySIL node offers transparent access to a remote key
service over HTTPS.

The key service — acting as trusted third party — is
a Java 8/Spring 4 web application hosted on a Tomcat
server an referred to as key service CrySIL node later.
An HTTPS communication module offers remote ac-
cess. An actor+ capable of handling CMS containers
is available as well as an actor interfacing with a soft-
ware key store. Key store access is constraint by the
actor as follows:

e To retrieve the certificate of the key of user 1, it
is sufficient to provide the correct identifier of the
user.

e Using the key for decryption purpose, how-
ever, requires 2-factor authentication with a user-
name/passphrase tuple in the first place and a mo-
bile TAN'? as second factor.

To keep the prototype simple, we settled with some
less secure implementations. A hardware key store
(provided by an HSM) for the key service would bring
a major boost to the overall security. However, for the
sake of time and simplicity, the current implementa-
tions are based of software key stores.

5.2 Use Case

User 2 starts the browser application and add some
data that he wants to share with user 1. Before the
browser application sends the data to the cloud stor-
age, it interfaces with the CrySIL infrastructure to en-
crypt the data. This is where the browser applica-
tion hands over the control flow to the application’s
CrySIL node. The flow is only returned to the browser
application when the encrypted data arrives. An illus-
tration of the control flow is given in Figure 5.

Being asked to encrypt data, the application’s
CrySIL node asks user 2 to select a certificate that
should be used to encrypt the data. User 2 selects
the key service and the application’s CrySIL node
requests a list of certificates from the key service
CrySIL node. In any case, the key store actor of the

10Mobile transaction numbers (TANs) are a two-factor
authentication process where the user proofs knowledge of
a secret and posession of a device, i.e. a mobile phone. The
secret is used to identify the user and therefore the mobile
phone. Then, a nonce is sent to the phone. The user has to
proof knowledge of the nonce. The user can know about the
nonce if and only if she has access to the mobile phone in
question. Mobile TANs are broadly used for authentication
in banking, industry, and cloud services.

encrypt data
application local CrySIL node remote CrySIL node
receive fetch create auth
data certificates challenge

stand
challenge

verify

O [invalid] X

authentication
failed [else

choose cert
and issue
encryption
command

report list
of certificates

Y

encrypt

send to
shared storage

5

success

Figure 5: Prototype encrypt command flow

key service CrySIL node answers with an authenti-
cation challenge, demanding an identifier. The chal-
lenge is picked up by the appropriate authentication
module within the the application’s CrySIL node. The
module interfaces with the human — user 2 — and
shows a graphical user interface where it asks for the
required identifier of user 1. User 2 provides the iden-
tifier. The authentication module sends the informa-
tion back to the key service CrySIL node which an-
swers with the certificate of user 1. Note, that the
authentication information has never been processed
by the browser application itself.

The the application’s CrySIL node now sends an-
other request to the CrySIL infrastructure and asks for
encrypting the data with the just retrieved certificate
using the CMS standard. The router of the the appli-
cation’s CrySIL node decides that it has no means of
doing CMS locally and therefore forwards the whole
request to the key service CrySIL node. The key ser-
vice node receives the request, its router forwards it
to the CMS actor+ which in turn creates a CMS con-
tainer from the supplied data and returns it to the re-
ceiver of the application’s CrySIL node within the
browser application. Although sending a whole doc-
ument causes communication overhead, this example
highlights that a platform (the web browser) lacking
the required cryptographic APIs is still able to cre-



ate a CMS document. With the key service being a
trusted party and the communications being secured
by HTTPS, the encryption process is considered as
secure.

The resulting CMS container is returned to the
browser application which in turn sends it to the cloud
storage after authenticating there.

Now user 1 can receive —i. e. read — the CMS con-
tainer which was just submitted to the shared storage
by user 2. The process is similar to the one described
above and illustrated in Figure 5. The user takes one
of her devices and downloads the encrypted data. She
uses the same browser application to decrypt the CMS
file with the help of the CrySIL infrastructure. She has
to go through the process of selecting a certificate and
standing the challenge and standing a two-factor au-
thentication prior to the decryption process until the
result is available in the application’s CrySIL node
and therefore in the application.

5.3 Discussion

Our approach has a number of advantages over con-
ventional solutions. First and foremost, a centralised
key storage location enables a user to access her keys
at any time and anywhere. The only dependency
is an internet connection, but by having an internet-
accessible cloud storage service for data storage ren-
ders this dependency fulfilled whenever cloud access
is possible. Therefore, this feature closes the gap be-
tween classic cryptographic service providers and up-
coming requirement to serve multi-device users.

When sensitive key material is not stored on the
device itself, there is no need to share key data be-
tween devices. The risk of exposing the sensitive
key data during transmission is thus foreclosed com-
pletely. There is no need to align key storage solutions
to be able to translate key material where interfaces
and transmission channels are very restricted.

Not having access to the sensitive key material of
one key on different devices reduces the attack vectors
against the key drastically. Especially, since browsers
for example are most vulnerable in terms of protecting
sensitive key material. The private key material never
leaves the key provider environment.

The level of device and cryptographic expertise
required from developers is lower. The developer
can focus on creating a feature-rich application, well
tested and stable software instead of dealing with the
peculiarities of authentication and key exchange and
secure key storage on the devices in question. And,
nonetheless, create an application that uses cryptog-
raphy and enhances the privacy and security of the
user and her data.

Last but not least, CrySIL offers not only off-
device key storage but also off-device cryptographic
functions. A cryptographic service provider which
offers high level cryptographic methods such as CMS
or XMLDSIG for remote use enables a broad range of
devices and applications to use cryptography to pro-
tect the users’ data and privacy. With that, the increas-
ingly popular browser applications are enabled for the
use of cryptography in a much more secure manner
than with local key storage.

Finally, the CrySIL infrastructure relies solely on
well-known building blocks of cryptography. The se-
curity aspects of key stores, cryptographic providers,
as well as the communication solution are commonly
known and well-understood.

All the advantages come with the cost of yet an-
other trusted third party. Establishing certifications
and trust relationships are still required and come with
all advantages and drawbacks of this concept. Yet, the
CrySIL infrastructure also supports the deployment
of key stores on the user owned devices (e.g., home
servers or mobile devices), or directly supports local
crypto devices, such as smart cards.

5.4 Performance

As for performance, CrySIL does not implement any
cryptographic service itself. It solely integrates exist-
ing solutions and makes them accessible over various
APIs even on other devices. Therefore, depending on
the used key provider/crypto service, anything is pos-
sible between a few up to multi-hundred signatures
per second.

The infrastructure adds some overhead in the pro-
cess of redirecting a command to a crypto service.
The overhead is of constant size and in the magni-
tude of milliseconds. Having to collect authentication
information does require some time for fetching the
requirements, creating the challenge and reading the
response. This time lost is minimal compared to the
time a user needs to enter the required information.

Having an off-device scenario, there is of course
some delay when sending commands via the Internet.
Thus, in addition to performing the actual crypto pro-
cess and the redirecting process one round-trip-time
has to be added per command. For CrySIL, we en-
abled a batch mode so one can do multiple operations
per command as an optimization option.

Anyhow, these performance measurements are
made based on our prototypical implementation. The
implementation has not received any performance op-
timizations due to the fact that the main goal is to cre-
ate availability and not speed.



5.5 Integration Efforts

Whenever an application utilizes well-known crypto
APIs, CrySIL can be integrated with an effort next
to none. As of today, we work on receivers for
PKCS11, JCE (for desktop and Android), MS CNG,
W3C Crypto API, OpenSSL and OpenSC.

In case a platform does not have the required
modules available, one can easily implement such a
module. The Java JCE receiver module for example
is implemented using only 1000 lines of prototypi-
cal code including some functionalities that are not
supported by the JCE framework. Our Java router
and sending communications modules do have 80 loc
each with a common protocol definition of 1500 loc.
The code of imported libraries are not included in the
numbers given.

6 FUTURE WORK

Our approach complements classic solutions so
that the new requirements of heterogeneous applica-
tions and cloud environments can be met. However,
there are still gaps neither the related work nor our
approach can solve currently.

The first gap is the need to move authentication
away from the application. Our approach succeeds
in moving the authentication to the library and there-
fore preventing the sensitive credentials to be directly
processed by the application. Since the library runs
inside the application and shares its memory, an at-
tacker i. e. a malicious application might still be able
to eavesdrop or tamper with the sensitive information.
Having the credentials not reaching the application in
the first place would foreclose this attack vector com-
pletely. For web applications, this could be realized
by using a separated iFrame, in case of mobile de-
vices, specific CrySIL apps could be used that are uti-
lized by other apps via IPC calls.

Other future use cases include the emulation
of attribute/identity based encryption, or proxy-re-
encryption schemes by using flexible and fine grained
authentication systems. E.g., proxy-re-encryption
schemes could be emulated by handing out authen-
tication tokens to third-parties who — by supplying
these tokens — are allowed to re-encrypt data for spe-
cific recipients. Similar approaches could be used
for the emulation of identity/attribute-based encryp-
tion schemes. However, the CrySIL platform could
also be used to directly implement such schemes and
thereby enable their usage on arbitrary platforms.

These examples represent a small collection of
possible future directions.

7 CONCLUSIONS

The deployment of cryptographic functions in het-
erogeneous applications and storing and handling key
material in a secure way faces many challenges in re-
lation to lack of platform support and high complex-
ity for the development teams. One way to approach
these problems is the introduction of central services
that deploy secure key storage facilities and provide
APIs that can be used on arbitrary platforms. Several
companies already offer such systems for the deploy-
ment of specific cryptographic functions. However,
those system lack the flexibility in terms of supported
cryptographic algorithms and protocols and have not
been intended for generic use cases.

Therefore, this work presents the Crypto Service
Interoperability Layer (CrySIL) which has a highly
flexible architecture that is capable of combining cen-
tral and local cryptographic services. The current sys-
tem has already been successfully used for several
prototypical applications and is constantly improved
by adding additional support for cryptographic algo-
rithms and APIs for different platforms.

REFERENCES

Ateniese, G., Fu, K., Green, M., and Hohenberger, S.
(2006). Improved proxy re-encryption schemes
with applications to secure distributed storage.

Bellare, M., Boldyreva, A., and O Neill, A. (2007).
Deterministic and Efficiently Searchable En-
cryption. In Proceedings of the International
Cryptology Conference on Advances in Cryptol-
0gy (CRYPTO), pages 535-552. Springer.

Camenisch, J. and Shoup, V. (2003). Practical Verifi-
able Encryption and Decryption of Discrete Log-
arithms. In Boneh, D., editor, CRYPTO 2003:
Advances in Cryptology, volume 2729 of Lec-
ture Notes in Computer Science, pages 126—144.
Springer Berlin Heidelberg.

Egele, M., Brumley, D., Fratantonio, Y., and Kruegel,
C. (2013). An empirical study of cryptographic
misuse in android applications. In Proceedings
of the 2013 ACM SIGSAC conference on Com-
puter & communications security - CCS 13,
pages 73-84, New York, New York, USA. ACM
Press.

Fahl, S., Harbach, M., Muders, T., Smith, M.,
Baumgirtner, L., and Freisleben, B. (2012).
Why eve and mallory love android. In Pro-
ceedings of the 2012 ACM conference on Com-
puter and communications security - CCS ’12,



page 50, New York, New York, USA. ACM
Press.

Hanser, C. and Slamanig, D. (2013). Blank digi-
tal signatures. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer
and communications security - ASIA CCS ’13,
page 95, New York, New York, USA. ACM
Press.

IDC (2014). Worldwide Wearable Computing
Market Gains Momentum with Shipments
Reaching 19.2 Million in 2014 and Climbing
to Nearly 112 Million in 2018, Says IDC.
https://www.businesswire.com/news/
home/20140410005050/en/Worldwide-
Wearable-Computing-Market-Gains—
Momentum-Shipments. last visited on March,
25th 2015.

Leitold, H., Hollosi, A., and Posch, R. (2002). Se-
curity architecture of the Austrian citizen card
concept. 18th Annual Computer Security Appli-
cations Conference, 2002. Proceedings.

Naehrig, M., Lauter, K., and Vaikuntanathan, V.
(2011). Can homomorphic encryption be prac-
tical? In Proceedings of the 3rd ACM workshop
on Cloud computing security workshop - CCSW
11, pages 113—-124. ACM Press.

Parliament, E. U. and Council (2000). Directive
1999/93/EC of the European Parliament and of
the Council of 13 December 1999 on a Com-
munity framework for electronic signatures. Of-
fcial Journal of the European Communities, L
013:12-20.

Trusted Computing Group (2011). TCG TPM
specification  version 1.2 revision 116.
http://www.trustedcomputinggroup.
org/resources/tpm main_specification.
last visited on January 29, 2013.

van Hoboken, J. V. J., Arnbak, A., and van Eijk, N.
(2012). Cloud Computing in Higher Education
and Research Institutions and the USA Patriot
Act. SSRN Electronic Journal.



